Lecture 8

Multirate Digital Signal Processing

Introduction

- ▶ We are already familiar with the sampling theorem. We know that in order to be able to recover an analog signal from its samples, we need to have $R \ge 2W$ samples per second. That is the sample rate is proportional to the bandwidth of the signal.
- \triangleright Since the bandwidth of the signal is different in different parts of a system, we need to have different rates at different points.
- Take as an example a signal consisting of N voice channels each with a bandwidth of W Hz. The total bandwidth of the signal is NW. So, we need 2NW samples.
- Assume that we would like to separate these voice signals and have N individual voice channels using N filters working on the compound signal. The out put of each channel has a bandwidth of W Hz. requiring a rate of 2W samples/second.

Introduction

 On the other hand if we have two or more signals with bandwidths $W_1, W_2, ..., W_n$ and we want to multiplex them into one signal to go average the modium (cable air of a) we have a system with M input over the medium (cable, air, etc.), we have a system with N input each requiring a rate of $2W_1$, $2W_2$,, $2W_N$. But the output has a bandwidth of $W = \sum_{i=1}^{N} W_i$. So, the rate at the output of the

multiplexer is $R = 2 \sum_{i=1}^{N} W_i$.

- Changing rate at different points of a circuit may be:
- Decimation: Deleting some samples.
- Interpolation: Adding samples between existing samples,
- Changing rate by a rational factor, say, interpolation by a factor a and decimating by a factor D,
- Changing the rate by and arbitrary ratio.

Outline of this lecture

- \blacktriangleright In this lecture we talk about:
- ▶ 1) Decimation by a factor D,
- ▶ 2) Interpolation by a factor I,
- ▶ 3) Rate conversion by a Rational Factor I/D, and
- ▶ 4) Implementation of rate conversion using Polyphase structure.

 \blacktriangleright

▶ Decimation consists in taking one sample out of every D samples. By doing that we reduces the number odf samples by a factor D. So if our rate was R=2W now it would be R'=R/D=2W/D. This is less than the number of samples required for the original signal with bandwidth W Hz. So, we need to first filter the signal to reduce its bandwidth by a factor of D. This figure shows the process of decimation:

Decimation by a factor D .

- \blacktriangleright The digital signal $x(n)$ has a spectrum $X(\omega)$ that is nonzero in the interval $0 \leq \omega \leq \pi$, or equivalently, |F| $\leq \frac{F_x}{2}$. If we just reduce the rate by simply selecting every Dth sample of $x(n)$, we get an aliased version of $x(n)$ folded around $\frac{F_x}{2D}$.
- \blacktriangleright To avoid aliasing we need to reduce the bandwidth of $x(n)$ to $F_{max} = \frac{F_x}{2D}$ using the lowpass filter $h(n)$.

 \blacktriangleright The lowpass filter has n impulse response h(n) and a frequency response:

$$
H_D(\omega) = \begin{cases} 1 & \omega \le \pi/D \\ 0 & otherwise \end{cases}
$$

 \blacktriangleright So, the filter eliminates the spectrum of $X(\omega)$ in the range of $\frac{\pi}{2}$ \boldsymbol{D} $< \omega < \pi$.

The output of the filter $h(n)$ is $v(n)$ given as:

 \blacktriangleright $v(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$

Which is then downsampled to produce:

$$
y(m) = v(mD) = \sum_{k=0}^{\infty} h(k)x(mD - k)
$$

Let $\tilde{v}(n)$ be the downsampled version of $v(n)$:

$$
\tilde{\nu}(n) = \begin{cases} \nu(n) & n = 0, \pm D, \pm 2D, \dots \\ 0 & otherwise \end{cases}
$$

 \triangleright $\tilde{v}(n)$ can be viewed as the product of $v(n)$ with a train of impulses $p(n)$ with period \dot{D} , i.e.,

 $\blacktriangleright \tilde{v}(n) = v(n)p(n)$ • and $y(m) = \tilde{v}(mD) = v(mD)p(mD) = v(mD)$.

 \blacktriangleright The discrete Fourier Series of $p(n)$ is:

 $\blacktriangleright p(n) =$ $\overline{1}$ $\frac{1}{D}\sum_{k=0}^{D-1}e^{j2\pi kn/D}$

 \blacktriangleright The z-transform of the output $y(m)$ is:

$$
Y(z) = \sum_{m=-\infty}^{\infty} y(m) z^{-m} = \sum_{m=-\infty}^{\infty} \tilde{v}(mD) z^{-m}
$$

 \blacktriangleright Using the fact that $\tilde{v}(m) = 0$ except at multiples of D, we can write $Y(z)$ as:

$$
Y(z) = \sum_{m=-\infty}^{\infty} \tilde{v}(m) z^{-m/D}
$$

Substituting $\tilde{v}(m) = v(m)p(m)$ in $Y(z)$ we get: $\blacktriangleright Y(z) = \sum_{m=-\infty}^{\infty} v(m) \left[\frac{1}{D} \right]$ $\frac{1}{D}\sum_{k=0}^{D-1}e^{j2\pi mk/D}\Big\{z^{-m/D}\Big\}$ \blacktriangleright = 1 $\frac{1}{D}\sum_{k=0}^{D-1}\sum_{m=-\infty}^{\infty}\upsilon(m)\big(e^{-j2\pi k/D} \cdot z^{1/D}\big)^{-m}$ \blacktriangleright = 1 $\frac{1}{D}\sum_{k=0}^{D-1}V(e^{-j2\pi k/D} \cdot z^{1/D}).$

Note that $V(z) = H_D(z)X(z)$. So,

$$
Y(z) = \frac{1}{D} \sum_{k=0}^{D-1} H_D(e^{-j2\pi k/D} \cdot z^{1/D}) X(e^{-j2\pi k/D} \cdot z^{1/D}).
$$

Computing $Y(z)$ on the unit circle, i.e., $z = e^{j\omega_y}$, we get:

$$
Y(\omega_{y}) = \frac{1}{D} \sum_{k=0}^{D-1} H_{D} \left(\frac{\omega_{y} - 2\pi k}{D} \right) X \left(\frac{\omega_{y} - 2\pi k}{D} \right).
$$

Properly designing $H_D(\omega)$, we can avoid aliasing and get:

$$
Y(\omega_{y}) = \frac{1}{D} H_{D} \left(\frac{\omega_{y}}{D} \right) X \left(\frac{\omega_{y}}{D} \right) = \frac{1}{D} X \left(\frac{\omega_{y}}{D} \right).
$$

Note that the sampling rate of $y(m)$ is $F_y = \frac{1}{T_x}$ $T_{\mathcal{Y}}$ while the sampling rate of $x(n)$ is $F_x = \frac{1}{T_x}$ T_{χ} and since $T_{y} = DT_{x}$, we have $F_y = \frac{F_x}{D}$.

In digital domain $\omega_y = \frac{2\pi}{F_x}$ $F_{\mathcal{Y}}$ and $\omega_x = \frac{2\pi}{F_x}$ F_{χ} . So, $\blacktriangleright \omega_{\gamma} = D \omega_{\chi}.$

As an example, consider $x(n)$ with spectrum $X(\omega_x)$:

Interpolation by a Factor I

- \blacktriangleright Interpolation is a process where we increase the number os samples by a factor *I*, i.e., we have to insert $I - 1$ samples between every two consecutive samples.
- Assume that we would like to interpolate $x(n)$ by a factor *I*. Let the output be $y(m)$ with rate $F_v = I F_x$ where F_x is the rate of $x(n)$.
- First form a sequence $v(m)$ with rate the same rate as $y(m)$, i.e., $F_v = I F_x$ by placing $I - 1$ zeros between samples of $x(n)$:

$$
v(m) = \begin{cases} x(\frac{m}{l}) & m = 0, \pm l, \pm 2l, \dots \\ 0 & otherwise \end{cases}
$$

Interpolation by a Factor I

This sequence has z-transform:

$$
V(z) = \sum_{m=-\infty}^{\infty} v(m)z^{-m} = \sum_{m=-\infty}^{\infty} x(m)z^{-ml} = X(z^I).
$$

 \blacktriangleright Evaluation this on the unit circle, we obtain the spectrum of $v(n)$ as:

$$
\blacktriangleright V(\omega_{y}) = X(\omega_{y}I),
$$

 \blacktriangleright where ω_{ν} is the frequency variable related to the new sampling rate $F_v = I F_x$. So,

$$
\blacktriangleright \omega_{y} = \frac{2\pi F}{F_{y}} = \frac{2\pi F}{IF_{x}} = \frac{\omega_{x}}{I}
$$

Interpolation by a Factor

- Assume that the spectrum of $x(n)$
- \blacktriangleright Then the spectrum of $v(m)$ is:

Since only the spectrum in the range $0 \le \omega_y \le \pi/l$ is unique, we filter the spectrum of $v(m)$ using:

$$
H_I(\omega_y) = \begin{cases} C, & 0 \le \omega_y \le \pi/I \\ 0, & otherwise \end{cases}
$$

 $|X(\omega_x)|$

0

 π

 ω_{x}

 $-\pi$

Interpolation by a Factor I

By filtering the spectrum of $v(m)$ weobtain the spectrum of $y(m)$ as:

Interpolation by a Factor I

 \blacktriangleright The output $y(m)$ is the result of convolving the sequence $v(m)$ with the filter's unit sample response $h(n)$:

 $y(m) = \sum_{k=-\infty}^{\infty} h(m-k)v(k)$.

Since $v(k) = 0$ except at multiples of *I*, where,

 \blacktriangleright $\nu(kI) = x(k),$

 \blacktriangleright we have:

$$
y(m) = \sum_{k=-\infty}^{\infty} h(m - kI)x(k).
$$

- \blacktriangleright We have learned how to do decimation by a factor D and interpolation by a factor I . So, we are in a position to do rate conversion by a factor I/D .
- **►** To do this, we first interpolate by a factor I , i.e., we place I
-1 samples between any two samples and then do decimation by a factor D by taking one sample out of every D samples.
- \triangleright As an example assume that we have a signal with a bandwidth of 1 MHz. According to Nyquist theorem we need at least 2 Msamples/sec. Assume that we have taken exactly 2 Msamples/sec. but later have been told that filtering with the minimum sampling rate is impossible and we need to add 25% more samples, i.e., we need to have a sampling rate of 2.5 Msamples/sec. To do this we need to change the sampling rate by a factor of $\frac{2.5}{2}$ = the number of samples to 10 million per second and then take $\frac{5}{4}$, i.e., $I = 5$ and $D = 4$. So first we increase one out of 4 to get 2.5 million samples.

Rate conversion by a factor I/D can be implemented by interpolating by a factor I followed by decimation by a factor D as shown:

Note that the two filters $\{h_u(n)\}$ and $\{h_d(n)\}$ both operate at the same rate, IF_x . So, they can be combined into a single lowpass filter.

Combining the two filters $\{h_u(n)\}$ and $\{h_d(n)\}$ into a single lowpass filter, we get:

The frequency response of the lowpass filter should ideally be:

$$
H(\omega_{v}) = \begin{cases} I & 0 \leq |\omega_{v}| \leq \min(\frac{\pi}{D}, \frac{\pi}{I})\\ 0 & otherwise \end{cases}
$$

• where $\omega_v = \frac{2\pi}{F_v}$ $F_{\mathcal{V}}$ = $\frac{2\pi}{2}$ $IF_{\mathcal{X}}$ = ω_x $\frac{\lambda}{I}$.

In time-domain, the output of the sampler is:

$$
\blacktriangleright \mathsf{v}(l) = \begin{cases} x(l/l) & l = 0, \pm l, \pm 2l, \dots \\ 0 & otherwise \end{cases}
$$

and the output of the filter is:

$$
\blacktriangleright w(l) = \sum_{k=-\infty}^{\infty} h(l-k)v(k) = \sum_{k=-\infty}^{\infty} h(l-kI)x(k).
$$

 \blacktriangleright So, the output $y(m)$ is given as:

$$
y(m) = w(mD) = \sum_{k=-\infty}^{\infty} h(mD - kI)x(k).
$$

- In frequency-domain, we combine the results of interpolation and decimation.
- The spectrum of the filter output is:

$$
V(\omega_{v}) = H(\omega_{v})X(\omega_{v}I) = \begin{cases} IX(\omega_{v}I), & 0 \le |\omega_{v}| \le \min(\frac{\pi}{D}, \frac{\pi}{I})\\ 0 & \text{otherwise} \end{cases}
$$

The spectrum of the output sequence $y(m)$ obtained by decimating $v(n)$ by a factor D is:

$$
Y(\omega_{y}) = \frac{1}{D} \sum_{k=0}^{D-1} V\left(\frac{\omega_{y} - 2\pi k}{D}\right),
$$

 \triangleright where $\omega_{v} = D \omega_{v}$.

Since the filter prevents aliasing, we have

$$
Y(\omega_{y}) = \begin{cases} \frac{1}{D}X(\frac{\omega_{y}}{D}), & 0 \leq |\omega_{y}| \leq \min(\pi, \frac{\pi D}{I})\\ 0 & \text{otherwise} \end{cases}
$$

.

Efficient Implementation of Rate Conversion

▶ Let's start with decimation. The circuit to do decimation by D consists of a lowpass filter and a down sampler:

$$
H(z)
$$
\n
$$
V(n)
$$
\n
$$
V(n)
$$
\n
$$
V(n) = V(mD)
$$

- \triangleright Note that the filter operates at the high rate of the input while, the rate at which we compute the output samples is 1/D of the input rate.
- \blacktriangleright In order to reduce the processing rate, we can use a structure called the polyphaser.

Polyphase Structure

- In order to understand the concepts, we use a polyphaser filter with three branches (M=3). Generalization to any value of M is straightforward.
- Let the filter $H(z)$ be given as:

 $H(z) = h(0) + h(1)z^{-1} + h(2)z^{-2} + h(3)z^{-3} + h(4)z^{-4} + \cdots$

 \blacktriangleright Let's rearrange $H(z)$ as:

$$
\blacktriangleright H(z) = h(0) + h(3)z^{-3} + h(6)z^{-6} + \cdots
$$

$$
\rightarrow hh(1)z^{-1} + h(4)z^{-4} + h(7)z^{-7} + \cdots
$$

$$
\rightarrow hh(2)z^{-2}+h(5)z^{-5}+h(8)z^{-8}+....
$$

Or, equivalently:

- $H(z) = h(0) + h(3)z^{-3} + h(6)z^{-6} + \cdots$ \rightarrow +z⁻¹[h(1) + h(4)z⁻³ + h(7)z⁻⁶ + …]
- $+z^{-2}[h(2) + h(5)z^{-3} + h(8)z^{-6} + \dots]$

Polyphase Structure

Denoting:

$$
P_0(z^3) = h(0) + h(3)z^{-3} + h(6)z^{-6} + \cdots
$$

$$
P_1(z^3) = h(1) + h(4)z^{-3} + h(7)z^{-6}
$$

$$
P_2(z^3) = h(2) + h(5)z^{-3} + h(8)z^{-6}
$$

 \blacktriangleright We can write $H(z)$ as:

$$
H(z) = P_0(z^3) + z^{-1}P_1(z^3) + z^{-2}P_2(z^3).
$$

Polyphase Structure: Decimation

This can be implemented as:

Polyphase Structure: Decimation

We can down sample first. Let's substitute $z \rightarrow z^{1/3}$ in:

$$
\blacktriangleright H(z) = P_0(z^3) + z^{-1} P_1(z^3) + z^{-2} P_2(z^3).
$$

 \blacktriangleright to get:

$$
H(z^{1/3}) = P_0(z) + z^{-1/3} P_1(z) + z^{-2/3} P_2(z).
$$

 \blacktriangleright Then we have:

Polyphase Structure: Decimation

Another way to look at the decimation using polyphaser filter is to consider a commutator followed by the polyphaser filter:

 A commutator is like a switch placing the input samples at the input of filter branches.

Polyphase Structure: Interpolation

 \uparrow I

An interpolator has an upsampler and a lowpass filter:

 $H(z)$

The problem is that

 $x(n)$

- filtering is done at high
- rate using polyphaser
- structure, the interpolator
- can be implemented as:

Polyphase Structure: Interpolation

Similar to the case of decimation, the filtering and upsampling functions can be swapped to get:

Polyphase Structure: Interpolation

 \blacktriangleright The interpolator can be implemented using polyphaser filters and a commutator. For each input sample the commutator reads I samples at the output of all filters.

