
Multirate Digital Signal Processing

Lecture 8



Introduction

 We are already familiar with the sampling theorem. We 
know that in order to be able to recover an analog signal 
from its samples, we need to have 𝑅𝑅 ≥ 2𝑊𝑊 samples per 
second. That is the sample rate is proportional to the 
bandwidth of the signal.

 Since the bandwidth of the signal is different in different 
parts of a system, we need to have different rates at 
different points.

 Take as an example a signal consisting of N voice channels 
each with a bandwidth of W Hz. The total bandwidth of 
the signal is NW. So, we need 2NW samples.

 Assume that we would like to separate these voice signals 
and have N individual voice channels using N filters 
working on the compound signal.  The out put of each 
channel has a bandwidth of W Hz. requiring a rate of 2W 
samples/second. 



Introduction

 On the other hand if we have two or more signals with bandwidths 
𝑊𝑊1,𝑊𝑊2, … ,𝑊𝑊𝑛𝑛 and we want to multiplex them into one signal to go 
over the medium (cable, air, etc.), we have a system with 𝑁𝑁 input 
each requiring a rate of 2𝑊𝑊1, 2𝑊𝑊2, … . , 2𝑊𝑊𝑁𝑁. But the output has a 
bandwidth of 𝑊𝑊 = ∑𝑖𝑖=1𝑁𝑁 𝑊𝑊𝑖𝑖 . So, the rate at the output of the 
multiplexer is 𝑅𝑅 = 2∑𝑖𝑖=1𝑁𝑁 𝑊𝑊𝑖𝑖. 

 Changing rate at different points of a circuit may be:
 Decimation: Deleting some samples.
 Interpolation: Adding samples between existing samples,
 Changing rate by a rational factor, say, interpolation by a factor a and 

decimating by a factor D,
 Changing the rate by and arbitrary ratio. 



Outline of this lecture

 In this lecture we talk about:

 1) Decimation by a factor D,

 2) Interpolation by a factor I,

 3) Rate conversion by a Rational Factor I/D, and

 4) Implementation of rate conversion using Polyphase
structure.



Decimation by a Factor D
 Decimation consists in taking one sample out of every D 

samples. By doing that we reduces the number odf
samples by a factor D. So if our rate was R=2W now it 
would be R’=R/D=2W/D. This is less than the number of 
samples required for the original signal with bandwidth W 
Hz. So, we need to first filter the signal to reduce its 
bandwidth by a factor of D. This figure shows the process 
of decimation:





Decimation by a Factor D

 The digital signal 𝑥𝑥(𝑛𝑛) has a spectrum 𝑋𝑋(𝜔𝜔) that is 
nonzero in the interval 0 ≤ 𝜔𝜔 ≤ 𝜋𝜋, or equivalently, 𝐹𝐹
≤ 𝐹𝐹𝑥𝑥

2
. If we just reduce the rate by simply selecting every 

Dth sample of 𝑥𝑥(𝑛𝑛), we get an aliased version of 𝑥𝑥 𝑛𝑛
folded around 𝐹𝐹𝑥𝑥

2𝐷𝐷
.

 To avoid aliasing we need to reduce the bandwidth of 𝑥𝑥(𝑛𝑛)
to 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐹𝐹𝑥𝑥

2𝐷𝐷
using the lowpass filter ℎ 𝑛𝑛 .



Decimation by a Factor D

 The lowpass filter has n impulse response h(𝑛𝑛) and a 
frequency response:

 𝐻𝐻𝐷𝐷 𝜔𝜔 = �1 𝜔𝜔 ≤ 𝜋𝜋/𝐷𝐷
0 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 So, the filter eliminates the spectrum of 𝑋𝑋(𝜔𝜔) in the 
range of 𝜋𝜋

𝐷𝐷
< 𝜔𝜔 < 𝜋𝜋.



Decimation by a Factor D
 The output of the filter ℎ(𝑛𝑛) is 𝑣𝑣(𝑛𝑛) given as:

 𝑣𝑣 𝑛𝑛 = ∑𝑘𝑘=0∞ ℎ 𝑘𝑘 𝑥𝑥(𝑛𝑛 − 𝑘𝑘)
 Which is then downsampled to produce:

 𝑦𝑦 𝑚𝑚 = 𝑣𝑣 𝑚𝑚𝐷𝐷 = ∑𝑘𝑘=0∞ ℎ 𝑘𝑘 𝑥𝑥(𝑚𝑚𝐷𝐷 − 𝑘𝑘)
 Let �𝑣𝑣(𝑛𝑛) be the downsampled version of 𝑣𝑣(𝑛𝑛):

 �𝑣𝑣 𝑛𝑛 = �𝑣𝑣(𝑛𝑛) 𝑛𝑛 = 0, ±𝐷𝐷, ±2𝐷𝐷, …
0 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 �𝑣𝑣(𝑛𝑛) can be viewed as the product of 𝑣𝑣 𝑛𝑛 with a train of 
impulses 𝑝𝑝(𝑛𝑛) with period 𝐷𝐷, i.e.,

 �𝑣𝑣 𝑛𝑛 = 𝑣𝑣 𝑛𝑛 𝑝𝑝(𝑛𝑛)
 and 𝑦𝑦 𝑚𝑚 = �𝑣𝑣 𝑚𝑚𝐷𝐷 = 𝑣𝑣 𝑚𝑚𝐷𝐷 𝑝𝑝 𝑚𝑚𝐷𝐷 = 𝑣𝑣(𝑚𝑚𝐷𝐷).



Decimation by a Factor D
 The discrete Fourier Series of 𝑝𝑝(𝑛𝑛) is:

 𝑝𝑝 𝑛𝑛 = 1
𝐷𝐷
∑𝑘𝑘=0𝐷𝐷−1 𝑜𝑜𝑗𝑗2𝜋𝜋𝑘𝑘𝑛𝑛/𝐷𝐷

 The z-transform of the output 𝑦𝑦(𝑚𝑚) is:

 𝑌𝑌 𝑧𝑧 = ∑𝑚𝑚=−∞
∞ 𝑦𝑦 𝑚𝑚 𝑧𝑧−𝑚𝑚 = ∑𝑚𝑚=−∞

∞ �𝑣𝑣(𝑚𝑚𝐷𝐷)𝑧𝑧−𝑚𝑚

 Using the fact that �𝑣𝑣 𝑚𝑚 = 0 except at multiples of 
𝐷𝐷, we can write 𝑌𝑌 𝑧𝑧 𝑎𝑎𝑜𝑜:

 𝑌𝑌 𝑧𝑧 = ∑𝑚𝑚=−∞
∞ �𝑣𝑣(𝑚𝑚) 𝑧𝑧−𝑚𝑚/𝐷𝐷



Decimation by a Factor D
 Substituting �𝑣𝑣 𝑚𝑚 = 𝑣𝑣 𝑚𝑚 𝑝𝑝(𝑚𝑚) in 𝑌𝑌 𝑧𝑧 we get:

 𝑌𝑌 𝑧𝑧 = ∑𝑚𝑚=−∞
∞ 𝑣𝑣(𝑚𝑚) 1

𝐷𝐷
∑𝑘𝑘=0𝐷𝐷−1 𝑜𝑜𝑗𝑗2𝜋𝜋𝑚𝑚𝑘𝑘/𝐷𝐷 𝑧𝑧−𝑚𝑚/𝐷𝐷

 = 1
𝐷𝐷
∑𝑘𝑘=0𝐷𝐷−1∑𝑚𝑚=−∞

∞ 𝑣𝑣(𝑚𝑚) 𝑜𝑜−𝑗𝑗2𝜋𝜋𝑘𝑘/𝐷𝐷. 𝑧𝑧1/𝐷𝐷 −𝑚𝑚

 = 1
𝐷𝐷
∑𝑘𝑘=0𝐷𝐷−1 𝑉𝑉( 𝑜𝑜−𝑗𝑗2𝜋𝜋𝑘𝑘/𝐷𝐷. 𝑧𝑧1/𝐷𝐷).

 Note that 𝑉𝑉 𝑧𝑧 = 𝐻𝐻𝐷𝐷 𝑧𝑧 𝑋𝑋 𝑧𝑧 . So,

 𝑌𝑌 𝑧𝑧 = 1
𝐷𝐷
∑𝑘𝑘=0𝐷𝐷−1𝐻𝐻𝐷𝐷 𝑜𝑜−𝑗𝑗2𝜋𝜋𝑘𝑘/𝐷𝐷. 𝑧𝑧1/𝐷𝐷 𝑋𝑋 𝑜𝑜−𝑗𝑗2𝜋𝜋𝑘𝑘/𝐷𝐷. 𝑧𝑧1/𝐷𝐷 .

 Computing 𝑌𝑌(𝑧𝑧) on the unit circle, i.e., 𝑧𝑧 = 𝑜𝑜𝑗𝑗𝜔𝜔𝑦𝑦, we get:

 𝑌𝑌(𝜔𝜔𝑦𝑦)= 1
𝐷𝐷
∑𝑘𝑘=0𝐷𝐷−1𝐻𝐻𝐷𝐷

𝜔𝜔𝑦𝑦−2𝜋𝜋𝑘𝑘
𝐷𝐷

𝑋𝑋 𝜔𝜔𝑦𝑦−2𝜋𝜋𝑘𝑘
𝐷𝐷

.



Decimation by a Factor D
 Properly designing 𝐻𝐻𝐷𝐷(𝜔𝜔), we can avoid aliasing and get:

 𝑌𝑌(𝜔𝜔𝑦𝑦)= 1
𝐷𝐷
𝐻𝐻𝐷𝐷

𝜔𝜔𝑦𝑦

𝐷𝐷
𝑋𝑋 𝜔𝜔𝑦𝑦

𝐷𝐷
= 1

𝐷𝐷
𝑋𝑋 𝜔𝜔𝑦𝑦

𝐷𝐷
.

 Note that the sampling rate of 𝑦𝑦(𝑚𝑚) is 𝐹𝐹𝑦𝑦 = 1
𝑇𝑇𝑦𝑦

while the 

sampling rate of x(𝑛𝑛) is 𝐹𝐹𝑚𝑚 = 1
𝑇𝑇𝑥𝑥

and since 𝑇𝑇𝑦𝑦 = 𝐷𝐷𝑇𝑇𝑚𝑚,we 

have 𝐹𝐹𝑦𝑦 = 𝐹𝐹𝑥𝑥
𝐷𝐷

. 

 In digital domain 𝜔𝜔𝑦𝑦 = 2𝜋𝜋𝐹𝐹
𝐹𝐹𝑦𝑦

and 𝜔𝜔𝑚𝑚 = 2𝜋𝜋𝐹𝐹
𝐹𝐹𝑥𝑥

. So, 

 𝜔𝜔𝑦𝑦 = 𝐷𝐷𝜔𝜔𝑚𝑚.



Decimation by a Factor D
 As an example, consider 𝑥𝑥(𝑛𝑛) with spectrum 𝑋𝑋(𝜔𝜔𝑚𝑚):

 Filtering with:

 we get:

 Or as a function of 𝜔𝜔𝑦𝑦



Interpolation by a Factor I
 Interpolation is a process where we increase the number 

os samples by a factor 𝐼𝐼, i.e., we have to insert 𝐼𝐼 − 1
samples between every two consecutive samples.

 Assume that we would like to interpolate 𝑥𝑥(𝑛𝑛) by a factor 
𝐼𝐼. Let the output be 𝑦𝑦 𝑚𝑚 with rate 𝐹𝐹𝑦𝑦 = 𝐼𝐼𝐹𝐹𝑚𝑚 where 𝐹𝐹𝑚𝑚 is 
the rate of 𝑥𝑥(𝑛𝑛).

 First form a sequence v 𝑚𝑚 with rate the same rate 
as𝑦𝑦 𝑚𝑚 , i.e.,  𝐹𝐹𝑦𝑦 = 𝐼𝐼𝐹𝐹𝑚𝑚 by placing 𝐼𝐼 − 1 zeros between 
samples of 𝑥𝑥(𝑛𝑛) :

 𝑣𝑣 𝑚𝑚 = �𝑥𝑥(𝑚𝑚
𝐼𝐼

) 𝑚𝑚 = 0, ±𝐼𝐼, ±2𝐼𝐼, …
0 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Interpolation by a Factor I
 This sequence has z-transform:

 𝑉𝑉 𝑧𝑧 = ∑𝑚𝑚=−∞
∞ 𝑣𝑣 𝑚𝑚 𝑧𝑧−𝑚𝑚 = ∑𝑚𝑚=−∞

∞ 𝑥𝑥 𝑚𝑚 𝑧𝑧−𝑚𝑚𝐼𝐼 = 𝑋𝑋(𝑧𝑧𝐼𝐼).
 Evaluation this on the unit circle, we obtain the spectrum 

of 𝑣𝑣(𝑛𝑛) as:

 𝑉𝑉 𝜔𝜔𝑦𝑦 = 𝑋𝑋 𝜔𝜔𝑦𝑦𝐼𝐼 ,

 where 𝜔𝜔𝑦𝑦 is the frequency variable related to the new 
sampling rate 𝐹𝐹𝑦𝑦 = 𝐼𝐼𝐹𝐹𝑚𝑚. So,

 𝜔𝜔𝑦𝑦 = 2𝜋𝜋𝐹𝐹
𝐹𝐹𝑦𝑦

= 2𝜋𝜋𝐹𝐹
𝐼𝐼𝐹𝐹𝑥𝑥

= 𝜔𝜔𝑥𝑥
𝐼𝐼



Interpolation by a Factor I
 Assume that the spectrum of 𝑥𝑥(𝑛𝑛) is:

 Then the spectrum of 𝑣𝑣 𝑚𝑚 is: 

 Since only the spectrum in the range 0 ≤ 𝜔𝜔𝑦𝑦 ≤ 𝜋𝜋/𝐼𝐼 is 
unique, we filter the spectrum of 𝑣𝑣 𝑚𝑚 using:

 𝐻𝐻𝐼𝐼 𝜔𝜔𝑦𝑦 = �
𝐶𝐶, 0 ≤ 𝜔𝜔𝑦𝑦 ≤ 𝜋𝜋/𝐼𝐼
0, 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Interpolation by a Factor I
 By filtering the spectrum of 𝑣𝑣 𝑚𝑚 weobtain the spectrum of 𝑦𝑦 𝑚𝑚 as:

 Y 𝜔𝜔𝑦𝑦 = �
𝐶𝐶𝑋𝑋(𝜔𝜔𝑦𝑦𝐼𝐼), 0 ≤ 𝜔𝜔𝑦𝑦 ≤ 𝜋𝜋/𝐼𝐼

0, 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 To find the scaling factor C, we let 𝑦𝑦 𝑚𝑚 = 𝑥𝑥(𝑚𝑚
𝐼𝐼

) for 
m= 0, ±𝐼𝐼, ±2𝐼𝐼, …. In particular, for 𝑚𝑚 = 0, we have:

 𝑦𝑦 0 = 1
2𝜋𝜋 ∫−𝜋𝜋

𝜋𝜋 𝑌𝑌 𝜔𝜔𝑦𝑦 𝑑𝑑𝜔𝜔𝑦𝑦 = 𝐶𝐶
2𝜋𝜋 ∫−𝜋𝜋/𝐼𝐼

𝜋𝜋/𝐼𝐼 𝑋𝑋 𝜔𝜔𝑦𝑦𝐼𝐼 𝑑𝑑𝜔𝜔𝑦𝑦

 Since 𝜔𝜔𝑦𝑦 = 𝜔𝜔𝑚𝑚/𝐼𝐼, we have:

 𝑦𝑦 0 = 𝐶𝐶
𝐼𝐼
1
2𝜋𝜋 ∫−𝜋𝜋

𝜋𝜋 𝑋𝑋 𝜔𝜔𝑚𝑚 𝑑𝑑𝜔𝜔𝑚𝑚 = 𝐶𝐶
𝐼𝐼
𝑥𝑥(0).

 Therefore, in order to have 𝑦𝑦 0 = 𝑥𝑥(0), we should have 𝐶𝐶 = 𝐼𝐼.



Interpolation by a Factor I
 The output 𝑦𝑦(𝑚𝑚) is the result of convolving the sequence 
𝑣𝑣(𝑚𝑚) with the filter’s unit sample response ℎ(𝑛𝑛):

 𝑦𝑦 𝑚𝑚 = ∑𝑘𝑘=−∞∞ ℎ 𝑚𝑚 − 𝑘𝑘 𝑣𝑣(𝑘𝑘) .
 Since 𝑣𝑣 𝑘𝑘 = 0 except at multiples of 𝐼𝐼, where, 

 𝑣𝑣 𝑘𝑘𝐼𝐼 = 𝑥𝑥 𝑘𝑘 ,
 we have:

 𝑦𝑦 𝑚𝑚 = ∑𝑘𝑘=−∞∞ ℎ 𝑚𝑚 − 𝑘𝑘𝐼𝐼 𝑥𝑥(𝑘𝑘).



Sampling rate conversion by a factor I/D
 We have learned how to do decimation by a factor 𝐷𝐷 and 

interpolation by a factor 𝐼𝐼. So, we are in a position to do rate 
conversion by a factor 𝐼𝐼/𝐷𝐷. 

 To do this, we first interpolate by a factor 𝐼𝐼, i.e., we place 𝐼𝐼
− 1 samples between any two samples and then do decimation 
by a factor 𝐷𝐷 by taking one sample out of every 𝐷𝐷 samples.

 As an example assume that we have a signal with a bandwidth 
of 1 MHz. According to Nyquist theorem we need at least 2 
Msamples/sec. Assume that we have taken exactly 2 
Msamples/sec. but later have been told that filtering with the 
minimum sampling rate is impossible and we need to add 25% 
more samples, i.e., we need to have a sampling rate of 2.5 
Msamples/sec. To do this we need to change the sampling rate 
by a factor of 2.5

2
= 5

4
, i.e., 𝐼𝐼 = 5 and 𝐷𝐷 = 4. So first we increase 

the number of samples to 10 million per second and then take 
one out of 4 to get 2.5 million samples.



Sampling rate conversion by a factor I/D
 Rate conversion by a factor 𝐼𝐼/𝐷𝐷 can be implemented by 

interpolating by a factor 𝐼𝐼 followed by decimation by a factor 𝐷𝐷
as shown:

 Note that the two filters ℎ𝑢𝑢(𝑛𝑛) and ℎ𝑑𝑑(𝑛𝑛) both operate at 
the same rate, 𝐼𝐼𝐹𝐹𝑚𝑚. So, they can be combined  into a single 
lowpass filter.



Sampling rate conversion by a factor I/D
 Combining the two filters ℎ𝑢𝑢(𝑛𝑛) and ℎ𝑑𝑑(𝑛𝑛) into a single lowpass

filter, we get:

 The frequency response of the lowpass filter should ideally be:

 𝐻𝐻 𝜔𝜔𝑣𝑣 = �𝐼𝐼 0 ≤ 𝜔𝜔𝑣𝑣 ≤ min(𝜋𝜋
𝐷𝐷

, 𝜋𝜋
𝐼𝐼
)

0 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 where 𝜔𝜔𝑣𝑣 = 2𝜋𝜋𝐹𝐹
𝐹𝐹𝑣𝑣

= 2𝜋𝜋𝐹𝐹
𝐼𝐼𝐹𝐹𝑥𝑥

= 𝜔𝜔𝑥𝑥
𝐼𝐼

.



Sampling rate conversion by a factor I/D
 In time-domain, the output of the sampler is:

 v 𝑙𝑙 = �𝑥𝑥(𝑙𝑙/𝐼𝐼) 𝑙𝑙 = 0, ±𝐼𝐼, ±2𝐼𝐼, …
0 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 and the output of the filter is:

 𝑜𝑜 𝑙𝑙 = ∑𝑘𝑘=−∞∞ ℎ 𝑙𝑙 − 𝑘𝑘 𝑣𝑣(𝑘𝑘) = ∑𝑘𝑘=−∞∞ ℎ 𝑙𝑙 − 𝑘𝑘𝐼𝐼 𝑥𝑥(𝑘𝑘) .
 So, the output 𝑦𝑦(𝑚𝑚) is given as:

 𝑦𝑦 𝑚𝑚 = 𝑜𝑜 𝑚𝑚𝐷𝐷 = ∑𝑘𝑘=−∞∞ ℎ 𝑚𝑚𝐷𝐷 − 𝑘𝑘𝐼𝐼 𝑥𝑥(𝑘𝑘) .



Sampling rate conversion by a factor I/D
 In frequency-domain, we combine the results of interpolation and 

decimation.
 The spectrum of the filter output is:

 V 𝜔𝜔𝑣𝑣 = 𝐻𝐻 𝜔𝜔𝑣𝑣 𝑋𝑋 𝜔𝜔𝑣𝑣𝐼𝐼 = �𝐼𝐼𝑋𝑋 𝜔𝜔𝑣𝑣𝐼𝐼 , 0 ≤ 𝜔𝜔𝑣𝑣 ≤ min(𝜋𝜋
𝐷𝐷

, 𝜋𝜋
𝐼𝐼
)

0 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 The spectrum of the output sequence 𝑦𝑦 𝑚𝑚 obtained by decimating 

𝑣𝑣(𝑛𝑛) by a factor 𝐷𝐷 is:

 𝑌𝑌 𝜔𝜔𝑦𝑦 = 1
𝐷𝐷
∑𝑘𝑘=0𝐷𝐷−1 𝑉𝑉 𝜔𝜔𝑦𝑦−2𝜋𝜋𝑘𝑘

𝐷𝐷
,

 where 𝜔𝜔𝑦𝑦 = 𝐷𝐷𝜔𝜔𝑣𝑣.
 Since the filter prevents aliasing, we have 

 Y 𝜔𝜔𝑦𝑦 = �
1
𝐷𝐷
𝑋𝑋 𝜔𝜔𝑦𝑦

𝐷𝐷
, 0 ≤ 𝜔𝜔𝑦𝑦 ≤ min(𝜋𝜋, 𝜋𝜋𝐷𝐷

𝐼𝐼
)

0 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
.



Efficient Implementation of Rate Conversion
 Let’s start with decimation. The circuit to do decimation 

by 𝐷𝐷 consists of a lowpass filter and a down sampler:

 Note that the filter operates at the high rate of the input 
while, the rate at which we compute the output samples 
is 1/D of the input rate.

 In order to reduce the processing rate, we can use a 
structure called the polyphaser.



Polyphase Structure
 In order to understand the concepts, we use a polyphaser filter with 

three branches (M=3). Generalization to any value of M is straightforward.
 Let the filter 𝐻𝐻(𝑧𝑧) be given as:

 𝐻𝐻 𝑧𝑧 = ℎ 0 + ℎ 1 𝑧𝑧−1 + ℎ 2 𝑧𝑧−2 + ℎ 3 𝑧𝑧−3 + ℎ 4 𝑧𝑧−4 + ⋯ .
 Let’s rearrange 𝐻𝐻(𝑧𝑧) as:

 𝐻𝐻 𝑧𝑧 = ℎ 0 + ℎ 3 𝑧𝑧−3 + ℎ 6 𝑧𝑧−6 + ⋯
 +ℎ 1 𝑧𝑧−1 + ℎ 4 𝑧𝑧−4 + ℎ 7 𝑧𝑧−7 + ⋯

 +ℎ 2 𝑧𝑧−2 + ℎ 5 𝑧𝑧−5 + ℎ 8 𝑧𝑧−8 + … .
 Or, equivalently:

 𝐻𝐻 𝑧𝑧 = ℎ 0 + ℎ 3 𝑧𝑧−3 + ℎ 6 𝑧𝑧−6 + ⋯
 +𝑧𝑧−1[ℎ 1 + ℎ 4 𝑧𝑧−3 + ℎ 7 𝑧𝑧−6 + ⋯]

 +𝑧𝑧−2[ℎ(2) + ℎ(5)𝑧𝑧−3 + ℎ 8 𝑧𝑧−6 + … . ]



Polyphase Structure
 Denoting:

𝑃𝑃0 𝑧𝑧3 = ℎ 0 + ℎ 3 𝑧𝑧−3 + ℎ 6 𝑧𝑧−6 + ⋯
𝑃𝑃1 𝑧𝑧3 = ℎ 1 + ℎ 4 𝑧𝑧−3 + ℎ 7 𝑧𝑧−6

𝑃𝑃2 𝑧𝑧3 = ℎ 2 + ℎ 5 𝑧𝑧−3 + ℎ 8 𝑧𝑧−6
 We can write 𝐻𝐻(𝑧𝑧) as:

𝐻𝐻 𝑧𝑧 = 𝑃𝑃0 𝑧𝑧3 + 𝑧𝑧−1𝑃𝑃1 𝑧𝑧3 + 𝑧𝑧−2𝑃𝑃2(𝑧𝑧3).



Polyphase Structure: Decimation
 This can be implemented as:



Polyphase Structure: Decimation
 We can down sample first. Let’s substitute 𝑧𝑧 ⟶ 𝑧𝑧1/3 in:

 to get:

𝐻𝐻(𝑧𝑧1/3) = 𝑃𝑃0 𝑧𝑧 + 𝑧𝑧−1/3𝑃𝑃1 𝑧𝑧 + 𝑧𝑧−2/3𝑃𝑃2(𝑧𝑧).
 Then we have:



Polyphase Structure: Decimation
 Another way to look at the decimation using polyphaser filter is 

to consider a commutator followed by the polyphaser filter:

 A commutator is like a switch placing the input samples at the 
input of filter branches.



Polyphase Structure: Interpolation
 An interpolator has an upsampler and a lowpass filter:

 The problem is that 

 filtering is done at high 

 rate using polyphaser 

 structure, the interpolator 

 can be implemented as:



Polyphase Structure: Interpolation
 Similar to the case of decimation, the filtering and 

upsampling functions can be swapped to get:



Polyphase Structure: Interpolation
 The interpolator can be implemented using polyphaser 

filters and a commutator. For each input sample the 
commutator reads 𝐼𝐼 samples at the output of all filters.
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