6.3 Decoding BCH and RS Codes: The General Outline

247

6.3 Decoding BCH and RS Codes: The General Outline

There are many algorithms which have been developed for decoding BCH or RS codes. In
this chapter we introduce a general approach. In chapter 7 we present other approaches
which follow a different outline.

The algebraic decoding BCH or RS codes has the following general steps:

1. Computation of the syndrome.

2. Determination of an error locator polynomial, whose roots provide an indication of
where the errors are. There are several different ways of finding the locator polyno-
mial. These methods include Peterson’s algorithm for BCH codes, the Berlekamp-
Massey algorithm for BCH codes; the Peterson-Gorenstein-Zierler algorithm for RS
codes, the Berlekamp-Massey algorithm for RS codes, and the Euclidean algorithm.
In addition, there are techniques based upon Galois-field Fourier transforms.

3. Finding the roots of the error locator polynomial. This is usually done using the Chien
search, which is an exhaustive search over all the elements in the field.

4. For RS codes or nonbinary BCH codes, the error values must also be determined.
This is typically accomplished using Forney’s algorithm.

Throughout this chapter (unless otherwise noted) we assume narrow-sense BCH or RS
codes, that is, b = 1.

6.3.1 Computation of the Syndrome

Since
glo) =g(@?) =+ =g@") =0
it follows that a codeword ¢ = (cy, . .., ¢p—1) With polynomial c¢(x) = co+- - -+ cp_gxnl
has
c(@) = --- = c(@®) = 0.

For a received polynomial r(x) = ¢(x) + e(x) we have

n—1
S; :r(aj)ze(aj)=28kajk, j=12,...,2¢t

k=0
The values S1, 52, ..., Sy are called the syndromes of the received data.
Suppose that r has v errors in it which are at locations iy, i2, . . . , iy, with corresponding

error values in these locations e;; # 0. Then

v v
Sj =2 en@)t =) ey
=1 =1
Let ‘
X =l
Then we can write

Si= eX] j=1,2,...02t. (6.3)
=1

248

BCH and Reed-Solomon Codes: Designer Cyclic Codes

For binary codes we have e¢;, = 1 (if there is a non-zero error, it must be to 1). For the
moment we restrict our attention to binary (BCH) codes. Then we have

;=Y X]. (6.4)
=1

If we know X, then we know the location of the error. For example, suppose we know that
X1 = o, This means, by the definition of X; that i; = 4; that is, the error is in the received
digit r4. We thus call the X, the error locators.

The next stage in the decoding problem is to determine the error locators X; given the
syndromes S;.

6.3.2 The Error Locator Polynomial

From (6.4) we obtain the following equations:

Si=X1+X2+---+ X,

S =XI+ X5+ + X2
(6.5)

S =X{ + X3+ -+ X2

The equations are said to be power-sum symmetric functions. This gives us 2t equations in
the v unknown error locators. In principle this set of nonlinear equations could be solved
by an exhaustive search, but this would be computationally unattractive.

Rather than attempting to solve these nonlinear equations directly, a new polynomial is
introduced, the error locator polynomial, which casts the problem in a different, and more
tractable, setting. The error locator polynomial is defined as

A® =[]0 = Xm) = Ax® + Az oo Aix £ Ao, (66)
=1

where Ag = 1. By this definition, if x = X ;l then A(x) = 0; that is, the roots of the error
locator polynomial are at the reciprocals (in the field arithmetic) of the error locators.

Example 6.11 Suppose in G F(16) we find that x = o is a root of an error locator polynomial A (x).
Then the error locator is (@)~ = a1, indicating that there is an error in rq1, O

6.3.3 Chien Search

Assume for the moment that we actually have the error locator polynomial. (Finding the
error locator polynomial is discussed below.) The next step is to find the roots of the error
locator polynomial. The field of interest is G F(¢g™). Being a finite field, we can examine
every element of the field to determine if it is a root. There exist other ways of factoring
polynomials over finite fields (see, e.g., [25, 360]), but for the fields usually used for error
correction codes and the number of roots involved, the Chien search may be the most
efficient,

Suppose, for example, that v = 3 and the error locator polynomial is

A(X) = Ao+ A1x + Apx? 4+ Asx® =1+ Ax + Aax? + Asx3.

6.3 Decoding BCH and RS Codes: The General Outline 249

We evaluate A(x) at each nonzero element in the field in succession: x = 1, x = a,
x =a?,...,x = af ~2. This gives us the following:

A =14+ A1) + Az(1)? + A3(1)3
Al@) =1+ A1(@) + Az2(@)? + As(e)?
A% =14 A1(@) + A2 (@) + As(@?)3

A ™ =14+ A1@?" 72 + Ar@?" 2)2 + As(?" 72)3,

The computations in this sequence can be efficiently embodied in the hardware depicted in
Figure 6.1. A set of v registers are loaded initially with the coefficients of the error locator
polynomial, A1, Az, ..., A,. The initial output is the sum

v
A=) Aj=A®) —1|,—1.
j:].

IfA = 1thenan error hasbeen located (since then A (x) = 0). Atthe nextstage, eachregister
is multiplied by @/, j = 1,2,..., v, so the register contents are Ajc, Aza?, ..., Aya’.
The output is the sum

v
A=Y "Ajod = Ax) = yq -
j=1

The registers are multiplied again by successive powers of «, resulting in evaluation at o2
This procedure continues until A(x) has been evaluated at all nonzero elements of the field.

A A2 s e Ay

o a? aV

Figure 6.1: Chien search algorithm.

If the roots are distinct and all lie in the appropriate field, then we use these to determine
the error locations. If they are not distinct or lie in the wrong field, then the received word is
not within distance ¢ of any codeword. (This condition can be observed if the error locator
polynomial of degree v does not have v roots in the field that the operations take in; the
remaining roots are either repeated or exist in an extension of this field.) The corresponding
error pattern is said to be an uncorrectable error pattern. An uncorrectable error pattern
results in a decoder failure.

250

BCH and Reed-Solomon Codes: Designer Cyclic Codes

6.4 Finding the Error Locator Polynomial

Let us return to the question of finding the error locator polynomial using the syndromes.
Let us examine the structure of the error locator polynomial by expanding (6.6) for the case
v=3

Ax)=1—x(X1 + X2+ X3) + x2(X1 X2 + X1 X3 + X2X3) — X’ X1 X2 X3
=Ag+x/M\ +x2A9_ 4+ x3A3

so that

A=1 A=-(X1+X2+X3) A2=X;1X2+ X1X3+ X2X3

Az = —-X1X2X35.
In general, for an error locator polynomial of degree v we find that
Ag=1

~AM =) Xi=Xi+Xa+ -+ X,
i=1
Ap=) XiX; =XiXo+ XiXs+- + XiXo +- - + X1 Xy
i<j (6.7)
—A3 = Z XiX Xy =X1X2X3+ X1 XoXa+-- -+ X, Xo1 X,

i<j<k

(_I)UAU =X1X2---Xy.

That is, the coefficient of the error locator polynomial A; is the sum of the product of all
combinations of the error locators taken i at a time. Equations of the form (6.7) are referred
to as the elementary symmetric functions of the error locators (so called because if the error
locators {X;} are permuted, the same values are computed).

The power-sum symmetric functions of (6.5) provide a nonlinear relationship between
the syndromes and the error locators. The elementary symmetric functions provide a non-
linear relationship between the coefficients of the error locator polynomial and the error
locators. The key observation is that there is a linear relationship between the syndromes
and the coefficients of the error locator polynomial. This relationship is described by the
Newton identities, which apply over any field.

Theorem 6.11 The syndromes (6.5) and the coefficients of the error locator polynomial are
related by

Sk+ AMSk—1+ -+ Ap1S1 kA =0 1<k=<v

6.8
Sk + ASg—1+ -+ Ay 1 Sk—vt1 + ApSk—y =0 k> v (©8)

6.4 Finding the Error Locator Polynomial

251

That is,

k=1: §14A1=0
k=2: S5+ A151+2A,=0

k=v: S, + M S0 +MS 24+ +A151+vA, =0
(6.9)
k=v+1: Sip1 +A185 +A2Su—14+---+A,851=0
k=v+2: Ss2+AMSvr1+A285, +---+A,52=0

k=2t: S+ ASu—1+A2S—2+--+AyS2—y =0.

For k > v, there is a linear feedback shift register relationship between the syndromes and
the coefficients of the error locator polynomial,

v
Sj==Y_ AiSj-. (6.10)
i=1

The theorem is proved in Appendix 6.A.
Equation (6.10) can be expressed in a matrix form

Sy S .- S, 17 A, 7 g
S2 8§ - Spqr || Avar S'H';
3 84 0 S || Av2 | = — v'+
: : S-

| Sv Sver o0 Sae—1 || A1 2

The v X v matrix, which we denote M), is a Toeplitz matrix, constant on the diagonals.
The number of errors v is not known in advance, so it must be determined. The Peterson-
Gorenstein-Zierler decoder operates as follows.

1. Setv =t.

2. Form M, and compute the determinant det(M,) to determine if M, is invertible. If
it is not invertible, set v <— v — 1 and repeat this step.

3. If M, is invertible, solve for the coefficients A1, A2,..., Ay.

6.4.1 Simplifications for Binary Codes and Peterson’s Algorithm

For binary codes, Newton’s identities are subject to further simplifications. nS; = 0 if n is
evenandnS; = §; if nis odd. Furthermore, we have §2; = SJZ., since by (6.4) and Theorem
5.15

v v 2
) .
S = X' = (z :X;') =s2.
=1 =1

252

BCH and Reed-Solomon Codes: Designer Cyclic Codes

We can thus write Newton's identities (6.9) as

S1+A1 =0
S3+A182+ A2S1+ A3 =0

Su—1+A1Su—24+- -+ A Si-1 =0,

which can be expressed in the matrix equation

1 0 0 0 e 0 0
AY) S1 1 0 e 0 0 A -8
S4 3 AY) S e 0 0 Y — 83
. .= . , (6.11)
$2u—4 S2u-5 Su-6 Su-7 -+ Si—2 Si—3| [A —82¢-1
| S2—2 S2-3 S2u—4 Su-5 - S S-1
or AA = —S. If there are in fact ¢ errors, the matrix is invertible, as we can determine

by computing the determinant of the matrix. If it is not invertible, remove two rows and
columns, then try again. Once A is found, we find its roots. This matrix-based approach to
solving for the error locator polynomial is called Peterson’s algorithm for decoding binary
BCH codes.

For small numbers of errors, we can provide explicit formulas for the coefficients of

A(x), which may be more efficient than the more generalized solutions suggested below
[238].

1-error correction Aj; = 5.
2-error correction A =S1, Az = (S3+ S57)/(51).
3-errorcorrection Ay =Si, Az = (5783+S5)/(5} +53), Az = (S} +53)+SiAz.

4 error correction
S+ ST + S3(57 + Ss)
S3(S3 + S3) + S1(S; + Ss)’

(S5 + §283) + (53 + S3)A2
S1)

Ay =8,

A3 =S|3+53+S|A2, Ag =

S-error correction A; = S,

A (S} + $3)(ST + S9) + 57 (S5 + 5253) + 53(57 + 53)] + (55 + 55)(57 + 8]) + 51 (52 + 5, 55)
(57 + 53)[(S7+ 5]) + 518357 + S3)1+ (85 + $283)(5] + $s)

Az = (8] + 83) + S1A2

_ (S + S9) + S3(S} + 53) + 51 (S5 + 5755) + Aal(sy + ST) + S183(5} + 53)]

Ay
S? + S5

6.4 Finding the Error Locator Polynomial

253

As =S5+ 5783 + S154 + A2(S} + $3).

For large numbers of errors, Peterson’s algorithm is quite complex. Computing the
sequence of determinants to find the number of errors is costly. So is solving the system

of equations once the number of errors is determined. We therefore look for more efficient
techniques.

Example 6.12 Considerthe (31,21) 2-error correcting code introduced in Example 6.2, with generator
g =x104x% x84 x0 4 x5 43 41 having roots at o, o2, a3 and o*. Suppose the codeword

c) = 1413 4x 425 420 4184210 4 414 4 (16 4 (17 (18 4 120 21 23 24 25
is transmitted and

P =145 + x5 +x6 4 x8 4210 4 (14 4 416 4 417 4,20 21 23 | 24, 25
is received. The syndromes are

Slzr(a)za” Sz=r{a'2)=af3 S3=r(rx3}=l S4=r(£r4)=a6.

Using the results above we find

S3+ 53
A1=51=a17 A2=m=ﬂ22‘
51
sothat A(x) = 14 a7x + a?2x2. The roots of this polynomial (found, e.g., using the Chien search)
are at x = 13 and x = 7. Specifically, we could write

Ax) = cxzz(x + 0'13)(x + rx27).

The reciprocals of the roots are at o 18 and o?, so that the errors in transmission occurred at locations
4 and 18,

e(x) = x4 + x18,
It can be seen that r(x) -+ e(x) is in fact equal to the transmitted codeword, O

6.4.2 Berlekamp-Massey Algorithm

While Peterson’s method involves straightforward linear algebra, it is computationally com-
plex in general. Starting with the matrix A in (6.11), it is examined to see if it is singular.
This involves either attempting to solve the equations (e.g., by Gaussian elimination or
equivalent), or computing the determinant to see if the solution can be found. If A is sin-
gular, then the last two rows and columns are dropped to form a new A matrix. Then the
attempted solution must be recomputed starting over with the new A matrix.

The Berlekamp-Massey algorithm takes a different approach. Starting with a small
problem, it works up to increasingly longer problems until it obtains an overall solution.
However, at each stage it is able to re-use information it has already learned. Whereas as the
computational complexity of the Peterson method is O (v*), the computational complexity
of the Berlekamp-Massey algorithm is O (v?).

We have observed from the Newton'’s identity (6.10) that

v
Sj==Y AiSj—i, Jj=v+1lv+2,...,2. (6.12)
i=1

254

BCH and Reed-Solomon Codes: Designer Cyclic Codes

This formula describes the output of a linear feedback shift register (LFSR) with coefficients
A1, Az, ..., Ay. In order for this formula to work, we must find the A ; coefficients in
such a way that the LFSR generates the known sequence of syndromes S1, Sz, ..., S2.
Furthermore, by the maximum likelihood principle, the number of errors v determined
must be the smallest that is consistent with the observed syndromes. We therefore want to
determine the shortest such LFSR.

In the Berlekamp-Massey algorithm, we build the LFSR that produces the entire se-
quence {S1, 52, ..., 52/} by successively modifying an existing LFSR, if necessary, to
produce increasingly longer sequences. We start with an LFSR that could produce ;.
We determine if that LFSR could also produce the sequence {S1, S2}; if it can, then no
modifications are necessary. If the sequence cannot be produced using the current LESR
configuration, we determine a new LFSR that can produce the longer sequence. Proceed-
ing inductively in this way, we start from an LFSR capable of producing the sequence
{51, 82, ..., Sk—1} and modify it, if necessary, so that it can also produce the sequence
{S1, 82,..., Sk}. Ateach stage, the modifications to the LFSR are accomplished so that the
LFSR is the shortest possible. By this means, after completion of the algorithm an LFSR
has been found that is able to produce {51, S2, ..., S2;} and its coefficients correspond to
the error locator polynomial A (x) of smallest degree.

Since we build up the LFSR using information from prior computations, we need a
notation to represent the A (x) used at different stages of the algorithm. Let L; denote the
length of the LFSR produced at stage k of the algorithm. Let

A[k](x) =1+ AEk]x +oe+ Agﬂxu

be the connection polynomial at stage k, indicating the connections for the LFSR capable
of producing the output sequence {51, Sz, ..., Sx}. Thatis,

Ly
Sj=_ZAI[k]S~;_i j=Lk+1!"‘9k' (6'13)
i=1

Note: Tt is important to realize that some of the coefficients in A*(x) may be zero, so
that L; may be different from the degree of A*1(x). In realizations which use polynomial
arithmetic, it is important to keep in mind what the length is as well as the degree.

At some intermediate step, suppose we have a connection polynomial A*~1l(x) of
length Li—; that produces {S1, S2, ..., Sk—1} for some k — 1 < 2t. We check if this
connection polynomial also produces Si by computing the output

= k—1
Sp = — Z: AR ;.

i=1
If 8 is equal to Sk, then there is no need to update the LFSR, so A (x) = A%—1(x) and
L = Lg-1. Otherwise, there is some nonzero discrepancy associated with A—11(x),

L L
drp = S — S’k = S + Z A?‘_”Sk_l- = Z AEk_”Sk_;. (6.14)

i=1 i=0

In this case, we update the connection polynomial using the formula

AR (x) = AUy 4+ Axi Al (x), (6.15)

6.4 Finding the Error Locator Polynomial

255

where A is some element in the field, / is an integer, and A™=1l(x) is one of the prior
connection polynomials produced by our process associated with nonzero discrepancy d,y,.
(Initialization of this inductive process is discussed in the proof of Theorem 6.13.) Using
this new connection polynomial, we compute the new discrepancy, denoted by d;, as

Ly
di =" AMs,;
i=0
Ly Ly
=Y AFs Ay A (6.16)
i=0 i=0

Now, let I = k — m. Then, by comparison with the definition of the discrepancy in (6.14),
the second summation gives

L
A Z Agm_l}Sm_;‘ = Adp,.
i=0

Thus, if we choose A = —d,, !dy, then the summation in (6.16) gives
d; = di — d;; dydm = 0.
So the new connection polynomial produces the sequence {S1, S2, .. ., S} with no discrep-
ancy.
6.4.3 Characterization of LFSR Length in Massey’s Algorithm

The update in (6.15) is, in fact, the heart of Massey’s algorithm. If all we need is an algorithm
to find a connection polynomial, no further analysis is necessary. However, the problem
was to find the shortest LFSR producing a given sequence. We have produced a means of
finding an LESR, but have no indication yet that it is the shortest. Establishing this requires
some additional effort in the form of two theorems.

Theorem 6.12 Suppose that an LFSR with connection polynomial A*=1(x) oflength Li_1
produces the sequence {S1, S2, . .., Sk—1}, but not the sequence {S1, S2, ..., Sx}. Then any
connection polynomial that produces the latter sequence must have a length Ly satisfying

Ly >k —Li_.

Proof The theorem is only of practical interest if Ly—; < k — 1; otherwise it is trivial to
produce the sequence. Let us take, then, L1 < k — 1. Let

ARGy = 14 AF e o Al e
represent the connection polynomial which produces {S1, ..., Sxk~1} and let
ARGy =14+ AFx + .+ AP

denote the connection polynomial which produces {51, S2, ..., Sx}. Now we do a proof by
contradiction.
Assume (contrary to the theorem) that

Ly <k—1—Lg-1. (6.17)

256

BCH and Reed-Solomon Codes: Designer Cyclic Codes

From the definitions of the connection polynomials, we observe that

Ly .
=S8 J=Li- 1+2,...,k=1
— Y Ak, Sj 7 =Lici+ 1 Li-t + k 6.18)
i=1 Sk J=k
and
Ly
3 AW =8 =Lt L2k 6.19)
i=1
In particular, from (6.19), we have
Ly
Sk=— AMs_;. (6.20)

i=1
The values of S; involved in this summation range from Sx—1 to Sk—z, . The indices of these
values forma set (k — L¢,k — Ly + 1, ...,k — 1}. By the (contrary) assumption made in
(6.17),wehavek — Ly > Li_1+1,sothatthe setofindices {k— Lg, k—Li+1,...,k—1}
are a subset of the set of indices {Ly_1+ 1, Ly—1+2, ..., k — 1} appearing in (6.18). Thus
each S;—; appearing on the right-hand side of (6.20) can be replaced by the summation
expression from (6.18) and we can write

Ly Ly Li-

Sk=—~Y Al = YoM > AE,#_”Sk—i—j-

i=1 i=l1 ji=1

Interchanging the order of summation we have

L1 Ly
Sk= Y AB’“” AMS . (6.21)
j=1 i=1
Now setting j = k in (6.18), we obtain
L
Sct— Y AFUs (6.22)

i=1

In this summation the indices of S form the set {k — Li_1, ...,k — 1}. By the (contrary)
assumption (6.17), L + 1 < k — L1, so the sequence of indices {k — Lg—1,...,k — 1}
1s a subset of the range Ly 4+ 1, ...,k of (6.19). Thus we can replace each Sx—; in the
summation of (6.22) with the expression from (6.19) to obtain

Ly Ly
Se# Y AN AWM ;. (6.23)
=1 j=1

Comparing (6.21) with (6.23), the double summations are the same, but the equality in
the first case and the inequality in the second case indicate a contradiction. Hence, the
assumption on the length of the LFSRs must have been incorrect. By this contradiction, we
must have

Ly > k—Lg—.

If we take this to be the case, the index ranges which gave rise to the substitutions leading
to the contradiction do not occur. O

6.4 Finding the Error Locator Polynomial

257

Since the shortest LFSR that produces the sequence {S1, Sz, ..., Sk} must also produce the
first part of that sequence, we must have Ly > Li—1. Combining this with the result of the
theorem, we obtain

Ly = max(Lg—1,k — Lir—1). (6.24)

We observe that the shift register cannot become shorter as more outputs are produced.

We have seen how to update the LFSR to produce a longer sequence using (6.15) and
have also seen that there is a lower bound on the length of the LFSR. We now show that
this lower bound can be achieved with equality, thus providing the shortest LFSR which
produces the desired sequence.

Theorem 6.13 In the update procedure, if A¥1(x) # A¥—1(x), then a new LFSR can be
found whose length satisfies

Ly =max(Lg_1,k— Lg—1). (6.25)
Proof We do a proof by induction. To check when k = 1 (which also indicates how to get
the algorithm started), take Lo = 0 and AP (x) = 1. We find that
dy = 8.

If §1 = 0, then no update is necessary. If §1 # 0, then we take AM(x) = Al%(x) =1, 50
that! =1 — 0 = 1. Also, take d,,, = 1. The updated polynomial is

AM(x) = 14 81,
which has degree L satisfying
Ly =max(Lg,1— Lg) = 1.

In this case, (6.13) is vacuously true for the sequence consisting of the single point {S;}.
Now let A1 (x), m < k — 1, denote the last connection polynomial before A ¥=1}(x)
with L,,—1 < Li— that can produce the sequence {51, Sz, ..., Sm—1} but not the sequence
{S1,82,...,8n}. Then
Ly = Lg-1;

hence, in light of the inductive hypothesis (6.25),
Ly=m—Ly_1=Lg-1, or Lpy_1—m=—L¢. (6.26)
By the update formula (6.15) with I = k — m, we note that
Ly =max(Ly_1,k—m+ Lpy_1).
Using L,,—1 — m from (6.26) we find that
Ly = max(Lg—1,k — Lg-1).

O

In the update step, we observe that the new length is the same as the old length if Ly—| >
k — Ly._1, thatis, if
2Lk—1 > k.

In this case, the connection polynomial is updated, but there is no change in length.

258

BCH and Reed-Solomon Codes: Designer Cyclic Codes

Wiy it il b 1

masseymodM.m
., F

The shift-register synthesis algorithm, known as Massey’s algorithm, is presented first
in pseudocode as Algorithm 6.1, where we use the notations

cx) = AM(x)
to indicate the “current” connection polynomial and
p@) = A1)

to indicate a “previous” connection polynomial. Also, N is the number of input symbols
(N = 2t for many decoding problems).

Algorithm 6.1 Massey’s Algorithm

Initialize:
L = 0 (the current length of the LFSR)
¢(x) = 1 (the current connection polynomial)
p(x) = 1 (the connection polynomial before last length change)
I =1 (I is k — m, the amount of shift in update)
dm = 1 (previous discrepancy)
fork=1to N
d=S; + Zf‘zl ¢i Sk—i (compute discrepancy)
if (d = 0) (no change in polynomial)
=141
else
if (2L > k) then (no-length change in update)
c(x) = c(x) — ddy; 'x p(x)
l=1+1
else (update ¢ with length change)
t(x) = c(x) (temporary storage)
c(x) = c(x) — ddy ' 5! p(x)

L=k—L
p(x) =t(x)
dm =d
[=1
end
end

end

Example 6.13 Forthesequence S = {1, 1, 1,0, 1, 0, 0} the feedback connection polynomial obtained
by a call to massey is {1, 1, 0, 1}, which corresponds to the polynomial

Clx)=14x+x.
Thus the elements of S are related by
Sj=Sj-1+5;-3,

for j > 3. Details of the operation of the algorithm are presented in Table 6.5.

6.4 Finding the Error Locator Polynomial

259

Table 6.5: Evolution of the Berlekamp-Massey Algorithm for the Input Sequence
{1,1,1,0,1,0,0}.

k S dr c(x) L px) 1| dpn
1 1 1 1+=x 1 1 1 1
2 1 0 1+4x 1 1 2 1
31 0 1+4x 1 1 3 1
4 0 1 14x+x> 3 14+x 1 1
5 1 0 14x+x> 3 14x 2 1
6 0 0 14x+x3 3 1+x 3 1
70 0 14x4x3 3 14x 4 1

Example 6.14 For the (31,21) binary double-error correcting code with decoding in Example 6.12,
let us employ the Berlekamp-Massey algorithm to find the error locating polynomial. Recall from
that example that the syndromes are §] = «17, 5, = o, §3 = 1, and S4 = ab. Running the
Berlekamp-Massey algorithm over G F (32) results in the computations shown in Table 6.6. The final
connection polynomial ¢(x) = 1 + a!7x + «22x2 is the error location polynomial previously found
using Peterson’s algorithm. (In the current case, there are more computations using the Berlekamp-
Massey algorithm, but for longer codes with more errors, the latter would be more efficient.)

Table 6.6: Berlekamp-Massey Algorithm for a Double-Error Correcting Code

kK S¢ di c(x) L px) I dy
1 a7 o7 14+al7% 1 1 1 ol
2 o 0 14alx 1 1 2 ol
3 1 o 1+ax+a®x2 2 14a’7x 1 o
4 of 0 l+al7x+a?2x2 2 1+al’x 2 b

6.4.4 Simplifications for Binary Codes

Consider again the Berlekamp-Massey algorithm computations for decoding a BCH code,
as presented in Table 6.6. Note that dy is O for every even k. This result holds in all cases
for BCH codes:

Lemma 6.14 When the sequence of input symbols to the Berlekamp-Massey algorithm are
syndromes from a binary BCH code, then the discrepancy dy is equal to O for all even k
(when 1-based indexing is used).

As a result, there is never an update for these steps of the algorithm, so they can be merged
into the next step. This cuts the complexity of the algorithm approximately in half. A
restatement of the algorithm for BCH decoding is presented below.

Algorithm 6.2 Massey's Algorithm for Binary BCH Decoding

Input: S1, 52,..., 5y, where N =2¢
Initialize:
L = 0 (the current length of the LFSR)

260

BCH and Reed-Solomon Codes: Designer Cyclic Codes

c(x) = 1 (the current connection polynomial)
p(x) =1 (the connection polynomial before last length change)
I =1 (l is k — m, the amount of shift in update)
dm = 1 (previous discrepancy)
for k = 1to N in steps of 2
d= 8+ Zf‘zl ¢; Sk—; (compute discrepancy)
if (d = 0) (no change in polynomial}
I=1+1
else
if (2L > k) then (no-length change in update)
c(x) = c(x) —ddy, 1x[p(x)
=141
else (update ¢ with length change)
t(x) = c(x) (temporary storage)
c(x) = c(x) — dd,;lxtp(x)
L=k—L
p(x) =1t(x)
dm=d
=1
end
end
I =1+ 1; (accounts for the values of k skipped)
end

Example 6.15 Returning to the (31,21) code from the previous example, if we call the BCH-modified
Berlekamp-Massey algorithm with the syndrome sequence S| = a8 =03, 83 =1,and S4 = o,
we obtain the results in Table 6.7, Only two steps of the algorithm are necessary and the same error
locator polynomial is obtained as before. ad

Table 6.7: Berlekamp-Massey Algorithm for a Double-Error Correcting code: Simplifica-
tions for the Binary Code

k Sy dr c(x) L pkx) I dy

0 o7 a7 1+a'x 11 2 ol

2 1 o 1+4+al’7x4+a®x2 2 14a7x 2 of

The odd-indexed discrepancies are zero due to the fact that for binary codes, the syn-
dromes S§; have the property that

($))? = $25. (6.27)
We call this condition the syndrome conjugacy condition. Equation (6.27) follows from

(6.4) and freshman exponentiation.
For the example we have been following,

=@ =a®=5, §2 = (@®)? =af =5,

Example 6.16 We now present an entire decoding process for the three-error correcting (15, 5) binary
code generated by

g =1+x+x*+x* +x° +x8 4 x10,

6.5 Non-Binary BCH and RS Decoding 261

Suppose the all-zero vector is transmitted and the received vector is
r=(0,1,0,1,0,0,0,0,1,0,0,0,0,0,0).

Thenr(x) =x + x3 4+ x8.

Step 1 Compute the syndromes. Evaluating r(x) at x = &, &2, . .., @® we find the syndromes

£l

Slzalz Szzrxg S3=«c::3 S4=o:3 Ss=0 Sg=rx6

Step 2 Compute the error locator polynomial.
A call to the binary Berlekamp-Massey algorithm yields the following computations.

kS dj. c(x) L p) I dn
1 a2 o2 140al% 1 1 2 ol?
3 o3 a? 1+ al2x + o2 2 1+l 2 o
5 0 a? 1+al2x + 202 + 223 3 1+a'2x+0°x2 2 a?

The error locator polynomial is thus
Ax)=1+ al%x + al0x2 4 1253

Step 3 Find the roots of the error locator polynomial. Using the Chien search function, we find roots

ate’, 2 and o!4. Inverting these, the error locators are

X;:otg Xz:cx3 X3=a,

indicating that errors at positions 8, 3, and 1.
Step 4 Determine the error values: for a binary BCH code, any etrors have value 1.

Step 5 Correct the errors: Add the error values (1) at the error locations, to obtain the decoded vector
of all zeros.

O

6.5 Non-Binary BCH and RS Decoding

For nonbinary BCH or RS decoding, some additional work is necessary. Some extra care
is needed to find the error locators, then the error values must be determined.
From (6.3) we can write

S1=e X1+e, X244+, Xy
Sp=en Xi tenXi+ - +eiX;
S3 = e,-le +852X% + - +£5"X3

Su =eq XY +ep Xy +-- + e, X

Because of the ¢; coefficients, these are not power-sum symmetric functions as was the
case for binary codes. Nevertheless, in a similar manner it is possible to make use of an
error locator polynomial.

Lemma 6.15 The syndromes and the coefficients of the error locator polynomial A(x) =
Ao+ Aix +--- 4+ A, xY are related by

ApSjy +Av1Sjvp1+ -+ M1S1 + 55 =0. (6.28)

262

BCH and Reed-Solomon Codes: Designer Cyclic Codes

Proof Evaluating the error locator polynomial A (x) = [[i_,(1 — X;x) at an error locator
Xi,
AT =0= AuX[Y + Ap1 X7V + -+ MXT + Ao

Multiplying this equation by ¢;, X f we obtain
e XA = e (A X! T+ Ayt X b+ X! T+ A0X]) =0 (629)

Summing (6.29) over [we obtain

v
0= ey (AX] ™" + Ayt X[TV o+ ALX] T+ AoX))
=1

v v v v
- Ca 1 .
= Ay Zel}xf U+Au_1ze=-;X{+l U+---+A;Zei,X§' +Aoze@X{.
=1 i=1 =1 =1

In light of (6.3), the latter equation can be written as
ApSj—v +Ap1Sj—vp1+ -+ A1Sj—1 + AoS; = 0.

d

Because (6.28) holds, the Berlekamp-Massey algorithm (in its non-binary formulation)
can be used to find the coefficients of the error locator polynomial, just as for binary codes.

6.5.1 Forney’s Algorithm

Having found the error-locator polynomial and its roots, there is still one more step for
the non-binary BCH or RS codes: we have to find the error values. Let us return to the
syndrome,

v
Si= eX], j=12..02.
=1

Knowing the error locators (obtained from the roots of the error locator polynomial) it is
straightforward to set up and solve a set of linear equations:

X% X% X3 - XE ei, S1
X x2 x? ... X e; Y
ot R P (6.30)
x¥ x3 x¥ ... x¥]|e, 2t

However, there is a method which is computationally easier and in addition provides us a key
insight for another way of doing the decoding. It may be observed that the matrix in (6.30)
is essentially a Vandermonde matrix. There exist fast algorithms for solving Vandermonde
systems (see, €.g., [121]). One of these which applies specifically to this problem is known
as Forney’s algorithm.

Before presenting the formula, a few necessary definitions must be established. A
syndrome polynomial is defined as

2t-1
S(x) = 51+ Spx + S3x? -+ + Sux™ 7 = Sjpx/, (6.31)
—~

6.5 Non-Binary BCH and RS Decoding

263

Also an error-evaluator polynomial Q (x) is defined! by

Q(x) = S(x)A(x) (mod x2). (6.32)

This equation is called the key equation. Note that the effect of computing modulo x% is
to discard all terms of degree 2t or higher.

Definition 6.5 Let f(x) = fo+ fix + fax2+- - -+ f,x* be a polynomial with coefficients
in some field F'. The formal derivative f'(x) of f(x) is computed using the conventional
rules of polynomial differentiation:

)= fi+2hx +3fsx> 4+ +tfix' "L, (6.33)
where, as usual, mf; form € Z and f; € F denotes repeated addition:
mfi = fit fit ot fio

m summands

O

There is no implication of any kind of limiting process in formal differentiation: it

simply corresponds to formal manipulation of symbols. Based on this definition, it can be

shown that many of the conventional rules of differentiation apply. For example, the product
rule holds:

[f(x)g®)] = f'x)g(x) + f(x)g'(x).
If f(x) € F[x], where IF is a field of characteristic 2, then f’(x) has no odd-powered terms.

Theorem 6.16 (Forney’s algorithm) The error values for a Reed-Solomon code are com-

puted by
Qxh
e = —— k) (6.34)
AXY
where A'(x) is the formal derivative of A(x).
Proof First note that over any ring,
2r—1
A=) =0-00+x+x>++x¥ D =1-x)) /. (6.35)

j=0
Observe:
Q(x) = Sx)A(x) (mod x¥)

21=1 v v
- (Z Y e x]txi (H(l - X,-x)) (mod x%)
i=1

j=0 I=1
v 2r—1 v
- ZE“XI Z(ng)f H(l — X;x) (mod x%)
=1 Jj=0 i=1
v 2r—1 v
— Zegl, X | (1=Xx) E(ng)j H(l — X;x) (mod x%).
1=1 i=0 i#l

1Some authors define S(x)y=8x + ng2 R Sg;.tzr, in which case they define Q(x) = (1 + S(x))A(x)
(mod x#*1y and obtain e = —X,;.SZ(X;I);’A’(XJ{I).

264

BCH and Reed-Solomon Codes: Designer Cyclic Codes

From (6.35),
2r-1

(1= Xpx)) (Xix)) =1 - (Xim)™.
j=0
Since (X;x)# (mod x%) = 0 we have

4]

SxAR) (mod x*) =) ey X; [[(1 - Xix).

=1 il
Thus
Q) =) e X[[(1 - Xix).
I=1 i#l

The trick now is to isolate a particular e;, on the right-hand side of this expression.
Evaluate (x) atx = X '

QXY =) eXxi[[-Xixh.

=1 il
Every term in the sum results in a product that has a zero in it, except the term when [= k,
since that term is skipped. We thus obtain
QX = e Xe [[0 = Xix.
ik
We can thus write
QX"

T XLl - XiXp D

Once Q2(x) is known, the error values can thus be computed. However, there are some
computational simplifications.
The formal derivative of A (x) is

A(x) = :—x [Ta-xin==->"x]]a-xx).
i=1

e,-k

(6.36)

I=1 izl
Then
N&H ==X [Ja-xxh.
ik
Substitution of this result into (6.36) yields (6.34). O

Example 6.17 Working over G F (8) ina code wheret = 2, suppose S(x) = a®+a3x+o4x2 +a3x3.
We find (say using the B-M algorithm and the Chien search) that the error locator polynomial is

A@) =1 +ax +ax? = (14 a3x)(1 +).
That is, the error locators (reciprocals of the roots of A (x)) are X1 = & and X, = o, We have

Q(x) = (36+a3x+a'4x2+a3x3)(1+a2x+rxx2) (mod x4) = (a6+x+a4x5) (mod x4) = a6+x

6.5 Non-Binary BCH and RS Decoding

265

and
A (x) = o? + 20x = a?.
So ¢
a +x 4, 5y-1
e, = =« a’ X
i o2 tor Ay

Using the error locator X1 = o> we find
ey = ot +ar5(oz3)”'l =0

and for the error locator X = o’

e5 = ot + asfozs)_l =a’.
The error polynomial is e(x) = ax3 +adx’. O
Example 6.18 We consider the entire decoding process for (15,9) code of Example 6.8, using the
message and code polynomials in Example 6.10. Suppose the received polynomial is
r(x) = of +o?x + &4— 53 + o5t +oaxd +ax® +ax’ + cx_.xs +oox’ + o510

+a4x11+&,9x12+a12x13+a5xl4.

(Errors are in the underlined positions.)
The syndromes are

Si=r@)=a S=r@})=o* S3=r@=ab
Sq = ?’(Q'4) = 0’2 S5 = r(as) =3 Sg = r(aﬁ) =af
S0
Sx) = o3 + otx + o8x% + 0?23 + 23 +a8%°
and the error locator polynomial determined by the Berlekamp-Massey algorithm is
A) =145 +a'lx? 4+ 0%,

The details of the Berlekamp-Massey computations are shown in Table 6.8.

Table 6.8: Berlekamp-Massey Algorithm for a Triple-Error Correcting Code

k S di c(x) L px) I dn
1 o o 143 1 1 1 ol®
2 o o 1+a% 1 1 2 ol
3 o o 1 4+ obx + a3x2 2 1+ab 1l «

4 o2 & 1+ o12x 4 1242 2 14+ab 2 «

5 & al% 1402x +aBx2+x3 3 14a2x+40a!2x2 1 !
6 o & 1+x+ax24+0%%3 3 1+4+a2x+a'2x2 2 Q!

The roots of A(x) areat o, o’ and 13, so the error locators (the reciprocal of the roots) are

4 yo=o® X3=o?

Xi=«a
corresponding to errors at positions 14, 8, and 2. The error evaluator polynomial is

Qx) = ol3 +x + o?x2.

266

BCH and Reed-Solomon Codes: Designer Cyclic Codes

Then the computations to find the error values are:
Xi=a: QxhH=e® ANXH=d" ey=c
=0 eux;h=od? AN H=aB® eg=0ot
X3 =a?: Q(X;1)=arl3 A’(X.;l).—_au ey = a?

The error polynomial is thus

e(x) = ax? + oty + axl?

and the decoded polynomial is

rxg + az.x + 061412 + a3x3 + a5x4 + afxs + agxﬁ +- ax7 + xs + rxng + &3110

+a'4x“ + a9x12 +a12x13 +a2x14.

which is the same as the original codeword ¢(x). a

6.6 Euclidean Algorithm for the Error Locator Polynomial

We have seen that the Berlekamp-Massey algorithm can be used to construct the error
locator polynomial. In this section, we show that the Euclidean algorithm can also be
used to construct error locator polynomials. This approach to decoding is often called the
Sugiyama algorithm [324].

We return to the key equation:

Q(x) = Sx)A(x) (mod x%). (6.37)

Given only S(x) and r, we desire to determine the error locator polynomial A (x) and the error
evaluator polynomial €2(x). As stated, this problem seems hopelessly underconstrained.
However, recall that (6.37) means that

O(x)(x%) + A(x)S(x) = Q(x)

for some polynomial ®(x). (See (5.16).) Also recall that the extended Euclidean algorithm
returns, for a pair of elements (a, b) from a Euclidean domain, a pair of elements (s, 7) such
that

as + bt =c,

where c is the GCD of a and b. In our case, we run the extended Euclidean algorithm to
obtain a sequence of polynomials ©*1(x), A} (x) and Q¥l(x) satisfying

Ol (x)x* + A (x)s(x) = QM (x).
This is exactly the circumstance described in Section 5.2.3. Recall that the stopping criterion

there is based on the observation that the polynomial we are here calling 2 (x) must have
degree < 1.

The steps to decode using the Euclidean algorithm are summarized as follows:

1. Compute the syndromes and the syndrome polynomial S(x) = §1 + Spx + -+ +
Sa; er—l'

2. Run the Euclidean algorithm with a(x) = x% and b(x) = S(x), until deg(ri(x)) < t.
Then 2(x) = ri(x) and A(x) = t;(x).

3. Find the roots of A(x) and the error locators X;.

