2010 14th European Conference on Software Maintenance and Reengineering

DPDX - Towards a Common Result Exchange
Format for Design Pattern Detection Tools

Giinter Kniesel*, Alexander Binun*, Péter Hegediis', Lajos Jené Fiilop',

Alexander Chatzigeorgiou?, Yann-Gaél Guéhéneuc? and Nikolaos Tsantalis*
*University of Bonn, Bonn, Germany; Email: gk@iai.uni-bonn.de, binun@jiai.uni-bonn.de
fUniversity of Szeged, Szeged, Hungary; Email: hpeter@inf.u-szeged.hu, flajos@inf.u-sz ged.hu
tUniversity of Macedonia, Thessaloniki, Greece; Email: achat@uom.gr, nikos@java.uom.gr
§Ecole Polytechnique de Montréal, Québec, Canada; Email:yann-gael.gueheneuc@polymtl.ca

Abstract—Tools for design pattern detection (DPD) can ease
program comprehension, helping programmers understand the
design and intention of certai

n parts of a system’s implementation. Many tools have been
proposed in the past. However, the many different output formats
used by the tools make it difficult to compare their results and to
improve their accuracy and performance through data fusion. In
addition, all the output formats have been shown to have several
limitations in both their forms and contents. Consequently, we
develop DPDX, a rich common exchange format for DPD tools,
to overcome previous limitations. DPDX provides the basis for
an open federation of tools that perform comparison, fusion,
visualisation, and—or validation of DPD results.

I. INTRODUCTION

Object-oriented design patterns are an important part of
current design knowledge. Understanding the design patterns
employed in a program provides developers with insight into
the previous developers’ intentions, the structure of the pro-
gram, and some of its operational aspects. Therefore, design
pattern detection (DPD)! is a helpful technique for program
comprehension.

Recently, Kniesel and Binun [1] showed that the precision
and recall of DPD can be improved by combining the outputs
of different tools to complement results and—or balance con-
flictin results. However, joint use of different DPD tools was
hindered by several limitations of the outputs of the current
DPD tools. These limitations make results ambiguous and
render it difficul to reproduce, understand, verify, compare
and combine results from different tools. In particular, the lack
of a common output format hinders the automated use of the
results by other tools.

We propose to address these limitations by developing a
common exchange format for DPD tools, DPDX, based on
a well-define and extensible metamodel. This format would
ease the comparison, fusion, visualisation, and validation of
the outputs of different DPD tools that interact as part of a
federation to produce new value.

A. Requirements

The common exchange format encourages the reporting of
internal information that is available in most tools. It acts as

'For an introduction to the used DPD terminology please refer to [I]

1534-5351/10 $26.00 © 2010 IEEE
DOI 10.1109/CSMR.2010.40

232

a contract to which tools should conform in order to be part
of the aforementioned federation. A suitable exchange format
must fulfil the following requirements:

Specification. The exchange format must be specifie for-
mally to allow DPD tool developers to implement appropriate
generators, parsers, and—or converters.

Reproducibility. For reproducing the results, the tool and
the analysed program must be explicitly reported.

Justification. To ease result assessment, the format must
include explanations of results and scores expressing the
confidenc of a tool in its diagnostics.

Completeness. The format must be able to represent pro-
gram constituents at every level of role granularity described
in design pattern literature.

Identification of role players. Each program constituent
playing a role must be identifie unambiguously.

Comparability. The format must enable reporting of the
motif definition assumed by a tool and the applied analysis
methods to allow other tools to compare results.

B. State of the art

We have evaluated the output formats of the DPD tools
that we found to be available for practical use (DP-Miner
[2], Fujaba [3], Maisa [4], SSA [5], Columbus [6], PINOT
[7], Ptidej [8]) and of two DPD result repositories (DEEBEE
[9] and p-MARt [10]) Table I shows that most of the above
requirements for the tool output are fulfille just by very few
tools. This stands in sharp contrast to the fact that much of
the related information is internally available in most tools.
Thus we conclude that the specificatio of a common output
format and the motivation of its utility for third-party tools
will encourage DPD tool authors to provide the available
information in the future. General purpose exchange formats
such as GXL [I1]are too heavyweight for this purpose and
have not been adopted by any of the existing DPD tools.

II. DPDX CONCEPTS

In this section, we develop the concepts on which our
proposed exchange format, DPDX, is based. We show how
DPDX addresses each of the requirements stated in Section
I-A, overcoming the limitations of existing output formats.

IEEE
computer
psoaety

DP- Mai
Miner sa

SSA 8P

QR

Colum Pinot

-bus

Ptidej Fujaba DEE P

BEE Mart

Language- v v v v v v

independence

Completeness v v v

Standard csv XML XML - XML csv XML

compliance

Nested -—
classes

Outer
classes

Outer
classes

Outer
classes

Classes Clas-
Methods

fields

Classes
Signa-
tures

Identification of -
role players

v Unique
IDs

Identification of -
Candidates
Scores Scores
explan
ations

Justification

Comparability

Tool and
reposito-
ry info

Repos

itory
info

Reproducibility -

Role
types

Specification

Table I: Tools and requirements fulfille by their output
formats. For a detailed explanation of the finding see [1].

Specification.The common exchange format will be spec-
ifie by a set of extensible metamodels that capture the
structural properties of the relevant concepts, e.g., candidates,
roles and their relations. Metamodels that reflec the decisions
explained in this section are presented in Sec.IIl. They sig-
nificantl extend previous similar proposals, for example, the
PADL metamodel of Albin-Amiot et al. [12]. The possible
kinds of program constituents and the related abstract syntax
tree are no first-clas elements of the metamodel but are
captured by a set of predefine values for certain attributes
in the metamodel. This ensures easy extensibility since only
the set of values must be extended to capture new relations
or language constructs whereas the metamodel and the related
exchange format remain stable.

Reproducibility. A DPD result fil must contain the diag-
nostics of a particular DPD tool for a particular program.
To enable reproducing the results, it must include the name
and version of the originating tool and the name, version,
and the URI of the analysed program. Names and versions
may be arbitrary strings. The URI(s) must reference the root
directory(ies) of the analysed program. The URI fiel is
optional, since the analysed program might not be publicly
accessible. The other field are mandatory.

Justification.Justificatio of diagnostics consists of confi
dence scores, reported as real numbers between 0 and 1,
and textual explanations. Justificatio can be added at every
level of granularity: for an entire candidate, individual role
assignments and individual relation assignments (see Sec.
11-C).

Completeness. For completeness, the output format must
support at least reporting each program constituent that can
possibly play a mandatory role. Therefore, DPDX allows re-
porting nested and top-level types (interfaces, concrete and ab-
stract classes), fields, methods and statements (including field
accesses and method invocations). Reporting role mappings
at all possible granularity levels improves the presentation
of the results and eases their verificatio by experts and use
by other tools. Reporting roles played by statements different

233

from invocations and fiel accesses is important because they
are essential for disambiguating certain otherwise hard to
distinguish motifs. An example is given in [1].

Identification of role players. The program elements sus-
pected to play certain roles must be identifie unambiguously
in the DPD result. The identificatio scheme should be stable,
i.e. not affected by changes in the source code that are mere
formatting issues or reordering of elements whose order has
no semantic meaning.’

Stable identificatio is easy for type and fiel declarations,
which are typically named. Chaining names from outer to
inner scopes is sufficien for identifying declarations of classes
and fields For instance, in the example below myApp.A
identifie the class A and myApp.B.b identifie the fiel b
in class B:

package myApp;
class A {public void f(int a,
class B {

int b;

public void b(

B
public void b(A
int ¢, d;

int b){...}}

b) {...}
a) {

if (...) a.f(c,d) else a.f(d,c);

}
}

Because in many object-oriented languages methods can be
overloaded , unique identificatio requires including the types
of method arguments in the identifie of a method.

Unfortunately, nested naming is inapplicable to statements
and expressions, such as the two invocations of method f()
within the body of method b() above. However, every element
can be identifie uniquely by a path in an abstract syntax
tree (AST) representation of the respective program. This path
consists of names for the child branches of each AST element
and positions within statement sequences. For instance, the
if statement in the above code example can be identifie by
ifPath = myApp.B.b(myApp.A).body.2.

Comparability. DPDX supports comparability by speci-
fying a precise metamodel of schemata, enabling tools to
report their schemata. In addition, it provides means to specify
used analysis methods and specifie a common vocabulary of
analysis methods.

III. DPDX META-MODELS

This section presents the three meta-models that together
specify the DPDX format: the meta-model of design pattern
schemata, the meta-model of program element identifier and
the meta-model of DPD results. These models reflec the
decisions explained in the previous chapter.

Figure 1 shows how these models are related. Results are in-
stances of the result metamodel. Their main part are mappings
of roles and relations to program elements. Candidates are
targets of such mappings. Note that candidates may overlap,
that is, program elements can play a role in different pattern
schemata, as illustrated by the overlap of one of the Singleton
candidates with one of the Decorator candidates in Figure 1.

2This is necessary to compare DPD results across different program
versions, when analysing the evolution of pattern implementations over time.

‘ Metamodel of Metamodel of Metamodel! of

DP Schemata DPD Results Program Elements
instanceOf inslanceOiT instanceOf
= =S =y >
[['s1 = Schema of ¥
Singleton || T 7T Tmmme—mee
/Role mappings and|
| relation mappings_|
Sn = Schema
of Decorator e
Schemata . Results Elements of
oftool T | S of TforP/ | programP |
%X DPD results of tool T for program P

/

Figure 1: Relation of schemata, diagnostics and instances

A. Schema Metamodel

A design pattern schema is a set of named roles and named
relationships between these roles. A role has a name, a set
of associated properties, an indication of the kind of program
element that may legally play that role (e.g. a class, method,
etc.), a set of contained roles and a specificatio of the role
cardinality, which determines how many elements that play the
role may occur within the enclosing entity. Mandatory roles
have cardinality greater than zero. A relationship has a name
and cardinalities specifying how many elements that play a
particular role can be related on either end of the relationship.
A role mapping maps roles and relations of the schema to
elements of a program so that the target program elements
are of the required kind, have the required properties and
relationships and fulfil the cardinality constraints stated in the
schema.

The metamodel of design pattern schemata is illustrated in
Figure 2. Apart from roles and their relations the metamodel
define for each role a property as a triple consisting of a name,
a value and a boolean that indicates whether the property
must be met exactly or might be relaxed. In the firs case it
represents a core characteristic (e.g. the ’ConcreteDecorator’
role must be played by a class whose ‘abstractness’ property
has the value concrete). Otherwise, it is ignored if not fulfille
but increases the confidenc in the diagnostic if fulfille (e.g.
the ‘Decorator’ is typically abstract but not necessarily so).
The metamodel further adds the option to represent that a
schema is a variant of another one, e.g. a ‘Push Observer’ is
a variant of the ‘Observer’ motif.

B. Program Element Metamodel

The identificatio scheme elaborated in Sec. II distinguishes

containedRoles

T 3

1 .
Role 9—| Property

name : String name : String
- kind : String source value: String
Q cardinality : String strict: Bool
s !
3
2

Relation
name : String
srcCard: String

targetCard : String
mandatory : Bool
direct: Bool

Figure 2: Metamodel of design pattern schemata

234

Source
uri: String 1
line: int ProgramElement
col:int A - referencedElement
R kind: String
endline : int K
endCol :int /\

[I I |
| NamedElement |<1+e'| TypedEIement| | IndexedElement | | Block |

name: String | name: String | | indexInParent: int | |nameInParent: Slring|

kind e {class, kind e kind € {block}
interface, field, {method}
basicType} kind e {block, ...}

kind e {get, set, call} F F

Figure 3: Metamodel of program element identifier and

optional source locations

named elements (fields classes, interfaces and primitive
or built-in types),

typed elements (method signatures),

indexed elements (statements in a block) and

blocks.

Each of these elements can be nested inside another element.
That is general enough to accommodate even exotic languages.
Although blocks and named elements look similar (both
contain just a name), there is a significan distinction. The
names of named elements stem from the analysed program
whereas those of blocks belong to a fi ed vocabulary [13].

C. Result Metamodel

Figure 4 shows the metamodel of DPD results. A DPD
result contains a set of diagnostics produced by a tool for
a given program. Each diagnostic contains a set of role and
relation assignments and a reference to the pattern schema
whose roles and relations are mapped. Each role assignment
references a mapped role and the program element that plays
the role. A relation assignment references the mapped relation,
a program element that serves as relation source and an
element that serves as relation target. Optional justification
can be added to diagnostics and each of their role and relation
assignments.

IV. DPDX IMPLEMENTATION

For long-term maintainability, the implementations of the
meta-models should rely as much as possible on emerging or

s DPD Result y

Tool Program
name: String diagnostics | 1..* name: String
vorsionHSiing| DI m version : String

iagnostic

language: String

patternName : String

Justification

explanation : String
score : Real

roleAssignments

i

RoleA

player | 1

ProgramElement

target

source
Relation

relationAssignments 1.

Figure 4: Metamodel of design pattern detection results

01<PatternSchema id ="PS1" name="Decorator" variantOf="%NONE%" >
02 <Roles>

03 <Role id="R1" name="Component" kind="Class" cardinality="1">
04 <Property name="abstractness" value="abstract" strict="false"/>

05 <Role id="R2" name="Operation" kind="Method" cardinality="+"/>
06 </Role>

07 <Role id="R3" name="Decorator" kind="Class" cardinality="1">

16 </Roles>

17 <Relations>

18 <Relation id="RE1" name="subTypeOf" source="R3" srcCard="1"
19 target="R1" targetCard="1" mandatory="true" direct="false"/>
26 </Relations>

27</PatternSchema>

Figure 5: Implementation of schema metamodel

de-facto standards, therefore the implementation is based on
XML (see Figures 5, 6 and 7).

To keep the implementation simple, we have adhered as
much as possible to the following general principles for
mapping meta-models to XML:

o classes of the meta-models are mapped to XML tags,
attributes of the meta-model elements are mapped to
attributes of the XML elements,

aggregation between the elements of the meta-models are
represented by the parent-children nesting technique of
XML,

an element that can be referred to by an other element
has an ‘id’ attribute

intentionally missing values are made explicit by special
reserved values (%NONE% and %MISSING%)

01<ProgramElements >
<NamedElement id ="PE1" name="java.io.Writer" kind="class"
source="P1">

</NamedElement>
<NamedElement id ="PE4" name="java.io.BufferedWriter" kind="class"
source="P4">
42 </NamedElement>
<Sources>
<Source id="P1" URI="/java/io/Writer.java" line="33" col="1"
endLine="308" endCol="1"/>

47
48
49
54
55

<Source id="P4" URI="/java/io/BufferedWriter.java" line="47"
col="1" endLine="253" endCol="1"/>

66 </Sources>
67 </ProgramElements >

Figure 6: Implementation of program metamodel

The exact rules of the XML format are define by an XML
schema definition For human readability of the format, an
XSLT transformation of DPDX to HTML is provided®. For
details droped here for lack of space please check [13].

V. CONCLUSION

In this paper we have proposed DPDX, a common exchange
format for design pattern detection tools. The proposed format
is based on a well-define and extensible metamodel address-
ing a number of limitations of current tools. The employed

3See https://sewiki.iai.uni-bonn.de/dpdx/ for the XSD and XSLT code.

235

01<DPDResult >

02 <Tool name="NotNamed" version="1.0"/>

03 <Program name="JDK" version="1.6" language="Java"/>

04 <Diagnostic id="PI1" patternName="Decorator" patternSchema="PS1">
05 <RoleAssignments>

06 <RoleAssignment id="RA1" role="R1" player="PE1"/>

09 <RoleAssignment id="RA4" role="R3" player="PE4"/>

17 </RoleAssignments>

18 <RelationAssignments>

19 <RelationAssignment relation="RE1" source="PE4" targer="PE1"/>
25 </RelationAssignments >

26 <Justifications >

27 <Justification for="PI1" score="95%" explanation=""/>

28 </Justifications>

29 </Diagnostic>

30</DPDResult>

Figure 7: Implementation of result metamodel

XML-based metamodel can be easily adopted by existing and
future tools providing the ground for improving accuracy and
recall when combining their findings

REFERENCES

[1]1 G.Kniesel and A. Binun, “Witnessing Patterns: A Data Fusion Approach
to Design Pattern Detection,” CS Department III, Uni.Bonn, Germany,
Technical report IAI-TR-2009-01, ISSN 0944-8535, Jan. 2009. [Online].
Available: http://www.cs.uni-bonn.de/~gk/papers/IAI-TR-2009-01.pdf
J. Dong, D. S. Lad, and Y. Zhao, “Dp-miner: Design pattern discovery
using matrix,” in ECBS’07. Washington, USA: IEEE Computer Society,
2007, pp. 371-380.

L. Wendehals, “Improving design pattern instance recognition by dy-
namic analysis,” in WODA’03. Portland, USA: IEEE Computer Society,
2003.

R. Ferenc, J. Gustafsson, L. Miiller, and J. Paakki, “Recognizing Design
Patterns in C++ programs with the integration of Columbus and Maisa,”
Acta Cybernetica, vol. 15, pp. 669—682, 2002.

N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design pattern detection using similarity scoring,” IEEE TSE, vol. 32,
no. 11, pp. 896-909, 2006.

Z. Balanyi and R. Ferenc, “Mining Design Patterns from C++ Source
Code,” in Proceedings of the 19th International Conference on Software
Maintenance (ICSM 2003). 1EEE Computer Society, Sep. 2003, pp.
305-314.

N. Shi and R. A. Olsson, “Reverse engineering of design patterns from
java source code,” in ASE’06. Washington, USA: IEEE Computer
Society, 2006, pp. 123-134.

Y.-G. Guéhéneuc, “A reverse engineering tool for precise class dia-
grams,” in CASCON’04. IBM Press, 2004, pp. 28—41.

L. J. Fulop, R. Ferenc, and T. Gyimothy, “Towards a benchmark for
evaluating design pattern miner tools,” in CSMR ’08: Proceedings of
the 2008 12th European Conference on Software Maintenance and
Reengineering. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 143-152.

P-mart homepage.
www.ptidej.net/downloads/pmart/
A. Winter, B. Kullbach, and V. Riediger, “An overview of the GXL graph
exchange language,” in Revised Lectures on Software Visualization,
International Seminar. London, UK: Springer-Verlag, 2002, pp. 324—
336.

H. Albin-Amiot and Y.-G. Guéhéneuc, “Meta-modeling design patterns:
application to pattern detection and code synthesis,” in Proceedings
of First ECOOP Workshop on Automating Object-Oriented Software
Development Methods, 2001.

G. Kniesel, A. Binun, P. Hegediis, L. J. Fiilop, N. Tsantalis,
A. Chatzigeorgiou, and Y.-G. Guéhéneuc, “A common exchange format
for design pattern detection tools,” CS Department III, Uni.Bonn,
Germany, Technical report TAI-TR-2009-03, ISSN 0944-8535, Oct.
2009. [Online]. Available: https://sewiki.iai.uni-bonn.de/dpdx/

[2

—

3

[t}

[4

=

[5

=

(6

=

[7

—

[8]
[9

—

[10]

(1]

[Online]. Available:

[12]

[13]

