
Feature Detection in Ajax-enabled Web Applications

Natalia Negara

Department of Computing Science
University of Alberta
Edmonton, Canada
negara@ualberta.ca

Nikolaos Tsantalis

Department of Computer Science
and Software Engineering

Concordia University
Montreal, Quebec

nikolaos.tsantalis@concordia.ca

Eleni Stroulia

Department of Computing Science
University of Alberta
Edmonton, Canada

stroulia@ualberta.ca

Abstract—In this paper we propose a method for reverse
engineering the features of Ajax-enabled web applications. The
method first collects instances of the DOM trees underlying
the application web pages, using a state-of-the-art crawling
framework. Then, it clusters these instances into groups,
corresponding to distinct features of the application. The
contribution of this paper lies in the novel DOM-tree similarity
metric of the clustering step, which makes a distinction between
simple and composite structural changes. We have evaluated
our method on three real web applications. In all three cases,
the proposed distance metric leads to a number of clusters
that is closer to the actual number of features and classifies
web page instances into these feature-specific clusters more
accurately than other traditional distance metrics. We therefore
conclude that it is a reliable distance metric for reverse
engineering the features of Ajax-enabled web applications.

Keywords-web page similarity metrics; hierarchical agglom-
erative clustering; L method; Silhouette coefficient.

I. INTRODUCTION

A feature represents a functionality that is defined by

requirements and is accessible to users [1]. Extracting the

features of a web application can be applied to the automatic

generation and update of meta-keywords (used by search

engines) and site maps; tasks which require significant

manual effort, especially for web applications whose content

and layout changes frequently due to their dynamic nature.

A standard reverse-engineering approach [2], [3] involves

systematically exercising the web application to collect the

pages it serves, and clustering these pages in groups, each

group representing a feature of the web application, available

to its users through the pages contained in the group. The

behavioral model inferred through this process represents the

web application features (i.e., services) as groups of similar

pages, and the control and data dependencies between them

as the user interactions that lead from a page in one group

to another (i.e, navigation model).

The widespread adoption of Web 2.0 technologies during

the last decade has fuelled the development of web applica-

tions with dynamic content [4]. Exercising such applications

to collect the pages they serve is challenging, since the num-

ber of pages that can be potentially produced is practically

unlimited. This problem is now mitigated by the develop-

ment of tools for automatically crawling and testing modern

(Ajax) web applications, such as Crawljax [5]. However,

the problem of feature extraction for such applications is

still challenging, because of the complexity of the generated

pages, which may include script and style segments, in

addition to their HTML content. This complexity can make

the task of page-similarity assessment, which is essential for

page clustering, very difficult.

In the past, string-based edit distance metrics have been

used with some success [6]–[10] to assess the similarity of

web pages by treating the pages as sequences of HTML

tags. In our approach, however, we adopt a tree-differencing

algorithm that takes as input two DOM-tree instances and

returns an edit script, which, if applied to the first tree can

transform it into the second one. In the distance computation

between DOM trees, the edit operations nested under the

same path to the root are considered as a single composite

edit operation, of equal weight to that of an individual edit

operation.

As an example, imagine a scenario where a user visits a

search page, provides the search criteria through some input

widgets and clicks on the “search” button. In response to

the user action, a new DOM tree is generated that contains

a table component with the results of the query. The table

component may provide dynamic features, such as data

sorting, mouse hover and pop-up menus, which usually

increase the number of generated DOM nodes. The search-

results page is part of the general search feature offered

by the web application. However, standard tree-differencing

approaches would consider each additional DOM node as a

distinct change and would likely produce a low similarity

value between the original and the new DOM tree. The

proposed similarity metric would summarize all additional

nodes as part of a single composite change, thus likely

considering the two pages as similar enough to be part of

the same cluster.

To evaluate our approach, we compared the proposed

metric with the Levenshtein distance, which has been widely

used in the literature for computing the structural similarity

of web pages treated as sequences of HTML tags, and a

simplified tree-edit-operation based distance metric that does

2013 17th European Conference on Software Maintenance and Reengineering

1534-5351/13 $26.00 © 2013 IEEE

DOI 10.1109/CSMR.2013.25

154

not take into account composite changes. The metrics have

been evaluated on sets of DOM states collected from three

Ajax-enabled web applications, namely Garage.ca, Google

Maps and Kayak.com, using the Crawljax [5] crawling

engine. The images depicting the rendered DOM states

(i.e, screenshots of the web pages rendered in the browser)

have been manually clustered based on the feature they

correspond to, as perceived by the authors of the paper.

Using the resulting partitions of clusters as a reference, we

compared the metrics with respect to their ability to produce

the correct number of features using two different methods,

namely the L method [11] and the Silhouette coefficient [12].

These methods can be used to automatically determine the

number of clusters to be returned from the application of

the hierarchical clustering algorithm on a given set of data

points.

The rest of the paper is organized as follows: Section II

presents an overview of the related work. In Section III

we present our approach for detecting features. Section IV

evaluates the proposed distance metric. Finally, we conclude

in Section V.

II. RELATED WORK

Several reverse-engineering techniques have been pro-

posed in order to support comprehension, maintenance and

evolution of web applications. Ricca and Tonella [6] pro-

posed a semi-automatic approach to identify static web pages

with a similar structure that can be migrated to dynamic

web pages. To identify the groups of web pages with a

common structure, they applied an agglomerative clustering

algorithm with the Levenshtein edit distance as the similarity

metric between web pages. The clusters of similar pages

are then selected by cutting the resulting dendrogram at

a chosen level. Next, for all pages in the same cluster,

a common candidate template is extracted to be used in

the dynamic generation of web pages, along with variable

information produced by comparing the original pages with

that template.

Mesbah and van Deursen [13] used a schema-based

clustering technique to categorize web pages with similar

structures. The authors extract the navigational model of a

web application and compute the Levenshtein edit distance

between the reverse-engineered schemas of the web pages.

The navigational path and schema-based similarities are then

given as input to a clustering algorithm. The formed clusters

are analyzed to find candidate user interface components to

be migrated from a multi-paged web application to a single-

paged Ajax interface.

A similar approach was suggested by De Lucia et al.

[7] for the generalization of cloned patterns in reengi-

neering processes. The Levenshtein distance between two

web pages is separately computed at the structural (using

string representations of the HTML tags of web pages) and

content levels. For dynamic pages the similarity degree is

also computed at the scripting code level. Two pages are

considered as clones if their edit distance is lower than a

given threshold.

Di Lucca et al. [8] suggested an approach to detect

clone pages that have the same structure, but differ only

in their content. In the proposed approach the sequence of

tags of HTML and ASP pages are encoded into a string

representation and the Levenshtein edit distance is computed

between them. The authors defined a separate alphabet for

both client and server pages, and each HTML or ASP tag

is replaced with a corresponding alphabet character. This is

done in order to take into account the different techniques

and languages used to implement control components in

these pages. Along with the Levenshtein based technique,

the authors suggested detecting duplicate pages using a

metric based on the frequency of each HTML tag inside

a page. The evaluation results show that both methods are

comparable, but have different computational costs.

To support the comprehension of legacy web applications,

De Lucia et al. [9] proposed an approach that groups

similar pages at structural level using the Winner-Takes-All

clustering algorithm. The distance between both dynamic

and static pages is computed using the Levenshtein edit

distance, where the web pages are represented as string

sequences of HTML tags. Like [8], the HTML tags of the

pages are encoded into the symbols of an alphabet, which

makes the computation more precise and faster.

Later, De Lucia et al. [10] suggested to group web pages

that are similar at content level. The dissimilarity between

web pages at content level is computed by combining the

Levenshtein and the cosine distance between the vectors

of the page in the latent structure of content [10]. The

approach uses a weighted mean to combine these metrics.

Similar pages are grouped by iteratively applying a graph-

theoretic clustering algorithm, which takes as input a graph

with web pages as nodes and edge weights corresponding

to the combined dissimilarities between pairs of pages, and

then constructs a minimal spanning tree (MST). Clusters

are identified by pruning the edges of the MST that have a

weight higher than a given threshold.

Di Lucca et al. [14] proposed a technique to decom-

pose web applications into groups of functionally related

components which employs an agglomerative hierarchical

clustering algorithm. The coupling measure between inter-

connected components, which also considers the topology

of connections, is used as a similarity metric. The output of

the clustering algorithm represents a hierarchy of clusters,

which is used to understand the structure of a web applica-

tion. The cutting threshold for the produced dendrogram is

selected based on a quality metric computed as the difference

between intra- and inter-connectivity of the clusters.

The majority of the aforementioned works which are

focused on grouping similar web pages employ the Lev-

enshtein edit distance [15] as a similarity metric between

155

pages. The Levenshtein edit distance between two sequences

is defined as the minimum number of insert, delete, and

replace operations required to transform the first sequence

into the second. The major limitation of this approach is that

the web pages are converted into a sequence of HTML tags

in order to be compared and thus nesting information cannot

be utilized. Earlier work in our group [16] demonstrated the

effectiveness of tree-differencing for recognizing similarities

and differences between web pages in the context of page

evolution; in fact the algorithm deployed in this study is a

precursor of the algorithm we have adopted in this work.

III. FEATURE EXTRACTION

Our process for extracting features from a set of DOM

trees consists of three steps. First, the distance between

all pairs of DOM trees is calculated. Next, the computed

distances are given as input to a hierarchical clustering

algorithm, which produces a dendrogram of cluster merges

based on the similarity of the DOM trees. Finally, we

apply clustering analysis methods to determine the number

of clusters corresponding to the actual features. In our

experiments we applied two different methods, namely the

L method [11] and the Silhouette coefficient [12].

A. The Distance Metric

For the computation of distance between two DOM trees

we employ VTracker [16], [17], which is a generic XML-

document comparison algorithm based on the Zhang-Shasha

tree-edit distance algorithm [18]. VTracker considers the

input XML documents as labeled ordered trees and produces

as output a tree-edit sequence, i.e., a sequence of edit

operations that can be applied to transform the first tree into

the second. The actual page representation fed as input to

VTracker is a “cleaned up” version of the original DOM

tree. The clean-up process involves the following steps.

1) The page content is removed, by deleting the text

being present between opening and closing tags.

2) Scripts and CSS styling rules are eliminated, by com-

pletely deleting <SCRIPT> and <STYLE> tags.

3) In particular applications, special attributes with script

values are removed. For example, in Google Maps

we found several <DIV> tags where attributes, such

as jsprops, jsdisplay, jstcache, jsattrs,

href, onlick, had scripts as values that were

slightly changing between subsequent DOM trees and

artificially decreased the similarity of the DOM trees.

The edit script reported by VTracker consists of the

following primary edit operations at node level:

1) match (i.e., found to be exactly the same) across both

trees,

2) change from one tree to the second,

3) move from one location in the first tree to a different

location on the second one,

4) remove from the first tree, and

5) insert in the second tree.

The distance between two trees T1 and T2 is defined as:

dS(T1, T2) =
|diff(T1,T2)|

|diff(T1,T2)|+|match(T1,T2)| (1)

where diff(T1, T2) is the set of change, move, delete

and insert operations in the tree-edit sequence of T1 and

T2 and match(T1, T2) is the set of match operations in

the tree-edit sequence of T1 and T2. The distance metric

defined in (1) ranges over the interval [0, 1]. It is minimized

when |diff(T1, T2)| is equal to zero and maximized when

|match(T1, T2)| is equal to zero.

We define a composite edit operation as a subset of

primary operations in diff(T1, T2) where the affected nodes

are nested under the same path to the root. More specifically,

two primary edit operations on nodes A, B belong to the

same composite operation, if the path of node A to the root

is part of the path of node B to the root. As a result, a

composite edit operation may consist of different types of

primary edit operations (e.g., node additions along with node

changes), as long as the involved nodes are nested under

the same path to the root. Figure 1 illustrates an example

of a composite edit operation (highlighted in yellow) that

took place between two DOM states of the JPetStore web

application. As it can be observed, the path of node A to the

root is part of the path of node B (and every nested node

within A) to the root. Consequently, the insertion operations

corresponding to the nodes highlighted in yellow constitute

a composite edit operation. The change operation on node C
(highlighted in green) is an individual edit operation, since

the path of node A to the root is not part of the path of node

C to the root.

Figure 1: Example of a composite edit operation in JPetStore

156

By extracting the set of composite edit operations we

can compute a new distance metric between two trees T1

and T2 defined as:

dC(T1, T2) =
|diff’(T1,T2)|+|comp(T1,T2)|

|diff’(T1,T2)|+|comp(T1,T2)|+|match(T1,T2)|
(2)

where:

• comp(T1, T2) is the set of composite edit operations

extracted from the tree-edit sequence of T1 and T2;

• diff’(T1, T2) = diff(T1, T2) \ editOps(T1, T2);

• editOps(T1, T2) =
⋃

x∈comp(T1,T2)
x is the union of all

edit operations in the set of composite edit operations.

In the distance metric defined in (2), the number of primary

edit operations belonging to composite edit operations is

actually replaced with the number of composite edit opera-

tions. In the example of Figure 1, the number of matched

nodes is 98, the number of inserted nodes is 34 and there is

only 1 changed node. Based on these numbers, dS is equal

to 35/133 = 0.26, while dC is equal to 2/100 = 0.02, since

|diff(T1, T2)| = 35, |editOps(T1, T2)| = 34, |diff’(T1, T2)| =
1 and |comp(T1, T2)| = 1. As a result, dC is more robust to

composite edit operations by reducing their weight.

B. The Clustering Algorithm

We adopted the hierarchical clustering algorithm to group

DOM trees corresponding to the same feature, because it has

a number of advantages when compared to partitioning or

density-based clustering algorithms. Partitioning algorithms,

like K-means [19], [20] for example, require as input the the

number of clusters, and randomly distribute the data points

into k groups. Next, the algorithm examines the value of a

fitness function (which usually corresponds to the cohesion

of the clusters) and tries to optimize it by rearranging

the data points in each iteration. The specification of k
is not intuitive in our problem, since we do not have a
priori knowledge of the number of features existing in

a web application. Some heuristic approaches attempt to

automatically determine k by comparing the quality of the

clusters produced by the execution of K-means for different

values of k [21]. However, this may introduce a significant

computational overhead if the number of DOM trees given as

input is large (i.e., k value should range from 2 to the number

of input DOM trees). On the other hand, the hierarchical

clustering algorithm has to be executed only once.

Additionally, because of the random initialization of clus-

ters, K-means may reach a local optimum and will note

always produce the same final result [22]. More generally,

partitioning algorithms are not robust against noise (i.e.,

outliers) [23] and may return poor clustering results. Finally,

K-means is typically applied on data points with specific

coordinates in a feature space (e.g., Cartesian plane), while

the input in our problem is given in the form of distances

between pairs of DOM trees.

Density-based clustering algorithms, like DBSCAN [24],

identify clusters as dense areas of data points [25]. The

data points that satisfy a certain density criterion (i.e.,

minimum number of data points in a dense area) are grouped

within a predefined distance threshold. Again, the manual

specification of the density criterion is not intuitive in our

problem, since there is no clear mapping between density
and the number of DOM trees corresponding to a feature.

Another limitation of this clustering method is the existence

of bridges (i.e., data points which are equally close to two

dense areas). This could potentially lead to the merging of

clusters of DOM trees with different features.

The hierarchical agglomerative clustering algorithm takes

as input the distances between each pair of data points

(DOM trees in our case) and starts by assigning each

entity to a single cluster. In each iteration of the algorithm

the two closest clusters are merged. Finally, the algorithm

terminates when all entities are placed in a single cluster,

which forms the root of a hierarchy of clusters represented

as a dendrogram. The actual clusters can be determined at

the merging points. This algorithm is deterministic because it

does not involve any random steps and finite because it does

not contain an optimization process that could fall into local

optima. Finally, it does not assume any input parameters.

The hierarchical clustering algorithm requires a linkage
criterion that will guide the selection of the clusters to be

merged. The most commonly used criteria are

• complete-linkage (the maximum distance between the

data points of two clusters),

• single-linkage (the minimum distance between the data

points of two clusters) and

• average-linkage (the average distance between the data

points of two clusters).

The single-linkage approach tends to form highly separated

clusters whereas complete-linkage tends to form more tightly

centered clusters [26]. In the context of DOM-tree similarity,

most of the pages of a web application have several elements

in common (e.g., header, footer and menu), which implies

that the distances between two DOM trees are relatively

small (i.e., there do not exist highly distant clusters of

pages). Therefore, an approach that tends to form more

tightly centered clusters (i.e., complete-linkage) seems to

be more appropriate, since this specific problem requires to

group the most similar pages (tight clusters) among rather

similar pages.

C. Determining the Number of Clusters

The dendrogram resulting from the application of the hier-

archical agglomerative clustering, requires a cut-off thresh-

old value to determine the clusters. Previous approaches used

either a predefined threshold [6] or required a user-defined

157

threshold [7], [8], [13]. In our approach, we apply clustering

analysis methods to determine the number of clusters and

thus deduce the cut-off threshold.

1) The L method: The L method [11] is an efficient

technique for determining the correct number of clusters in

hierarchical clustering and segmentation algorithms. The L

method makes use of the same evaluation function that is

used by the hierarchical algorithm during clustering (i.e., the

merge distance) in order to construct an evaluation graph

where the x-axis is the number of clusters and the y-axis

is the value of the merge distance at x clusters. The knee

or the point of maximum curvature of this graph is used

to estimate the number of correct clusters that should be

returned as a solution to the clustering problem.

Figure 2: JPetStore evaluation graph

Figure 2 shows the evaluation graph produced by the

hierarchical clustering algorithm using the complete-linkage

criterion for the JPetStore web application. Three distinct

regions can be identified on the graph: an inclined region

of data points on the left of a graph, a flat region of data

points that can be shaped as an almost straight line on the

right of the graph, and a curved region between them. The

nearly straight line on the right demonstrates that there are

a lot of similar clusters that should be merged together. The

sharply increasing region to the left (moving from the right)

denotes that at this point dissimilar clusters are merged,

thereby the quality of the clusters is being decreased. Hence,

a reasonable number of clusters is in the curved area, or

“knee” of the graph. Clusterings in the knee region contain

a balance of clusters that are both highly homogeneous, and

also dissimilar to each other.

The L method finds a pair of lines that most closely fit

the data points. Each line must start at either end of the

data points and must include at least two points. Both lines

together cover all data points on the graph. The method

does not take into account the data point that corresponds

to the final cluster (when all clusters are merged into one),

therefore the x-values range from 2 to b (which is equal to

the total number of elements given as input to the clustering

algorithm), and the total number of data points on the graph

is b − 1. If we consider that the data points are partitioned

at x = c (see Figure 2), then Lc and Rc are the left and

right sequences of data points, respectively. Left sequence

Lc includes data points x = 2..c and right sequence Rc

comprises data points x = c + 1..b. The total root mean

squared error RMSEc is defined as:

RMSEc =
c−1
b−1 ×RMSE(Lc) +

b−c
b−1 ×RMSE(Rc) (3)

where RMSE(Lc) is the root mean squared error of

the best fit line for the left sequence of data points in Lc

and RMSE(Rc) is the root mean squared error of the best

fit line for the right sequence of data points in Rc [11]. The

weights are proportional to the lengths of Lc (c − 1) and

Rc (b − c), respectively. The L method seeks the value of

c, ĉ, such that RMSEc is minimized. The location of the

knee at x = ĉ is used as the number of clusters to return.
In order to compute ĉ, the L method iterates over the

values of c = 3..b − 2 and forms a pair of lines (the first

line by joining the points corresponding to x-values 2 and

c and the second one by joining the points corresponding

to x-values c + 1 and b) in order to compute the RMSEc

value for each possible value of c.
2) The Silhouette coefficient: The Silhouette coefficient

[12] is a clustering evaluation metric that describes how well

each data point is located within a partition of clusters. It

takes as input dissimilarities (i.e., distances) between pairs

of data point and a partition of clusters produced by any

clustering algorithm. For every data point i in a set of

data points I , it computes a(i) as an average dissimilarity

between i and any other data point within the same cluster

A. The value a(i) demonstrates how well i fits within its

cluster (the smaller the value, the better the data point is

fitted). Next, for every cluster C which doesn’t contain i, it

computes the average dissimilarity of i with all data points

from C. The cluster with the lowest average dissimilarity is

called the nearest neighbour and the average dissimilarity

between i and this cluster is denoted as b(i).
The Silhouette s(i) for data point i, and the average

Silhouette coefficient s̄k over all data points in I in a

partition of k clusters are computed as:

s(i) = b(i)−a(i)
max(a(i),b(i)) (4) s̄k = 1

|I|
|I|∑

i=1

s(i) (5)

If cluster A contains only one data point, s(i) is set to

be equal to zero. The value of s(i) ranges over the interval

[−1, 1]; the closer s(i) is to one, the more appropriately the

data point i is clustered within the partition. The larger the

value of s̄k, the better the quality of the clustering is.

IV. EVALUATION

The research question that we examine in this paper

is whether clustering web application pages into features

158

improves when a composite-change-aware tree-edit distance

metric (dC) is used, as compared to either a tree-edit distance

metric that treats all structural changes uniformly (dS) or to

the Levenshtein string-edit distance metric (dL) applied to

“flat” sequences of HTML tags.

A. Experimental Setup

We have experimented with three different web applica-

tions: an online shopping application (garage.ca), a map-

navigation and directions application (googlemaps.com) and

an online travel booking application (kayak.com). All three

web applications are implemented using Ajax, which allows

to dynamically update their DOM trees at runtime.

The examined web applications have been analyzed with

Crawljax [5], which is a tool for automatically crawling

and testing Ajax-enabled web applications. Crawljax can

crawl any Ajax-enabled web application by firing events

and filling in form data. It creates a state-flow graph of

the dynamic DOM states and the transitions between them.

Crawljax was configured to collect 100 different states (at

maximum) starting from the main page of the web applica-

tions. Moreover, in the case of forms requiring user input,

we configured Crawljax to provide meaningful information

instead of random strings.

For each collected DOM state we took a screenshot of

the corresponding web page as rendered in the browser.

The two first authors of the paper independently categorized

the screenshots according to their visual perception of the

feature that they offer. Next, the two authors merged their

results by reaching a common consensus in the cases of a

different feature interpretation. More specifically, in cases

where one of the authors grouped sub-clusters of features

into a single higher-level feature, while the other one created

a separate group for each of these lower-level features, we

decided to adopt the latter approach (i.e., a fine-grained

decomposition of features). The merged results have been

considered as the actual clusters of similar DOM trees

(reference) based on which the accuracy of the examined

distance metrics was evaluated. Table I shows the features

extracted by the authors. Each cluster of DOM trees has been

assigned with a name describing the feature provided by the

web application (again as perceived by the two authors). The

initial agreement between the two authors (before merging)

based on the Jaccard Index1 is equal to 0.887 for Garage,

0.890 for Google Maps and 0.993 for Kayak.

Table II lists the number of DOM states collected by

Crawljax, along with the average, median and standard

deviation of the number of nodes in DOM states and the

depth of DOM structures for each of the examined web

1For two clusterings C and C′ the Jaccard Index is defined as

J(C,C′) = N11
N11+N10+N01

, where N11 the number of point pairs in

the same cluster under both C and C′, N10 the number of point pairs in
the same cluster under C but not under C′, and N01 the number of point
pairs in the same cluster under C′ but not under C.

Table I: Manually extracted features

Web app. Features
Google
Maps

(1) Main search page, (2) Input origin and destination
for directions, (3) Display directions by car, (4) Display
directions by public transport

Garage (1) Main page, (2) Gift cards and certificates, (3)
Sign-in page, (4) Purchase gift card, (5) Locate store
on Google Maps, (6) Online store FAQ, (7) Contact
Garage, (8) Tops, (9) Coats, (10) Tanks, (11) Long
sleeves tees, (12) Shirts, (13) Jeans, (14) Accessories,
(15) Sleepwear, (16) Sale items, (17) Item detailed
view, (18) Technical help, (19) Payment help

Kayak (1) Search for flights, (2) Login page, (3) Password
reminder, (4) Help, (5) Search for hotels, (6) Hotel
search results, (7) Search for cars, (8) Car search
results, (9) Car advanced search, (10) Search for deals,
(11) Deals search results, (12) Flight search results, (13)
Trip planner, (14) Find a Kayak booking, (15) “More”
page, (16) Hotel advanced search

applications. From the examined web applications, Garage

and especially Google Maps exhibit a low variation in the

size as well as the depth of their DOM trees based on the

corresponding standard deviation values. This means that the

extracted DOM trees for these two web applications have a

quite similar structure. On the other hand, Kayak exhibits

the highest variation in both size and depth of its DOM

trees. The reason behind this difference in the variation

of size and depth lies in the nature of the examined web

applications. Kayak is a search engine for travel offers and

thus search queries may produce web pages with a very

long list of results that vary significantly in size, depth

and structural complexity in general. Google Maps, on the

other hand, has an almost identical presentation structure

(i.e., a query panel and a map for displaying the results

of the queries) among the different features being offered.

Finally, Garage.ca lies somewhere in the middle, since it is

an online shop for clothes which has a relatively consistent

presentation structure between web pages corresponding to

the same feature.

To compare the structural similarity of two DOM trees

using the Levenshtein distance we follow the same approach

used in the literature [6]–[8]. We extract the sequence of

HTML tags from the DOM trees by removing the content

(i.e., text within tags) and the attributes inside the tags.

On the contrary, when computing the tree-edit distance

metrics (dS and dC) the attributes inside the tags are not

removed (with the exception of attributes having script

code as values). By considering each tag as a token, the

Levenshtein distance returns the minimum number of edit

operations (i.e., insertion, deletion, and replacement of

tokens) required to transform the first sequence of tags into

the second. To normalize the computed distance within the

[0, 1] range, it should be divided by the maximum attainable

value of edit operations, which is equal to the length of the

largest input sequence. As a result, the normalized distance

metric for two sequences of tags S1 and S2 is defined as:

159

Table II: Number of states, DOM size and depth for the examined web applications.

Web application # of states Average #
of nodes

Median
(nodes)

Standard
deviation

(nodes)

Average
DOM depth

Median
(depth)

Standard
deviation

(depth)
Google Maps 45 968 1080 231.83 20 20 0.59
Garage.ca 66 547 540 111.37 12 12 1.60
Kayak 78 894 887.5 541.65 26 29 6.36

dL(S1, S2) =
Ld(S1,S2)

max(length(S1),length(S2))
(6)

where Ld(S1, S2) is the Levenshtein distance between

sequences S1 and S2 and length(S) is the number of tags

in sequence S.

B. Experiment results

For each distance metric dS , dC , and dL, we have applied

the hierarchical agglomerative clustering algorithm (using

the complete-linkage criterion) on the set of DOM trees

collected by Crawljax for the examined web applications.

Using the partitions of clusters and merge distances ob-

tained from the resulting dendrogram for each examined web

application and distance metric:

1) We applied the L method [11] to the evaluation graphs

(Figure 3) generated using the distances produced by

dS , dC , and dL measures as input to the hierarchical

clustering algorithm. For each evaluation graph, we

computed the value of x = ĉ that minimizes the

RMSEc value and constitutes a reasonable number

of clusters to be returned according to the L method.

2) For each partition Pk with k number of clusters, where

k ranges from 2 to n − 1 (n is the total number

of extracted DOM trees for a web application) we

computed s̄k. A reasonable number of clusters kα to

be returned corresponds to the maximum value α over

all Silhouette coefficients s̄k:

α = max({s̄k : k = 2, ..., n− 1}) (7)

The predicted number of clusters returned by both meth-

ods for each distance metric and web application were used

to produce partitions with ĉ and kα number of clusters,

respectively. To evaluate the quality of the resulting par-

titions we computed precision and recall for each partition.

In order to compute precision and recall we have to provide

a definition of True Positives, False Positives and False
Negatives. Let reference be the set of actual clusters and

response the set of clusters produced based on a distance

metric for the same set of elements. A given pair of elements

(a, b) is considered as:

• True Positive, if a and b belong to the same cluster both

in reference and response;

• False Negative, if a and b belong to the same cluster

in reference, but to different clusters in response; and

• False Positive, if a and b belong to different clusters in

reference, but the same cluster in response.

By applying this process to every pair of elements we

can obtain the total number of True Positives (TP), False
Negatives (FN) and False Positives (FP), based on which

the precision and recall measures can be calculated as:

precision = TP
TP+FP recall = TP

TP+FN

F-measure is a balanced measure that takes into account

both precision and recall, and is computed as:

F −measure = 2 ∗ precision∗recall
precision+recall

The predicted number of clusters ĉ and kα returned by

the L Method and the Silhouette coefficient, along with

the corresponding merge distance, F-measure, precision and

recall values are shown for each examined web application

in Tables III, IV, and V, respectively.

C. Discussion

Observing Tables III, IV, and V one can see that the

L method produced a diverse number of clusters for each

distance metric. However, distance dC returned a ĉ value

that is closer to the actual number of clusters (and in the

case of Garage the predicted number of clusters is exactly

the same as the actual one) in all examined web applications.

More specifically, for distance dC the L method returned 6

clusters for Google Maps (the actual number of clusters is

4), 19 clusters for Garage.ca (the actual number of clusters is

19), and 17 clusters for Kayak (the actual number of clusters

is 16), while for distances dS and dL the returned ĉ value

is significantly different (larger or smaller) compared to the

actual number of clusters.

Figure 3 clearly demonstrates that the evaluation graphs

produced with dC as a distance metric have the closest

resemblance with the typical graph required by the L method

in order to effectively detect a knee. More specifically, by

observing Figures 3b, 3e, and 3h we can see a distinct flat

region of data points (on the right) followed by a sharply-

increasing region of data points (on the left) in which the

merge distances grow very rapidly. According to [11] this

abrupt increase occurs when highly dissimilar clusters begin

to be merged by the hierarchical clustering algorithm. The

best number of clusters is located right before the sharp rise

(when moving from right to left) on the evaluation graph.

Thereby, the detection of the number of clusters from a knee

region in graphs 3b, 3e, and 3h is more accurate. The

results for distance metric dC demonstrate that this metric

160

Table III: Predicted number of clusters, F-measure, precision, and recall for Google Maps

L method Silhouette coefficient
distance min

RMSEc

merge
dist.

ĉ F-
measure

Precision Recall α merge
dist.

kα F-
measure

Precision Recall

dS 0.41 1.33 13 0.448 0.963 0.292 0.86 2.91 12 0.458 0.964 0.300
dC 0.18 3.33 6 0.832 0.985 0.721 0.79 4.41 5 0.930 0.937 0.924
dL 4.41 2.07 15 0.396 0.957 0.250 0.88 2.07 15 0.396 0.957 0.250
Actual number of clusters: 4, ĉ: predicted number of clusters with L method, kα: predicted number of clusters with maximum Silhouette coefficient

Table IV: Predicted number of clusters, F-measure, precision, and recall for Garage.ca

L method Silhouette coefficient
distance min

RMSEc

merge
dist.

ĉ F-
measure

Precision Recall α merge
dist.

kα F-
measure

Precision Recall

dS 4.90 8.52 25 0.861 0.972 0.774 0.67 20.90 15 0.852 0.834 0.872
dC 2.26 7.03 19 0.960 0.973 0.947 0.55 7.93 17 0.937 0.920 0.955
dL 2.23 11.47 14 0.856 0.840 0.872 0.78 14.59 13 0.854 0.837 0.872
Actual number of clusters: 19, ĉ: predicted number of clusters with L method, kα: predicted number of clusters with maximum Silhouette coefficient

Table V: Predicted number of clusters, F-measure, precision, and recall for Kayak

L method Silhouette coefficient
distance min

RMSEc

merge
dist.

ĉ F-
measure

Precision Recall α merge
dist.

kα F-
measure

Precision Recall

dS 2.74 7.79 24 0.832 1.00 0.713 0.81 51.88 15 0.994 0.996 0.992
dC 1.24 4.58 17 0.996 1.00 0.992 0.88 15.61 12 0.992 0.984 1.00
dL 2.72 4.86 29 0.770 1.00 0.626 0.80 20.64 21 0.820 1.00 0.694
Actual number of clusters: 16, ĉ: predicted number of clusters with L method, kα: predicted number of clusters with maximum Silhouette coefficient

produced well separated clusters for which the L method

was able to determine an acceptable number of clusters very

close to the number of clusters determined based on human

perception. Also, as it can be observed from Tables III, IV,

and V distance dC , which handles composite changes in

a special manner, achieved the best F-measure value in all

examined web applications (0.832 for Google Maps, 0.960

for Garage, and 0.996 for Kayak) using the L method.

The evaluation graphs produced by the hierarchical clus-

tering algorithm with distance metric dS (Figures 3a, 3d,

and 3g) have a smoother transition between the flat and

increasing regions of data points and thus the number of

clusters returned by the L method for dS was not so precise.

On the contrary, most of the evaluation graphs in Figures 3c,

3f and 3i, do not contain any obvious sharp transition, and

therefore the L method could not determine a good number

of clusters for the Levenshtein distance metric dL. The knees

on these evaluation graphs are ambiguous indicating that

the distance metric used is not well-defined and produces

clusters which are not clearly separated. The L method could

not identify a reasonable number of clusters for Google

Maps, and thus, the F-measure values for the corresponding

partitions demonstrate poor clustering quality (0.448 for dS
and 0.396 for dL). For the other two applications, Garage

and Kayak, the F-measure values for distances dS and dL
are notably lower than the F-measure value for distance dC .

The computation of the average Silhouette coefficient also

resulted in a number of clusters that varies for each distance

metric and application. However, according to the computed

F-measure (0.930 for Google Maps, 0.937 for Garage, and

0.992 for Kayak), dC produced partitions of high quality for

all three web applications, whereas the clustering quality of

the partitions for distance metrics dS and dL is not stable and

varies for each examined web application. More specifically,

for Google Maps the predicted number of clusters for

distance metrics dS and dL produced partitions with poor

clustering results (F-measure is equal to 0.458 for dS and

to 0.396 for dL). For the other two web applications the F-

measure values for distance dL are lower than the F-measure

value obtained by distance dC (with the exception of dS in

Kayak).

Clearly, the distance metric affects the quality of the

clusters produced. In general, our distance metric dC pro-

duced good results using both methods for all three web

applications (in contrast to the other examined distances).

The fact that distance dC obtains the best results in a lower

cut-off threshold compared to the other distance metrics

implies that dC is a measure that in general produces smaller

distances between the compared DOM trees.

D. Threats to validity

An obvious threat to the internal validity of the conducted

experiment is related with the determination of the reference
set of clusters by the authors of the paper based on which

the precision and recall of the examined distance metrics

was extracted. In order to partially alleviate this threat, two

authors of the paper grouped independently the screenshots

of the web pages according to their visual perception of the

161

(a) Google Maps dS (b) Google Maps dC (c) Google Maps dL

(d) Garage.ca dS (e) Garage.ca dC (f) Garage.ca dL

(g) Kayak dS (h) Kayak dC (i) Kayak dL

Figure 3: Evaluation graphs given as input to L method

feature that they provide. Next, they merged their results by

reaching a common consensus in the cases of a different

feature interpretation. In this way, we tried to eliminate

the bias in the interpretation of the features. In general,

the original clusters produced by the two authors had a

very strong similarity (≥ 90% based on Jaccard Index). In

the cases where one of the authors grouped sub-clusters of

features into a single higher-level feature, while the other

one created a separate group for each of these lower-level

features, the dissimilarities were eliminated by adopting the

latter approach (a fine-grained decomposition of features).

A threat to the external validity of the experiment is the

inability to generalize our findings beyond the examined

web applications or distance metrics. Regarding the gen-

eralization of the results to other web applications, we have

selected instances of web applications from three different

domains, namely online shopping (Garage), map navigation

and directions (Google Maps) and online travel booking

(Kayak). More importantly, the selected web applications

exhibit a variety in the consistency of their structure starting

from one side with Google Maps which has a very stable and

consistent user interface throughout the different features

that it offers and going to the other side with Kayak which

has a very diverse user interface with respect to the size and

complexity of the generated DOM trees. This difference in

the variation of size and depth between the generated DOM

trees obviously lies in the different nature of the examined

web applications.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed and evaluated a new distance

metric for clustering similar DOM trees in Ajax-enabled web

applications that reduces the impact of composite changes

on the computation of structural similarity. The results of the

evaluation on three different web applications have shown

that the accuracy of the clustering results can be improved

162

over previous approaches that treat web pages as sequences

of HTML tags (i.e., ignoring completely the tree structure

of the web pages) and a simplified tree-edit-operation based

distance metric that does not take into account composite

changes.

Additionally, we applied two different methods, the L

method [11] and the Silhouette coefficient [12], to investigate

the ability of the examined distance metrics to automatically

determine a number of clusters conforming to the actual

number of features in the examined web applications. The

results of the evaluation demonstrated that the process of

extracting the features for a dynamic web application can

be fully automated by employing the hierarchical clustering

algorithm. The proposed distance metric dC produced parti-

tions of clusters with high accuracy for all web applications.

On the other hand, the other distance metrics did not work as

well with the L method and Silhouette coefficient, producing

clustering results with lower accuracy.

As future work we are planning to apply Latent Dirichlet

allocation (LDA) [27] on the textual content of the extracted

clusters of DOM trees in order to discover topics that could

serve as names for the discovered features. An interesting

difference with traditional documents containing plain text

is that DOM trees contain hypertext where specific tags,

such as headings, add emphasis to the surrounded text thus

implying it has a greater importance compared to the rest of

the text in the DOM tree.

ACKNOWLEDGMENT

The authors would like to acknowledge the generous

support of NSERC, iCORE, and IBM.

REFERENCES

[1] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature loca-
tion in source code: A taxonomy and survey,” Journal of Software
Maintenance and Evolution: Research and Practice, 2012.

[2] Y. Zou and M. Hung, “An approach for extracting workflows from
e-commerce applications,” in Proceedings of the 14th IEEE Inter-
national Conference on Program Comprehension, ser. ICPC ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 127–136.

[3] Q. Zhang, R. Chen, and Y. Zou, “Reengineering user interfaces of e-
commerce applications using business processes,” in Proceedings of
the 22nd IEEE International Conference on Software Maintenance,
ser. ICSM ’06. Washington, DC, USA: IEEE Computer Society,
2006, pp. 428–437.

[4] M. Jazayeri, “Some trends in web application development,” in 2007
Future of Software Engineering, ser. FOSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 199–213.

[5] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling AJAX by
inferring user interface state changes,” in Proceedings of the 2008
Eighth International Conference on Web Engineering, ser. ICWE ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 122–134.

[6] F. Ricca and P. Tonella, “Using clustering to support the migration
from static to dynamic web pages,” in Proceedings of the 11th IEEE
International Workshop on Program Comprehension, ser. IWPC ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 207–216.

[7] A. De Lucia, R. Francese, G. Scanniello, and G. Tortora, “Identifying
cloned navigational patterns in web applications,” Journal of Web
Engineering, vol. 5, no. 2, pp. 150–174, 2006.

[8] G. A. Di Lucca, M. Di Penta, and A. R. Fasolino, “An approach to
identify duplicated web pages,” in Proceedings of the 26th Interna-
tional Computer Software and Applications Conference on Prolonging

Software Life: Development and Redevelopment, ser. COMPSAC ’02.
Washington, DC, USA: IEEE Computer Society, 2002, pp. 481–486.

[9] A. De Lucia, G. Scanniello, and G. Tortora, “Identifying similar pages
in web applications using a competitive clustering algorithm.” Journal
of Software Maintenance, vol. 19, no. 5, pp. 281–296, 2007.

[10] A. De Lucia, M. Risi, G. Tortora, and G. Scanniello, “Towards auto-
matic clustering of similar pages in web applications,” in Proceedings
of the 11th IEEE International Symposium on Web Systems Evolution,
ser. WSE ’09. IEEE Computer Society, 2009, pp. 99–108.

[11] S. Salvador and P. Chan, “Determining the number of clus-
ters/segments in hierarchical clustering/segmentation algorithms,” in
Proceedings of the 16th IEEE International Conference on Tools with
Artificial Intelligence, ser. ICTAI ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 576–584.

[12] P. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. 1,
pp. 53–65, Nov. 1987.

[13] A. Mesbah and A. van Deursen, “Migrating multi-page web appli-
cations to single-page ajax interfaces,” in Proceedings of the 11th
European Conference on Software Maintenance and Reengineering,
ser. CSMR ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 181–190.

[14] G. A. Di Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and
U. De Carlini, “Comprehending web applications by a clustering
based approach,” in Proceedings of the 10th International Workshop
on Program Comprehension, ser. IWPC ’02. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 261–270.

[15] V. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707,
1966.

[16] R. Mikhaiel and E. Stroulia, “Accurate and efficient HTML differ-
encing,” in Proceedings of the 13th IEEE International Workshop
on Software Technology and Engineering Practice, ser. STEP ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 163–172.

[17] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An
empirical study on web service evolution,” in Proceedings of the
2011 IEEE International Conference on Web Services, ser. ICWS ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 49–56.

[18] K. Zhang and D. Shasha, “Simple fast algorithms for the editing
distance between trees and related problems,” SIAM J. Comput.,
vol. 18, no. 6, pp. 1245–1262, Dec. 1989.

[19] E. W. Forgy, “Cluster analysis of multivariate data: efficiency vs
interpretability of classifications,” Biometrics, vol. 21, pp. 768–769,
1965.

[20] J. B. MacQueen, “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the fifth Berkeley
Symposium on Mathematical Statistics and Probability. University
of California Press, 1967, pp. 281–297.

[21] S. Dudoit and J. Fridlyand, “A prediction-based resampling method
for estimating the number of clusters in a dataset.” Genome biology,
vol. 3, no. 7, Jun. 2002.

[22] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval. New York, NY, USA: Cambridge University Press,
2008.

[23] S. A. Elavarasi, J. Akilandeswari, and B. Sathiyabhama, “A survey on
partition clustering algorithms,” International Journal of Enterprise
Computing and Business Systems, vol. 1, no. 1, pp. 1–14, 2011.

[24] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proc. of 2nd International Conference on Knowledge
Discovery and Data Mining, 1996, pp. 226–231.

[25] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-based
clustering,” Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, vol. 1, no. 3, pp. 231–240, 2011.

[26] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999.

[27] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

163

