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Abstract Logs capture valuable information throughout the execution of software systems.
The rich knowledge conveyed in logs is highly leveraged by researchers and practitioners
in performing various tasks, both in software development and its operation. Log-related
issues, such as missing or having outdated information, may have a large impact on the users
who depend on these logs. In this paper, we first perform an empirical study on log-related
issues in two large-scale, open source software systems. We find that the files with log-
related issues have undergone statistically significantly more frequent prior changes, and
bug fixes. We also find that developers fixing these log-related issues are often not the ones
who introduced the logging statement nor the owner of the method containing the logging
statement. Maintaining logs is more challenging without clear experts. Finally, we find that
most of the defective logging statements remain unreported for a long period (median 320
days). Once reported, the issues are fixed quickly (median five days). Our empirical find-
ings suggest the need for automated tools that can detect log-related issues promptly. We
conducted a manual study and identified seven root-causes of the log-related issues. Based
on these root causes, we developed an automated tool that detects four evident types of log-
related issues. Our tool can detect 75 existing inappropriate logging statements reported in
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40 log-related issues. We also reported new issues found by our tool to developers and 38
previously unknown issues in the latest release of the subject systems were accepted by
developers.

Keywords Empirical study · Log · Software bug · Mining software repositories

1 Introduction

Developers write logging statements in the source code to expose valuable information of run-
time system behavior. A logging statement, e.g., LOG.warn(“Cannot access storage direc-
tory ”+ rootPath),1 typically consists of a log level (e.g., trace/debug/info/warn/error/fatal),
a logged event using a static text, and variables that are related to the event context. Dur-
ing system runtime, the invocation of these logging statements would generate logs that are
often treated as the most important, sometimes only, source of information for debugging
and maintenance of large software systems.

The importance of logs has been widely identified (Kernighan and Pike 1999). Logs are
used during various software development activities such as bug fixing (Xu et al. 2009),
anomaly detection (Tan et al. 2008), testing results analyses (Malik et al. 2013), and system
monitoring (Yuan et al. 2012c; Boulon et al. 2008). The vast application and usefulness of
the logs motivate developers to embed large amounts of logging statements in their source
code. For example, the OpenSSH server contains 3,407 logging statements in its code
base (Yuan et al. 2012b). Moreover, log processing infrastructures such as Splunk (Carasso
2012) and ELK stack (The Open Source Elastic Stack 2017) are developed for the ease of
systematic log analyses.

To improve logging statements, similar as fixing bugs, developers would report their
issues with the logging statement and fix it by changing the source code or other artifacts
(e.g., configuration) during development. For example, in an issue in Apache Hadoop-
HDFS, HDFS-3326,2 with the title “Append enabled log message uses the wrong variable”,
developers replace the recorded variable in the logging statement to provide more mean-
ingful information. We consider such issues that are fixed to improve logging statements as
log-related issues.

Prior empirical studies examine the characteristics of logging practices (Yuan et al.
2012b) and the places where developers embed logging statements (Fu et al. 2014). Also,
prior research aims to enhance logging statements by automatically including more infor-
mation (Yuan et al. 2010, 2012c), and provide suggestions on where to log (Zhu et al. 2015).
However, these empirical results and the above-mentioned approaches do not aim to help
developers write an issue-free logging statement. In fact, there exist limited guidelines that
developers can follow to write appropriate logging statements.

The issues with logging statements have become one of the major concerns, due to
the vast usage of logs in practice. Examples of such issues include missing to embed
important logging statements3 have misleading text in logging statements4, and generating

1https://issues.apache.org/jira/browse/HDFS-4048
2https://issues.apache.org/jira/browse/HDFS-3326
3https://issues.apache.org/jira/browse/HDFS-3607
4https://issues.apache.org/jira/browse/HDFS-1332

https://issues.apache.org/jira/browse/HDFS-4048
https://issues.apache.org/jira/browse/HDFS-3326
https://issues.apache.org/jira/browse/HDFS-3607
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overwhelming information.5 Logging statements with issues may significantly reduce use-
fulness of the logs and bring extra overhead to practitioners. For example, missing logging
statements in the critical part of the source code may cause developers not to have enough
knowledge about the system execution; the misleading textual description in logging
statements may lead to wrong decisions made by system operators; and overwhelming infor-
mation in logs would prevent practitioners from identifying the truly needed information
(Li et al. 2017). Recent research on Github projects claims that over half of the Java logging
statements are “wrong” (Hen 2017). Moreover, for automated log analyses, the issues may
have an even larger impact by rather simple mistakes like a typo. For example, in the issue
HADOOP-41906 with Blocker priority, developers missed a dot in a logging statement,
leading to failures in log analysis tools.

In this paper, we conduct an empirical study on the real log-related issues from two
large, open source software systems that extensively use logging statements, i.e., Hadoop
and Camel. Studying log-related issues can lead us in devising an automated technique that
will aid developers to improve logging statements. In particular, we extract 563 log-related
issues from the JIRA issue tracking systems of the two subject systems and study these
issues reports and their corresponding code changes. Our study aims to answer the following
research questions:

RQ1 What are the characteristics of files with log-related issues?
Files with log-related issues have undergone, statistically significantly more frequent

changes and more frequent bug fixes. Developers should prioritize their efforts on such
files to identify logging statements with potential issues.

RQ2 Who reports and fixes log-related issues?
We found that in 78% the cases, logging statements are added and fixed by different

people. In other words, there exists no systematic responsibility for developers to main-
tain logging statements in the subject systems. This may make it difficult to identify an
expert to ensure whether a logging statement is appropriate.

RQ3 How quickly are log-related issues reported and fixed?
By examining the time between the introduction of logging statements, the report, and

fixed time of the log-related issues, we find that log-related issues are often reported a
long time (on a median of 320 days) after the logging statements were introduced into
the source code. Once reported, however, the issues are fixed in a short time (on a median
of five days). Therefore, practitioners may benefit from automated tools that detect such
issues promptly.

RQ4 What are the root-causes of the log-related issues?Through a manual analysis on log-
related issues and their corresponding fixes, we identify seven root-causes of log-related
issues, namely, inappropriate log messages, missing logging statements, inappropriate
log level, log library configuration issues, runtime issues, overwhelming logs, and log
library changes. Many root-causes (like typos in logs) of these issues are rather trivial,
suggesting the opportunity of developing automated tools for detecting log-related issues.

Our empirical study results highlight the needs and opportunities for automated tool-
ing support for detecting evident log-related issues. Therefore, we developed an automated
tool7 to detect four types of log-related issues. Our tool detected 40 of the 132 known

5https://issues.apache.org/jira/browse/CAMEL-6551
6https://issues.apache.org/jira/browse/HADOOP-4190
7https://mehranhassani.github.io/LogBugFinder/

https://issues.apache.org/jira/browse/CAMEL-6551
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log-related issues. Moreover, we reported 78 detected potential log-related issues from the
latest releases of the subject systems. Out of 78, 38 of them had been accepted by their
development team through issue reports and the rest of them are still under review.

Our most significant contributions are listed as follows:

– We perform a characteristic study on different aspects of log-related issues, namely the
files that contain log-related issues, report and fix time, and developers’ involvement in
the process.

– We manually identify seven root-causes of log-related issues.
– We propose an automated tool that can detect four different types of evident log-related

issues from source code.

The rest of the paper is organized as follows. Section 2 describes the studied systems and
our data collection approach. Section 3 presents the results to answer our research ques-
tions. Section 4 demonstrates our proposed tool that automatically detects log-related issues.
Section 5 discusses the related works. Section 6 discusses the potential threats to the validity
of our study. Finally, Section 7 concludes the paper.

2 Case Study Setup

In this section, we present our case study setup. In particular, we present the subject systems
of our case study and our approach for collecting log-related issues.

2.1 Subject Systems

Our case study focuses on two large-scale open-source software systems, namely Hadoop
and Camel. To select our subject systems, we picked the top 1,000 most popular Java
projects from Github based on the number of stars. Then, we cloned them and counted the
number of logging statements in each project using the source code. To count the number
of logging statements, we checked the types of the logger variables and whether their corre-
sponding method calls (e.g., trace, debug, info, warn, error, fatal) are standard log libraries
levels. Then, we picked the top two software systems as our subjects.

Hadoop is a well-known parallel computing platform that implements the MapReduce
paradigm. Hadoop has been widely adopted in practice. Hadoop is written in Java with
around two million SLOC and nearly 33K issues stored in its issue tracking system for all of
its sub-systems. Camel is an open-source integration framework based on known Enterprise
Integration Patterns with Bean Integration containing more than 1.1 million SLOC and 10K
issues in its issue tracking system. Like all other products of Apache, Hadoop and Camel
use JIRA as their issue tracking system. Both subject systems have extensive logging state-
ments in their code and logs are heavily used in their development and operation actives.
In particular, Hadoop has more than 11K logging statements and Camel has more than 6K
logging statements in their latest revision of source code.

2.2 Collecting Log-Related Issues

In order to conduct the study, we first need to collect log-related issues in the subject
systems. There exists no explicit flag in JIRA issue reports that label an issue as a log-
related issue. Thus, we extract all available issue reports of our subject systems. Then, we
leverage a keyword based heuristic to filter log-related issues, by searching for keywords
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like log, logging, or logger. We only select the issues that are labeled as bug or improve-
ment and that are also resolved and fixed. We only used fixed and resolved issues since
we would require the corresponding fix to these issues to understand the characteristics
and the root-causes of the issues. We include the issues with label improvement because,
from our preliminary manual exploration of the issue reports, we found that many log-
related issues are labeled as improvement while they were in fact bugs. For example, in
HADOOP-8075, a developer reports that “Lower native-hadoop library log from info to
debug”. The title clearly shows that the log level in this case is wrong. However, this
issue is labeled as an improvement in the system. Since we wanted to study the issues that
are related to logging, but not the corresponding new logging with new features, we also
excluded other issue types like Task or Sub-task that are usually used to implement new
features rather than fixing a bug. Afterwards, we further verified each issue to make sure
they are indeed log-related issues. For example, we do not include the issues if developers
added new functionality to the code while modifying logging statements since the modifi-
cation is due to the functionality change instead of an issue related to the logging statement
itself. We also exclude the issues that are not fixed or not closed as well as duplicated and
invalid issues. Eventually, 563 log-related issues remained, which we manually investigated
(Table 1).

3 Case Study Results

In this section, we present our case study results by answering four research questions. For
each research question, we show the motivation of the research question, our approach to
answering the question and the corresponding results. Figure 1 presents an overview of our
approach to answering the research questions.

3.1 RQ1: What are the Characteristics of Files With Log-Related Issues?

Motivation The first step towards understanding log-related issues is to find out where
they are located. In this research question, we study the characteristics of files that con-
tain log-related issues. Knowing these characteristics might help developers prioritize their
efforts when identifying and fixing log-related issues.

Approach To answer this research question, we first extracted the files related to each
issue according to its fix. Then, we calculated the following product and process metrics for
Java files with and without log-related issues.

Table 1 The number of issues in hadoop and camel

Subject systems # all fixed issues # Issues with # Manually verified

log-related keywords

Hadoop-HDFS 3,863 253 178 (4.6%)

Hadoop-Common 5,999 221 170 (2.8%)

Camel 6,310 163 85 (1.3%)

Hadoop-YARN 1,542 133 71 (4.5%)

Hadoop-MapReduce 2,906 145 61 (2.1%)



Empir Software Eng

Fig. 1 An overview of our approach to answer the research questions

– Normalized source lines of code (NSLOC): We use SLOC to measure the size of a file.
We do not calculate a complexity metric since, as previous studies have shown before,
most of the software complexity metrics are highly correlated with SLOC (Herraiz et al.
2006; Herraiz and Hassan 2010; Zhang 2009). However, larger files tend to contain
more logging statements (Shang et al. 2015). Having more logging statements increases
the probability of having more log-related issues. Thus, we normalize SLOC by the
number of logging statements in each file.

– Fan-in: We used fan-in to measure dependency between files. Fan-in measures the
number of files that depend on a given file. To calculate fan-in, we first constructed
the call graphs of all the methods in each file using an open source tool named “java-
callgraph”(Gousios 2017). Then, we counted the number of methods from other files
that call methods from a particular file using the call graph. Files with higher fan-in
values have more files in the system depending on them, and thus, have more impact
on the system. By calculating the Spearman correlation between Fan-in and number of
logging statements in a file, we find that the correlation is low (0.19). Thus, we did not
normalize fan-in with the number of logging statements in the files.

– Frequency of prior commits: We use the frequency of prior commits to measure the stability
of the files. Operators may need better logs to be aware of the changes on the files
that are less stable. We use the total number of prior commits of each file divided by
the lifetime length (in number of days) of the file to calculate the frequency of prior
commits. The lifetime length of the file is calculated by measuring the time difference
between the first commit of the file and the date when we extract data from the Git
repository.

– Frequency of prior bugs: We also used the frequency of prior bugs to measure the
quality of the files. Developers may depend on logs to ensure the quality of these files.
Same as the frequency of prior commits, we use the lifetime length to normalize the
total number of prior bugs of a file. We use the JIRA reports for each subject system to
collect the number the prior bugs of each file.

Note that we did not include test files since we only wanted to focus on the production
code. We used statistical tests to compare metrics between files with log-related bugs and
without log-related bugs. More specifically, we used a two-tailed statistical test, namely the
Wilcoxon rank-sum test (Wilcoxon and Wilcox 1964). We perform four comparisons on
each dataset. To better control for the randomness of our observations, we used Bonferroni
correction (Dmitrienko et al. 2005). We adjust our p-value by dividing it by the number
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Table 2 Cliff’s delta effect size
interpretation Effect size Cliff’s delta value

Trivial if Cliff ’s d ≤ 0.147

Small if 0.147 < Cliff ’s d ≤ 0.33

Medium if 0.33 < Cliff ’s d ≤ 0.474

Large if 0.474 < Cliff ’s d

of comparisons (four). The results are significant at the significance level alpha = 0.05/4
(p-value < 0.0125). This shows that the two populations are different. However, studies
have shown that when the size of the populations is large, the p-value will be significant
even if the difference is very small. Thus, we calculated the effect size using Cliff’s delta
(Kampenes et al. 2007; Chen et al. 2014) to measure how large the difference between two
populations is. The value of Cliff’s delta ranges from zero to one. According to Kampenes
et al. (2007), Cliff’s delta values can be interpreted as shown in Table 2:

Results Table 3 presents the median of our studied metrics for files with and without log-
related issues. We find that for all subject systems in our case study, files with log-related
issues have statistically significantly more prior bugs and prior commits with large effect
sizes. However, the difference of our product metrics (NSLOC and fan-in) with and without
log-related issues is either statistically indistinguishable or their effect sizes are small or
trivial (except for fan-in for Camel and Hadoop-Yarn). These results imply that files that are
more actively under development or bug fixing tend to contain more log-related issues.

However, we find that a large portion of the files does not include any logging statements
in them. Thus, they are less likely to have any log-related issues in them. In order to reduce
the impact of these files on our results, we also calculated mentioned metrics only for the
files with at least one logging statement. Table 4 presents the median of our studied metrics
for files with and without log-related issues which at least include one logging statement in
them. The ratio of files with logging statements are mentioned in Table 4 subject system.
We find that similar to the previous results, files with log-related issues have statistically
significantly more prior bugs and prior commits with medium to large effect sizes. However,
the difference of our product metrics (NSLOC and fan-in) with and without log-related
issues is statistically indistinguishable or their effect sizes are small or trivial (except for
fan-in only for Hadoop-Yarn). This implies that although removing files without logging
statements reduced the effect sizes, the difference is still significant in process metrics.

One possible reason can be that changes and bug fixes in the files make the code inconsis-
tent with the logging statements in the files. Thus, the logging statements become outdated
and eventually are reported as issues. In our manual study in RQ4, we found one file called
FSNamesystem.java with 6K SLOC, 51 contributors and 250 issues, of which 12 are
log-related. One of these log-related bugs8 was specifically reported to clean-up the unnec-
essary logging statements in the file that became outdated and the corresponding source
code no longer existed in the system. In the discussion of another log-related issue in
HDFS,9 developers mention that “the comments and logs still carry presence of two sets
when there is really just one” which specifically shows that the source code and logging
statements are inconstant. The results suggest that after finishing development or bug fixing

8https://issues.apache.org/jira/browse/HDFS-9528
9https://issues.apache.org/jira/browse/HDFS-2729

https://issues.apache.org/jira/browse/HDFS-9528
https://issues.apache.org/jira/browse/HDFS-2729
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tasks, developers may consider verifying the consistency of the source code and the logging
statements to reduce such log-related issues.

3.2 RQ2: Who Reports and Fixes Log-Related Issues?

Motivation RQ1 shows that log-related issues often occur in files with less stable source
code. Experts of these files may be one of the most important vehicles to ensure the quality
of logs. Prior research demonstrates the importance of experts in resolving these log-related
issues (Shang et al. 2014). Furthermore, studies show the importance of developer own-
ership and its impact on code quality (Bird et al. 2011). Studies showed that when more
people are working on a file, it is more likely to have failures in the feature (Bird et al. 2009;
Nagappan et al. 2008). Therefore, if experts of the log-related issues can be identified, these
issues can be fixed with less impact. Therefore, in this research question, we investigate
people involved during the lifetime of log-related issues.

Approach To answer this research question, we first need to know who introduced the
logging statement. Thus, for all the log-related issues in Java files, we first search for JIRA
issue IDs in Git commit messages to identify the commit that fixes the issue. Some log-
related issues do not have their issue ID mentioned in a commit message. In particular, we
can only find commits for 254 of the log-related issues. Then we analyze the history of the
files, which contain the logging statements and are changed in the commit, to identify the
commit where the logging statement was introduced. We performed our analysis on 1,071
logging statements extracted from these issues fixing commits in our case study.

Furthermore, in our subject systems, the committer of each commit is usually not the
actual author of the commit. Instead, the author information is mentioned in the commit
message. To extract the author names in the commit message, we looked for names after
with terms like “Thanks to”, “Contributed by”, or “via”. Whenever we could not find the
names using these heuristics, we tried to find the issue key from the commit message and
use the assignee of that issue as the original author of the commit. Finally, if we could not
find any links in the message, we use the committer as the actual author of that commit. In
total, we only used the committer as the actual author in 12% of the commits. We identify
the developers who introduced the logging statements, and we count the prior number of
commits by developers to measure the expertise and the ownership of the code in the repos-
itories. Figure 2 demonstrates the lifetime of an inappropriate logging statement. Based on
the Fig. 2, we named the author of the commit that added the logging statement to the sys-
tem (A) as the introducer and the author of the commit that fixes a reported log-related issue
by modifying the logging statement (D) as the fixer. Furthermore, we named the top con-
tributor of the file which contains the logging statement the owner of the file (Bird et al.
2011).

Results We find that 78% of the time, logging statements are introduced and are fixed by
different people. Furthermore, 78% of the log-related issues are fixed by someone other than
the owner of the file that contains the logging statement. Moreover, 73% of the fixes to log-
related issues are done by the same person who reported the issue (57% of the all the issues).
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A B C D

Resolved

Change in method

Log Added 

Nov 17 2014 

25 days 103 days 5 days

Issue reported 
(HDFS-7890)

Fig. 2 Lifetime of an example inappropriate logging statement

The results show that one may report and fix a logging statement without being an owner of
the file nor the person who introduced the logging statement initially. Such findings suggest
the lack of systematic ownership of the logging statements. On the one hand, the developers
who introduce the file realize the importance of placing the particular logging statement in
the source code (Shang et al. 2014). On the other hand, once the logging statements are
in the source code, other people would observe the value in the logs and start to depend
on these logs in their daily activities. Hence, the users of these logs also have valuable
knowledge about what should be included/or not in these logs. Our results show that there
are cases when the original author of the logging statement may not understand the needs
of other users of the log, leading to the report of log-related issues. However, the users of
logs who do not own the file nor initially introduced the logging statement may change
the logging statement without notifying the owner of the file or the original developer who
introduced the logging statement. Such update may become a log-related issue that causes
other people’s log analyses to fail (Shang et al. 2011, 2014).

3.3 RQ3: How Quickly are Log-Related Issues Reported and Fixed?

Motivation The results of RQ1 and RQ2 illustrate the potential impact of log-related
issues and the challenges of mitigating them by experts. Practitioners, such as dev-op engi-
neers, who use the information in logs usually do not have access to the source code. Thus,
a simple mistake like wrong verbosity level in a logging statement can hide important infor-
mation from them. If the logging statements with these issues stay in the software for a long
time, they become considerably harmful since they are more likely to impact all the peo-
ple who depend on them. Whereas, if log-related issues are diagnosed and fixed easily, they
might not be as harmful. Therefore, in this research question, we study the time needed to
report and fix log-related issues.

Approach We aim to find out how fast log-related issues were reported and fixed.
Figure 2 demonstrates the lifetime of an inappropriate logging statement which ended up
being reported as a bug. Using the results of our analysis on the history of changes for each
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logging statement, we estimate how fast log-related issues were reported by calculating the
time difference between when the logging statement is introduced to the time when it is
reported in the issue tracking system (Fig. 2, A-C). Furthermore, we estimate how fast log-
related issues were fixed by calculating the time difference between when the log-related
issue is reported and when it is fixed (C to D)

Results The results are depicted in Figs. 3 and 4 . We find that more than 80% of the issues
were fixed in less than 20 days. In fact, 43% of all issues were fixed within two days of
the submission date. Our results suggest that most of these issues are simple and easy to fix
once they are found. In our manual analysis in RQ4, we observed that the associated code
changes usually include less than ten lines of code, suggesting that the lifetime of these
issues mostly involved in code review and tests.

However, inappropriate logging statements exist for a long time in the system before
being reported as an issue. Table 5 shows the five-number summary of the number of
changes for each logging statement. We can see that the median number of changes is two,
where one of them is the commit that fixed the issue. This result suggests that most of the
inappropriate logging statements are not the ones that are frequently changed.

Table 6 also shows the long time difference between the introduction of the logging
statement and when the issue was reported. Other than Hadoop-MapReduce, on median, it
takes 229 to 615 days to expose a log-related issue. For example, in HDFS-7890, a developer
reported that “Information on Top users for metrics in RollingWindowsManager should be
improved and can be moved to debug. Currently, it is INFO logs at namenode side and
does not provide much information.”. We found that this logging statement was added 103
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Fig. 3 Cumulative distribution of issue report time in days. Outliers that are greater than 1.5 time of the
value of the third quartile of the data are not shown in this figure
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Fig. 4 Cumulative distribution of issue fix time in days. Outliers that are greater than 1.5 time of the value
of the third quartile of the data are not shown in this figure

days before the report date and did not change until another developer fixed it and changed
the level to debug. Although the fix was small (only one change), it took a long time for
developers to figure out that this logging statement is at an inappropriate level. However, it
took only five days to fix after it was reported. Figure 2 shows all the changes made to a
logging statement during its lifetime which led to issue HDFS-7890.

Furthermore, we analyzed the priority of log-related issues and found that more than
46% of the log-related issues are labeled as Major, Critical, or Blocker. Thus, many of
these issues are not likely to be the ones that developers are not interested in reporting and
fixing them. The long time needed to expose a log-related issue signifies the potential harm
of these issues over such long time periods, people might make decisions based on the
inappropriate or incomplete information provided by the logs. These results illustrate the
need for automated tools that detect such log-related issues in a timely manner.

Table 5 Number of changes before an inappropriate logging statement get fixed

Subject systems Min 1st Qu. Median 3rd Qu. Max

Common (changes) 1 2 2 2 5

HDFS (changes) 1 2 2 4 10

YARN (changes) 1 2 2 2 6

MapReduce (changes) 1 2 2 2 5

Camel (changes) 1 2 3 2 10



Empir Software Eng

Table 6 Number of days before
an inappropriate logging
statement being reported

Subject systems Min 1st Qu. Median 3rd Qu. Max

Common 0.17 159.9 459.3 482.4 1516.0

(changes)

HDFS (changes) 0.17 41.4 229.2 431.3 1576.0

YARN (changes) 0.17 258.2 615.8 959.4 1357.0

MapReduce 0.17 41.67 41.67 91.1 1850.0

(changes)

Camel (changes) 0.17 61.7 390.1 423.6 2689.0

3.4 RQ4: What are the Root-Causes of Log-Related Issues?

Motivation Previous RQs show the need for automated tools to assist developers in finding
inappropriate logging statements in code. Automatic tools can use the historical data and
other information in the system to provide useful suggestions. Thus, we decided to perform
a manual investigation on the root causes of the log-related issues, such that we gain a
deeper understanding of log-related issues and find repeated patterns that can automatically
expose evident log-related issues in the source code.

Approach To answer this research question, we used the issue reports and their code
changes we extracted from JIRA. Stol et al. (2016) suggest that researchers should
describe how they analyzed data rather than dressing it up as other well known scientific
approaches.To avoid method slurring (Baker et al. 1992), we explain our approach in details
in this section.

We started to examine log-related issues based on their title, description, and other
information stored in every issue report. The first two authors independently read all the
comments and discussions in each issue report and manually investigated the patches that
fix the issue. Then, they categorized log-related issues into categories based on their root
causes. More specifically, we manually examined the issue report, discussion and the paths
for each log-related issue and added a summary and related key-words to them. Then, issue
reports were labeled based on all the information in the related artifacts. Then, we revis-
ited the extracted information and grouped similar labels into categories. Next, based on our
observations from previous iterations, similar categories were merged into a new one. This
process was repeated iteratively until the categories cannot be merged anymore.

In case of conflict, a proper label is selected after a discussion between the first two
authors.

Results The results of our manual study are shown in Table 7. We categorized log-related
issues to seven categories based on their root causes namely, inappropriate log message,
missing logging statements, inappropriate log level, log library configuration issues, runtime
issues, overwhelming logs, and log library changes. We will discuss each category in details.
In Table 8, we show the distribution of each of the mentioned types of log-related issues.
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Table 7 Categories of log-related issues

Category # of log-related issues Example

Inappropriate log messages 182 HADOOP-2661,“Replicator log should

include block id”

Missing logging statements 110 HADOOP-5365, “Currently, only failed

accesses are logged. Need to log successful

accesses as well.”

Inappropriate log level 96 HADOOP-3399, “A debug message was

logged at info level”

Log library configuration issues 70 HADOOP-276,“The problem is that the

property files are not included in the jar file.”

Runtime issues 53 HADOOP-7695, “RPC.stopProxy can throw

an configuration file for unintended exception

while logging error”

Overwhelming logs 35 HADOOP-3168 ,“reduce the amount of

logging in Hadoop streaming”

Log library changes 19 HADOOP-211, “it’s a huge change from older

ones to common logging and log4j”

Inappropriate Log Message As shown in Table 7, logging statements with incorrect log
messages constitute the majority of log-related issues. We consider every issue regarding log
messages (such as missing or incorrect variable, or incorrect string literals) in this category.
As an example, in the issue HADOOP-2661, developers mentioned “Replicator log should
include block id”. Here, the developers asked to add the missing information (i.e., block ID)
to the log message.

Missing Logging Statements There were some cases where developers requested addi-
tional logging statements or asked for logging a specific event that had not been logged. We
consider all corresponding issues that are fixed by adding logging statements as Missing
logging statements. HADOOP-5365 is an example of this type of issue, where the devel-
opers asked to add new logging statements to capture more information: “Currently, only
failed accesses are logged. Need to log successful accesses as well.”.

Inappropriate Log Level Another interesting type of issues was problems associated
with the level of the log. Log messages have levels that show their importance, verbosity,
and what should happen after the event is logged. These levels include fatal (abort a process
after logging), error (record error events), info (record important but normal events), debug
(verbose logging only for debugging), and trace (tracing steps of the execution, most fine-
grained information). Developers use log levels based on the information that they need
to print, and considering the overhead that more verbose log messages can impose on the
system’s execution. These log levels are widely used by analysis tools and operators to filter
out unwanted logs and extract relevant information. In some issues, the level of a logging
statement was thought to be incorrect and needed to be changed. For example, in the issue
HADOOP-3399, developers clearly mentioned that “A debug message was logged at info
level”. Setting a lower log level could cause missing important information in the execution
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log output. In contrast, setting a higher log level will add redundant information to it. In
other words, setting an inappropriate log level may lead to confusing log messages.

Log Library Configuration Issues Developers use different APIs in their software
system’s lifetime to print log messages. Each API uses different configuration files and
interfaces to perform logging in the system. We consider any problem in the implementa-
tion and configuration of the used APIs as an Configuration issue. For instance, in the issue
HADOOP-276, developers found out that they needed to add a configuration file for log4j,
as the description of the issue reads “The problem is that the property files are not included
in the jar file.”

Runtime Issues A considerable number of log-related issues are runtime issues. We con-
sider an issue to be in this category if it causes a runtime failure or misbehavior of the
system at execution time. For example, in the issue Hadoop-7695, developers mentioned
that “RPC.stopProxy can throw a configuration file for unintended exception while logging
error”. Here, developers logged a variable that can throw Null Pointer Exception, and the
issue was introduced to ask the developers to check the value of the variable against null,
before logging it.

Overwhelming Logs In contrast to Missing log, in some issues, the developers requested
to remove a logging statement since it was useless, redundant or made the log output noisy.
As an example, in HADOOP-3168 one of the developers mentioned that “reduce the amount
of logging in Hadoop streaming”. In order to fix this specific issue, developers removed log
messages until they reached one log message per 100,000 records since the information of
all the records was useless.

Log Library Changes Eventually, the last category of log-related issues contains the
changes that were requested from developers to change or upgrade the logging API in their
system (e.g., for upgrading to a newer version of the logging library, log4j); these changes
fall in the corresponding category.

Based on our experience from the manual investigation, we found repeated patterns in
the log-related issues. Some of the patterns are trivial and evident patterns, which raise the
opportunity of automatically detecting potential inappropriate logging statements. These
patterns can help us develop approaches to automatically expose inappropriate logging
statements in the source code. In the next section, we will demonstrate our approach to
detect these issues.

4 Automatic Detection of Inappropriate Logging Statements

In our empirical study, we found that although log-related issues are likely to be impactful,
they are reported much later than the introduction of the logging statement. Our study results
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indicate the need for automated tools to help developers detect log-related issues in their
code.

Based on our results of the manual study on log-related issues, we found that some of
these issues are evident and are due to careless mistakes. We found some patterns and simi-
lar suggestions to automatically find defect-prone logging statements and show developers
what may cause an issue in such statements. We built four different checkers for four types
of log-related issues: Typos, missed exception messages, log level guard, and incorrect log
levels. All these four types are evident in root-causes that are identified in RQ4.

– Incorrect log levels As explained in RQ4, messages with incorrect log level can make
issues, such as providing too little or too much information, to users of the logs.

– Missed exception message. Missed exception messages are the catch blocks that
do not contain any logging statements, or do not log the exception message inside
them. Missed exception message can belong to missing logging statement category or
inappropriate log message.

– Log level guards. Log level guard issues happen when there is an expensive com-
putation in log messages and developers do not check which level is enabled in the
configuration before execution. Log level guard belongs to log library configuration
issues.

– Typos. As a subset of inappropriate log message category, typos are simple mistakes in
spelling inside the log strings.

We will explain how these checkers are designed and the issues that we were able to
detect using these checkers. An overall summary of our approach is depicted in Fig. 5.

4.1 Log Level Checker

In our empirical study, we found that 76 issues are due to incorrect log level in logging
statements, which were fixed by merely changing the log level. To suggest log levels, we
focused on the rich dataset of all log messages in the source code of our subject systems.
Hadoop and Camel contain more than 10K and 6K logging statements in their source code,
respectively. Thus, we tried to use the text in the log message to suggest the level of the log.

Information Theory deals with assessing and defining the amount of information in a
message (Yin 2013). The theory seeks to reveal the amount of uncertainty of information.
For example, consider that we analyze the words and the combination of words in logging
statements. To ease the explanation, we call words and combination of words as phrases.
For each new logging statement, we want to guess the log level using the phrases in the
logging statement. At first, we were uncertain about our guess. Every time we observe a

Fig. 5 An overview of log-related issue checker
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phrase appearing in a level, our uncertainty decreases. In other words, whenever we observe
the phrase “exit” in a fatal level logging statement, we are more certain that the logging
statement with the phrase “exit” should be in fatal level.

Shannon entropy is a metric used to measure the amount of uncertainty (or entropy) in
a distribution (Hassan 2009). We used the Normalized Shanon’s Entropy to calculate the
level of the logging statements, based on the probability of appearance of phrases in the log
message. We calculated the entropy of the phrases from existing logging statements. We
consider the phrases with two or more appearances.

Table 9 shows the five-number summary for the lowest entropy of the phrases in each
logging statement. We find that most of the logging statements contain phrases with low
entropy. In particular, more than 25% of the logging statements contains a phrase with zero
entropy (the phrases are only appearing in a unique level). Therefore, we can use phrases
with zero entropy to suggest the log level for new logging statements. If a logging statement
contains any of these phrases, we can suggest that this particular logging statement is more
likely to be at the level that this phrase appeared all the times.

To find inappropriate log levels, we first use the text and variables in existing logging
statements in the source code to calculate the entropy for words and combination of the
words called phrases. In other words, we make a table of phrases, their corresponding
entropy, and the logging level. Then, for each new logging statement, we extract the phrases
and search for them in the table we made from our training data. If a phrase from the new
logging statement exists in the table and its entropy is zero, we compare the logging level
of the new statement with the table. Finally, if the log level from the table is different than
the log level from the new statement, we suggest that the verbosity level is wrong.

For example, in “LOG.debug(“Assigned container in queue: ”+ getName());” we can
see that the log message contains the phrase “assigned container”. “assigned container”
occurred 12 times in different log messages and always appeared in info level. Thus, the
entropy for this phrase of words is zero. However, the new logging statement with this token
is in debug level. Given this information, the tool will suggest that the current level debug
is wrong.

To evaluate our approach, we run the tool on existing issues that were fixed by chang-
ing levels. For each issue, we trained the checker with the revision before the issue fixing
commit. Out of 76 log-related issues containing 209 log level changes we were able to fix
22 logging statements with inappropriate logging level in seven log-related issues with four
false positives. A prior study showed that static analysis tools suffer from providing false
positive results to practitioners (Chen et al. 2016). Therefore, we opt to avoid false positives
and to have excellent precision but low recall over lower precision with a higher recall.

4.2 Catch Block Checker

In 21 issues developers simply missed to log the exception inside the catch blocks. Excep-
tion messages contain necessary information that is used by the developers while debugging
the code. These issues can be fixed simply by adding or removing the exception message
in a new logging statement or the end of an existing logging statement. In several issue

Table 9 A five-number
summary for the lowest entropy
of the phrases in each logging
statement

Subject systems Min 1st Qu. Median 3rd Qu. Max

Hadoop 0.00 0.00 0.33 0.50 0.87

Camel 0.00 0.00 0.25 0.45 0.83
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discussions, developers mention they faced situations in which they needed information
related to the exceptions in the log output. In contrast, sometimes they found the informa-
tion unnecessary and removed them. Issues with these fixes are considered as inappropriate
log messages issues or missing logging statement in our study.

We provide a checker to recommend developers to add logging statements or log the
exception message inside the catch blocks based on historical information of the source
code. We used Eclipse’s JDT (Java Development Tools) to parse the Java code and generate
its Abstract Syntax Tree (AST). Using the AST, all the catch blocks, and their logging
statements are extracted. Afterward, we calculate the percentage of catch blocks that log the
exception messages for each exception type. To minimize false positives, we only detect the
issue if either all the catch blocks with the same exception type are logged, or none of them
are logged (threshold 100%). Using this threshold, we were able to fix 4 logging statements
with inappropriate logging level in 2 log-related issues.

4.3 Log Level Guard Checker

Logs provide valuable information for developers and operators of the software system.
However, each logging statement has some performance overhead to the system. Especially,
if the log message contains many variables and method calls in it, the overhead can be
costly. Hence, log libraries provide a conditional guard for the logs, such that developers can
avoid executing the logging statement if logging in that level is disabled at runtime. When
developers feel that creating the log message has a considerable performance overhead,
they can use an if statement as a log level guard. In some of the libraries like Self4j this
log level guard is implemented inside the logger method, but for other libraries, developers
should add an if statement as a log guard manually. We found nine issues that developers
forgot to add log level guards before executing logging statements. Thus, logging statements
were executed but never shown in the output. Based on these findings, we made a simple
checker to find missed log level guards. First, we analyze the logging library of each file.
If the logging library does not perform the log level check before executing (i.e. Log4j),
a log level guard needed for each debug level logging statement. Thus, we check all the
debug level logging statements in the file and if a logging statements have a significant
computation in its message (i.e., more than three string concatenations or includes method
calls), our tool suggests that developers should add a log level guard to the logging statement
or consider migrating to libraries like SLF4J. Using this tool we were able to find all nine
issues reported on issue trackers of our case studies. We also run this tool on the last revision
of our case studies. We found 62 new cases that developers need to add a log level guard.
A false positive case would be when developers remove log level guards while our tool
suggests keeping the log level guard. We identify two issues (HDFS-811610 and HDFS-
897111) where developers remove log level guards and our tool did not suggest to keep the
guard in either case.

4.4 Typo Checker

We had 24 issue reports for which the solution was just fixing the typos in log mes-
sages. Typos do not have a large impact if the logs are read by operators and developers.

10https://issues.apache.org/jira/browse/HDFS-8116
11https://issues.apache.org/jira/browse/HDFS-8971

https://issues.apache.org/jira/browse/HDFS-8116
https://issues.apache.org/jira/browse/HDFS-8971


Empir Software Eng

However, automated log analysis may be impacted if they depend on these log message.
To fix these typos, we need to examine the string literal (i.e., fixed) part of log mes-
sages to find the typos in them. Log messages often contain non-English words that might
be in-house names or code identifiers. Thus, a simple English spell checker will return
many false positives and find actual typos among them can be frustrating for develop-
ers. In our tool, we tried to improve the dictionary using the data inside the system. To
reduce the number of false positives, we extracted string messages inside all the logs and
counted the number of appearances of each word. Then, we added the repeated words
inside the log messages to the list of known words. Furthermore, we added identifier
names and words in code comments in the file to our dictionary. Using this new dictio-
nary, we check the strings in log messages and report the inappropriate ones as possible
typos.

With the typo checker, we were able to find 20 out of 24 reported typos issues in our
case study. Among the four issues that are not detected, one of them was due to having extra
white space between words, three of them were a typo in the log configuration file that we
do not support at the moment. We also run our tool on the last revision of our case studies to
find new issues that are not reported yet. In total, we found 25 new typos in log messages.
After manual validation, we found seven false positives. One of the false positives was an
abbreviation that was not mentioned in the code comments. The other one was a log with
a text automatically generated, hence we missed that part and considered that the statement
contains a typo. The rest of the false positives were informal words that were meaningful,
but not included in our English dictionary.

4.5 Results of Applying the Tool

In order to evaluate our tool, we first try to detect our manually verified log-related issues.
We run our checker on the source code snapshot before each issue fix. The overall results
are shown in Table 10. We reported the number of issues and logging statements success-
fully covered by our tool. Note that the number of issues is different from the number of
logging statements since issues can be fixed by changing multiple logging statements. We
were able to successfully detect 23% of inappropriate logging statements in 30% of the log-
related issues. We also apply our tools to find other possible log-related issues in the latest
source code from our subject systems. In total, we identified 226 potential inappropriate
logging statements in the latest version of our case studies source code. For each checker,
we ranked the suggestions in order to provide the most accurate detection to developers. The

Table 10 The results of our tool
on known issues Type # known issues # issues successfully

(# of logging detected by the checker

statements) (# of logging statements)

Typos 26(40) 22(34)

Missing to log 21(65) 2(4)

exceptions

Inappropriate log level 76(209) 7(22)

Missing log level 9(15) 9(15)

guard
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suggestions to change the level are ranked based on the entropy and number of occurrence
word combination in the last stable version of source code. Catch block logging suggestions
are ranked based on the number of occurrences of the exception type and percentage of
similar behavior. Eventually, the results of log level guard checker are ranked by the num-
ber of method calls and string concatenations in the logging statements. We did not rank
the typos since the suggestions were under 20 (i.e. 18 suggestions). Then, we reported the
top 20 suggestion of each checker (18 for typos) for all the subject systems. Issues regard-
ing typos in logging statements were accepted immediately and fixed by the first author
of the paper. Issues regarding log level guards are also accepted by the developer of the
Hadoop and Camel. However, developers of Hadoop mentioned that they plan to move to
SLF4j in order to fix these issues rather than adding the guards to the mentioned logging
statements. In the MapReduce subsystem, developers mentioned the fix is in progress. In
the HDFS subsystem of Hadoop, developers have already provided a patch to migrate the
logging library to SLF4j. Finally, developers of Camel asked us to provide the patch by
adding the if statement before the debug level guards. Other reported issues are still under
review.

A prior study has proposed an approach that builds a statistical model to predict the
appropriate level of a logging statement (Li et al. 2017). Although the goal of this approach
is to suggest log level, the approach can be used to detect issues with an inappropriate
level in particular. We compared our log level checker with the approach that suggests log
levels. We obtained the original data that were used in the prior study (Li et al. 2017).
Since Hadoop is also a subject system in the prior study, we found 56 logging state-
ments that were manually identified in our study with wrong log levels and were also
included in the prior study’s data. We examined whether the statistical model that was
build based on the prior study could detect these log-related issues. We found that in 32
logging statements, the model failed to find the appropriate level that developers decided
on the issues. However, our tool was able to suggest ten correct log levels without any
false positive. Note that the threshold of our checker was set to 0.33 in this experiment.
These results show that the logging statements that are reported as issues, because of their
level, are harder to predict in nature. Studies also show that developers often have difficul-
ties in choosing the appropriate log level and spend much effort on adjusting the log level
(Yuan et al. 2012b).

5 Related Work

In this section, we discuss the prior research that is related to this paper.

5.1 Log Analysis

Logs are widely used in software development and operation to ensure the quality of large
software systems (Barik et al. 2016). Prior research focuses on the analysis of logs (Oliner
et al. 2012) to assist different software development and operation activities. Valuable infor-
mation is extracted from logs, including event correlations (Nagaraj et al. 2012; Fu et al.
2012), resource usages (Kabinna et al. 2016), component dependency (Oliner and Aiken
2011), and causal paths (Yuan et al. 2012c). The extensive usage of logs motivates our
paper since quality logs are extremely important for the effectiveness of prior log analysis
research. The outcome of this paper would help reduce log-related issues, hence improve
the adoption of advanced log analysis in practice.
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5.2 Logging Enhancement

The closest recent research is from Chen and Jiang (2017) on the detection of anti-patterns
in logging code. Our study complements this work in many ways. Chen et al. explore anti-
patterns in logging code by mining logging code changes in three open-source systems. In
particular, they identified five anti-patterns and proposed static code checkers to detect these
patterns. However, instead of detecting anti-patterns (like code smell Chen and Jiang 2017)
that have the possibility to be an issue, we focus on the event issues that are more certain.
In fact, by comparing our study to the research by Chen et al., only one anti-pattern/root-
cause (Wrong log level) overlaps in two studies. The reason may be the different focus on
anti-patterns and evident issues, and that we identify log-related issues from issue reports
while Chen et al. leverage code changes to identify anti-patterns. Moreover, our empirical
study results on log-related issues provide more insights on these issues.

The prior research proposes techniques in order to enhance logging statements. Yuan et
al. have conducted a series of research (Yuan et al. 2010, 2012a, b, c) on how to perform
better logging. They found that developers usually change logging statements since they
do not write the appropriate logging statement in the first attempt. Furthermore, they give
some insights on how to improve the logging practices. They also built a simple checker
that can help developers to write better logging statements. Yuan et al. (2012b) start off by
performing a characteristic study on log practices by mining the revision histories of four
open-source software projects. They propose a tool named LogEnhancer (Yuan et al. 2010,
2012c) to automatically detect valuable information and add the information to logging
statements. LogEnhancer looks for accessible variables for each existing logging statement
and adds them to the logging library method call. With our exceptions checker, we sug-
gest developers add exception variable to the logging statement if the thrown exception
type always logged the exception variable in the source code of the subject system. Even
though we cannot run their approach, by the description of their approach, we can know
that their approach is guaranteed to solve the issues that fixed by adding variables to log-
ging statements as well as the issues with missing exception variable (28 log-related issues).
However, it can potentially produce noise to the log output. In fact, seven log-related issues
were fixed by removing variables from logging statements. Their approach may results in
worsening the issues. Zhu et al. (2015), also mention that adding all the variables to logging
statement pollutes the log output and not recommended by developers. Yao et al. (2018)
proposed an approach that recommends locations to place logging statements in order to
improve performance monitoring on web-based software systems. In this approach, the
authors use improvements of the explanatory power of statistical performance models as
a heuristic to suggest logging statement placement. Our paper finds that missing logging
statements are one of the root-causes of log-related issues. However, their approach is only
suitable with the consideration of performance monitoring. Yuan et al. (2012a) investigate
250 real-world failure reports find an additional point to log the possible failures. Ding et al.
(2015) propose a filtering mechanism to reduce the I/O consumption of the logs at run-
time. They perform the filtering with having performance problem diagnoses as the main
usage of the logs in their mind. Their approach is deeply integrated into the source code as
an API to reduce the number of logs saved during the runtime. However, we aim to pro-
vide a recommender in our approach to help developers improve logging statements in their
source code.

Fu et al. (2014) systematically studied the logging practices of developers in the industry,
with a focus on where developers log and come up with useful lessons for developers regard-
ing where to log. Follow-up work by Zhu et al. (2015) proposes a framework, which helps
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provide informative guidance on where to insert logging statements. They implemented
LogAdvisor to give usable suggestions based on the different features of the code snippet.
They used machine learning algorithms to suggest logging decisions for developers. Their
approach shows promising results in their paper. However, it is only usable for C# projects.
Moreover, our checker has very little overhead comparing to their multi-step framework.
Our checker only needs the information of the exception type. Although we have a lower
recall, we still do not give wrong suggestions in any of the issues. Furthermore, we aim
to find multiple patterns rather than focusing on one as Zhu et al. did in their study. Li
et al. (2017) proposed an approach which helps developers choose the best log level when
they are adding a new logging statement. In another work (Li et al. 2017), they provided
a model to suggest the need for log change in commits. Li et al. also studied the rationale
behind log changes. Li et al. found that the reasons behind log changes can be categorized
as block change, log improvement, dependence-driven change, and logging issue. Kabinna
et al. (2016), studied the logging library migration in Apache Software Foundation (ASF)
projects. The found that 14% of the ASF projects had at least one logging library migra-
tion in their lifetime. The also show that 70% the migrated projects had at least two issues
related to the logging library migration. Although they provide useful insights for logging
library migration, they do not propose an approach to automatically aid developers in the
process. In another work (Kabinna et al. 2016), Kabinna et al. studied the stability of log-
ging statements and proposed prediction techniques to help developer avoid depending on
unstable logging statements.

Existing research mainly focuses on suggesting and improving existing logging state-
ments. However, we study the log-related issues and aim to improve the quality of logging
statements by automatically detecting these issues. We provide a comparison of related
works that aim to improve logging code in Table 11.

6 Discussions and Threats to Validity

6.1 Impact of the Threshold on Our Checkers

Based on the results of our tool, two of our checkers, i.e., log level checker and catch block
checker, have a low number of detected issues. Both checkers are based on thresholds. Our
log level checker is based on the entropy of a word or a combination of words existing in
different log levels. Our catch block checker is based on the percentage of different behav-
iors in existing exception’s catch blocks. Therefore, we aim to refine these two checkers to
achieve better detection results.

Log Level Checker Refinement The original log level checker only considers the
phrases with zero entropy. Because most of the phrases have low entropy, as shown in Table
9. This time, we use the phrase with the lowest entropy in each logging statement to detect
inappropriate log level, instead of only considering the phrases with zero entropy. How-
ever, we find that also we were able to provide more suggestions (47 instead of 26), our
precision becomes lower (73%). Furthermore, we varied the threshold between 0.0 to 0.33
(median entropy, see Table 9), to see its impact on our results. Our precisions are between
84% and 87%, and we can correctly detect 22 to 31 wrong log levels in 7 to 9 log-related
issues.

We find that for the older issues, there was limited number of logs in the source code of
our subject systems. Limited training data has a significant impact on our checker. Thus, we
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used the data from other projects to improve the training data. We used all subject systems
with at least one logging statement in them from the top 1,000 popular Java projects on
Github (354 projects). Then, we excluded the subject system that we were testing against,
as well as their forks from the list and trained the checker with source code for remaining
projects. However, we find that although this approach let us provide more suggestions (55
to 80 log level change suggestions out of 209), the precision is low (65% - 58% precision)
using thresholds between 0.0 to 0.33.

Finally, we decided to add the source code from the revision before the issue fixing
commits to the other projects as well. Using this approach we kept the testing and training
data separated at all the time. With the extended training set, we were able to suggest a
level change for 51 logging statements with eight false positives in 19 log-related issues,
resulting into 84% precision using phrases with zero entropy. After changing the threshold
to 0.33, we were able to suggest 56 level changes with ten false positives (82% precision)
in 20 log-related issues.

Catch Block Checker Refinement The original catch block checker uses 100% as a
threshold, meaning that developers logged the exception in either all or none of the pre-
vious catch blocks with the same exception type. We vary the threshold from 100% to
50% (in half of the existing exceptions developers logged the exception). The results show
that when the threshold is set to 80%, the precision decreases from 100% to only 60%,
while we are only able to detect three more issues. When the threshold is set to 50%,
our precision is only 33%. Such results show that in order to detect more issues, we
would need to sacrifice our precision. Therefore, having 100% as our threshold is a better
choice.

In this study, we aim to make a recommender tool for developers. Thus, our goal is to
have smaller false positive rates rather than higher recall values. In all the checkers, we have
very few to no false positives. We evaluated our tool on the log changes extracted from the
reported issues. Developers had a hard time to write the appropriate logging statements on
the first try. Thus these logging statements are reported as issues. In fact, when we compared
the existing works using our dataset, we outperformed them with better precision and recall.
We agree that we do not provide many suggestions. However, we try to provide the right
suggestions when we do provide them. We plan to improve the recall of our approach in
future work.

6.2 Internal Validity

In this study, we employed different heuristics in our approach that may impact the internal
validity of our approach. We only studied the issues with a log-related keyword in their
title. However, to see the impact of this filtering, we extracted all the commits in the history
of the subject systems where at least one line of code containing a logging statement was
modified. We then drew a statistically-random sample with 95% confidence level and ± 5
confidence interval from this pool of commits and investigated them manually. We found
that our approach only misses 0.5% of the changes that were done due to a log-related
issue. Other commits in the sample are either true positives of our approach (i.e., they are
changes due to log-related issues that our technique was able to identify correctly), unrelated
fixes, or addition of new functionalities to the system. Moreover, we used text matching
to find the corresponding commits for each issue. We ignored issues labeled other than
“improvement” or “bug” in our study. However, the majority of all the issues (72%) were
labeled either “improvement” or “bug”. We wanted to study issues regarding a problem in
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logs rather than issues that implement a new feature. The results of our second and third
research questions impacted by the accuracy of the matching we performed on the issues
and commit. Besides, in some cases, the authors of the commits on GitHub may not be the
original authors of the code. We mined the commit messages and used issue report data
to find the original author of the commits. However, in 12% of the commits, we were not
able to find another author mentioned in the commit message for the corresponding issue
of the commit. We used Git commands to obtain the log introducing change in the history
of the case studies. These commands use Unix diff, which can impact our results. However,
in our scripts, we manually checked the results and removed the commits that we were
not able to confirm as log introducing changes by verifying the existence of the logging
statement.

6.3 Construct Validity

Construct Validity Threats concern the relation between theory and observation (Yin
2013). In our study, the main threats to construct validity arise from human judgment used
to study and classify the log-related issues. In particular, the categories are based on the
classification performed by the first two authors and can be biased by the opinion of the
researcher on the issues and the source code. We also used keywords to filter the issues.
Thus, we might have missed some log-related issues which do not contain our keywords
in their titles. However, the goal of the study is not to exhaustively collect all log-related
issues but rather study based on a collection of them. Future studies may consider collecting
log-related issues in another approach to complement our findings.

6.4 External Validity

We perform our study on Hadoop and Camel. These systems are large software systems
containing millions of lines of code with 11K and 6K logging statements, respectively.
However, more case studies on other software systems in different domains are needed
to see whether our results are similar to this study. Conducting research on different case
studies from other domains will help us to examine the importance of the logging state-
ments in other areas, and also to understand similar and distinct types of logging statements
in software systems. However, the results of our study showed that also four subsystems
of Hadoop are considered as one subject system, they show different behavior in our
analysis.

Moreover, we should note that Hadoop and Camel are open source software. Therefore,
the results of our study are based on only open source software systems and may not gener-
alize to commercial systems. To improve our research, we need to replicate it on enterprise
software systems to gain a better understanding of their log-related issues. Furthermore,
our study focuses on Java-based software systems. Using case studies from different lan-
guages can improve our knowledge about logging statements and their problems in other
languages. We manually studied 563 log-related issues in seven categories. But, our auto-
mated approach can provide suggestions for 132 log-related issues in four categories. In
our manual analysis, we find that many of the log-related issues require domain knowl-
edge, as well as, an understanding of the environment being fixed. Hence, we chose to focus
on issues that can be detected and fixed automatically. Unfortunately, we were not able to
provide a checker for all of the log-related issues we studied in this paper. However, we
offer characteristic analysis to help developers and users better understand issues regarding
logging in their systems.
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7 Conclusion

Logs are one of the most important sources of information for debugging and maintain-
ing software systems. The valuable information in logs motivates the development of log
analysis tools. However, issues in logs may highly impact the values of log analysis tools
by providing incomplete or inaccurate information to the users of the logs. Therefore, in
this paper, we empirically study 563 issues from two open-source software systems, i.e.,
Hadoop and Camel. We find that 1) files with log-related issues have undergone statisti-
cally significantly more frequent prior changes, and bug fixes, 2) log-related issues are often
fixed by neither the developer who introduced the logging statement nor the owner of the
file that contains the logging statement, and 3) log-related issues are reported after a long
time of the introduction of the logging statement. Our findings show the need for automated
tools to detect log-related issues. Therefore, we manually investigate seven root-causes of
log-related issues. Table 12 summarizes the findings for each research question and its
implications. We develop an automated tool that detects four types of evident root-causes
of log-related issues. Our tool could detect 40 existing log-related issues and 38 (accepted
by developers) previously unknown issues in the latest release of the subject systems. Our
work suggests the need for more systematic logging practices in order to ensure the quality
of logs.
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Yao K, de Pádua GB, Shang W, Sporea S, Toma A, Sajedi S (2018) Log4perf: Suggesting logging locations
for web-based systems’ performance monitoring. In: Proceedings of the 9th ACM/SPEC on International
Conference on Performance Engineering, ICPE ’18. ACM, New York

Li H, Shang W, Hassan AE (2017) Which log level should developers choose for a new logging statement?
Empir Softw Engg 22(4):1684–1716. https://doi.org/10.1007/s10664-016-9456-2

Li H, Shang W, Zou Y, Hassan EA (2017) Towards just-in-time suggestions for log changes. Empir Softw
Engg 22(4):1831–1865. https://doi.org/10.1007/s10664-016-9467-z

Malik H, Hemmati H, Hassan AE (2013) Automatic detection of performance deviations in the load testing
of large scale systems. In: Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13. IEEE Press, Piscataway, pp 1012–1021. http://dl.acm.org/citation.cfm?id=2486788.2486927

Nagappan N, Murphy B, Basili V (2008) The influence of organizational structure on software quality. In:
Software Engineering, ACM/IEEE 30th International Conference on 2008. ICSE’08. IEEE, pp 521–530

Nagaraj K, Killian C, Neville J (2012) Structured comparative analysis of systems logs to diagnose perfor-
mance problems. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation, NSDI’12. USENIX Association, Berkeley, pp 26–26. http://dl.acm.org/citation.cfm?
id=2228298.2228334

Oliner AJ, Aiken A (2011) Online detection of multi-component interactions in production systems.
In: Proceedings of the 2011 IEEE/IFIP 41st International Conference on Dependable Sys-
tems&Networks, DSN ’11. IEEE Computer Society, Washington, pp 49–60. https://doi.org/10.1109/
DSN.2011.5958206

Oliner A, Ganapathi A, Xu W (2012) Advances and challenges in log analysis. Commun ACM 55(2):55–61.
https://doi.org/10.1145/2076450.2076466

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2011) An exploratory
study of the evolution of communicated information about the execution of large software sys-
tems. In: Proceedings of the 18th Working Conference on Reverse Engineering, WCRE ’11,
pp 335–344

Shang W, Nagappan M, Hassan AE, Jiang ZM (2014) Understanding log lines using development knowl-
edge. In: Proceedings of the 2014 IEEE International Conference on Software Maintenance and
Evolution, ICSME ’14. IEEE Computer Society, Washington, pp 21–30. https://doi.org/10.1109/ICSME.
2014.24

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2014) An exploratory study
of the evolution of communicated information about the execution of large software systems. J Softw:
Evol Process 26(1):3–26

https://github.com/gousiosg/java-callgraph
https://doi.org/10.1109/ICSE.2009.5070510
https://goo.gl/4Tp1nr/
https://goo.gl/4Tp1nr/
https://doi.org/10.1145/2901739.2901769
https://doi.org/10.1145/2901739.2901769
https://doi.org/10.1109/SANER.2016.29
https://doi.org/10.1016/j.infsof.2007.02.015
https://doi.org/10.1007/s10664-016-9456-2
https://doi.org/10.1007/s10664-016-9467-z
http://dl.acm.org/citation.cfm?id=2486788.2486927
http://dl.acm.org/citation.cfm?id=2228298.2228334
http://dl.acm.org/citation.cfm?id=2228298.2228334
https://doi.org/10.1109/DSN.2011.5958206
https://doi.org/10.1109/DSN.2011.5958206
https://doi.org/10.1145/2076450.2076466
https://doi.org/10.1109/ICSME.2014.24
https://doi.org/10.1109/ICSME.2014.24


Empir Software Eng

Shang W, Nagappan M, Hassan AE (2015) Studying the relationship between logging characteristics and the
code quality of platform software. Empir Softw Eng 20(1):1–27

Stol KJ, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: A critical review
and guidelines. In: Proceedings of the 38th International Conference on Software Engineering, ICSE
’16. ACM, New York, pp 120–131. https://doi.org/10.1145/2884781.2884833

Tan J, Pan X, Kavulya S, Gandhi R, Narasimhan P (2008) Salsa: Analyzing logs as state machines.
In: Proceedings of the First USENIX Conference on Analysis of System Logs, WASL’08. USENIX
Association, Berkeley, pp 6–6. http://dl.acm.org/citation.cfm?id=1855886.1855892

The Open Source Elastic Stack (2017) https://www.elastic.co/products/
Wilcoxon F, Wilcox RA (1964) Some rapid approximate statistical procedures. Lederle Laboratories
Xu W, Huang L, Fox A, Patterson D, Jordan MI (2009) Detecting large-scale system problems by mining

console logs. In: Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
SOSP ’09. ACM, New York, pp 117–132. https://doi.org/10.1145/1629575.1629587

Yin RK (2013) Case study research: Design and methods. Sage publications
Yuan D, Mai H, Xiong W, Tan L, Zhou Y, Pasupathy S (2010) Sherlog: Error diagnosis by connecting

clues from run-time logs. In: Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XV. ACM, New York, pp 143–154.
https://doi.org/10.1145/1736020.1736038

Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y, Savage S (2012a) Be conservative: Enhancing
failure diagnosis with proactive logging. In: Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12. USENIX Association, Berkeley, pp 293–306. http://dl.
acm.org/citation.cfm?id=2387880.2387909

Yuan D, Park S, Zhou Y (2012b) Characterizing logging practices in open-source software. In: Proceedings of
the 34th International Conference on Software Engineering, ICSE ’12. IEEE Press, Piscataway, pp 102–
112. http://dl.acm.org/citation.cfm?id=2337223.2337236

Yuan D, Zheng J, Park S, Zhou Y, Savage S (2012c) Improving software diagnosability via log enhancement.
ACM Trans Comput Syst 30(1):4:1–4:28. https://doi.org/10.1145/2110356.2110360

Yuan D, Zheng J, Park S, Zhou Y, Savage S (2012d) Improving software diagnosability via log enhancement.
ACM Trans Comput Syst (TOCS) 30(1):4

Zhang H (2009) An investigation of the relationships between lines of code and defects. In: 2009. ICSM
2009. IEEE International Conference on Software Maintenance. IEEE, pp 274–283

Zhu J, He P, Fu Q, Zhang H, Lyu MR, Zhang D (2015) Learning to log: Helping developers make informed
logging decisions. In: Proceedings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ’15. IEEE Press, Piscataway, pp 415–425. http://dl.acm.org/citation.cfm?id=2818754.
2818807

Mehran Hassani received the BS degree in Computer engineering from Tabriz University, Iran, in 2015.
He is currently a Masters student in computer science at the Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada. His research interests include software logs, mining
software repositories, and empirical software engineering.

https://doi.org/10.1145/2884781.2884833
http://dl.acm.org/citation.cfm?id=1855886.1855892
https://www.elastic.co/products/
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1145/1736020.1736038
http://dl.acm.org/citation.cfm?id=2387880.2387909
http://dl.acm.org/citation.cfm?id=2387880.2387909
http://dl.acm.org/citation.cfm?id=2337223.2337236
https://doi.org/10.1145/2110356.2110360
http://dl.acm.org/citation.cfm?id=2818754.2818807
http://dl.acm.org/citation.cfm?id=2818754.2818807


Empir Software Eng

Weiyi Shang is an Assistant Professor and Concordia University Research Chair in Ultra-large-scale Systems
at the Department of Computer Science and Software Engineering at Concordia University, Montreal. He has
received his Ph.D. and M.Sc. degrees from Queen’s University (Canada) and he obtained B.Eng. from Harbin
Institute of Technology. His research interests include big data software engineering, software engineering
for ultra-large-scale systems, software log mining, empirical software engineering, and software performance
engineering. His work has been published at premier venues such as ICSE, FSE, ASE, ICSME, MSR and
WCRE, as well as in major journals such as TSE, EMSE, JSS, JSEP and SCP. His work has won premium
awards, such as SIGSOFT Distinguished paper award at ICSE 2013 and best paper award at WCRE 2011.
His industrial experience includes helping improve quality and performance of ultra-large-scale systems
in BlackBerry. Early tools and techniques developed by him are already integrated into products used by
millions of users worldwide.

Emad Shihab is an Associate Professor in the Department of Computer Science and Software Engineering
at Concordia University. He received his PhD from Queens University. Dr. Shihab’s research interests are
in Software Quality Assurance, Mining Software Repositories, Technical Debt, Mobile Applications and
Software Architecture. He worked as a software research intern at Research in Motion in Waterloo, Ontario
and Microsoft Research in Redmond, Washington. Dr. Shihab is a senior member of the IEEE.



Empir Software Eng

Nikolaos Tsantalis received the PhD degree in computer science from the University of Macedonia, Thes-
saloniki, Greece, in 2010. He is an associate professor in the Department of Computer Science and Software
Engineering at Concordia University, Montreal, Canada, and holds a Concordia University Research Chair in
Web Software Technologies. His research interests include software maintenance, empirical software engi-
neering, refactoring recommendation systems, and software quality assurance. He has been awarded with
two ACM SIGSOFT Distinguished Paper Awards at FSE 2016 and ICSE 2017, and a Most Influential Paper
Award at SANER 2018. He serves regularly as a program committee member of international conferences in
the field of software engineering, such as ASE, ICSME, SANER, ICPC, and SCAM. He is a member of the
IEEE and the ACM, and holds a license from the Association of Professional Engineers of Ontario.


	Studying and detecting log-related issues
	Abstract
	Introduction
	Case Study Setup
	Subject Systems
	Collecting Log-Related Issues

	Case Study Results
	RQ1: What are the Characteristics of Files With Log-Related Issues?
	Motivation
	Approach
	Results


	RQ2: Who Reports and Fixes Log-Related Issues?
	Motivation
	Approach
	Results


	RQ3: How Quickly are Log-Related Issues Reported and Fixed?
	Motivation
	Approach
	Results


	RQ4: What are the Root-Causes of Log-Related Issues?
	Motivation
	Approach
	Results
	Inappropriate Log Message
	Missing Logging Statements
	Inappropriate Log Level
	Log Library Configuration Issues
	Runtime Issues
	Overwhelming Logs
	Log Library Changes



	Automatic Detection of Inappropriate Logging Statements
	Log Level Checker
	Catch Block Checker
	Log Level Guard Checker
	Typo Checker
	Results of Applying the Tool

	Related Work
	Log Analysis
	Logging Enhancement

	Discussions and Threats to Validity
	Impact of the Threshold on Our Checkers
	Log Level Checker Refinement
	Catch Block Checker Refinement


	Internal Validity
	Construct Validity
	Construct Validity Threats

	External Validity

	Conclusion
	References


