
Empirical Software Engineering (2025) 30:17
https://doi.org/10.1007/s10664-024-10560-7

A qualitative study on refactorings induced by code review

Flávia Coelho1 · Nikolaos Tsantalis2 · Tiago Massoni3 · Everton L. G. Alves3

Accepted: 1 October 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Modern Code Review (MCR) has become an essential practice in pull-based development
since reviewers may provide insights for improvements, such as code refactoring, in Pull
Requests (PRs). A recent study explored PRs in light of refactoring-inducement, discovering
statistical differences in the number of reviewcomments and discussions between refactoring-
inducing and non-refactoring-inducing PRs. In refactoring-inducing PRs, the refactoring
edits emerge after the initial commit(s) as a result of review comments and/or spontaneous
initiative by the PR developer. In this paper, we report a qualitative study that examines code
reviewing-related aspects (review comments and discussion) to characterize code review in
refactoring-inducing PRs. We conjecture that code reviews differ in refactoring-inducing
from non-refactoring-inducing PRs, which has interesting implications. To investigate our
hypothesis, we manually scrutinized 923 review comments and 361 refactoring edits from
a purposive sample of 118 Apache’s merged PRs, hosted on GitHub. Our results reveal
motivating factors behind refactoring-inducing PRs, technical aspects around the structure of
review comments in refactoring-inducing and non-refactoring-inducing PRs, and guidelines
for a more productive code reviewing settled on code enhancements through refactoring.
Accordingly, we suggest directions for researchers, practitioners, tool builders, and educators
to assist code review effectiveness in pull-based development.

Keywords Refactoring-inducing pull request · Modern code review · Empirical study

Communicated by: Ali Ouni

B Flávia Coelho
flaviacoelho@ufersa.edu.br

Nikolaos Tsantalis
nikolaos.tsantalis@concordia.ca

Tiago Massoni
massoni@computacao.ufcg.edu.br

Everton L. G. Alves
everton@computacao.ufcg.edu.br

1 Department of Computer Science, Federal Rural University of Semiarid, Mossoró, Brazil

2 Department of Computer Science, Concordia University, Montreal, Canada

3 Department of Computer Science, Federal University of Campina Grande, Campina Grande, Brazil

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10560-7&domain=pdf
http://orcid.org/0000-0002-0237-0748

 17 Page 2 of 49 Empirical Software Engineering (2025) 30:17

1 Introduction

In a code change-driven, tool-assisted, and asynchronous reviewing, named Modern Code
Review (MCR), developers (reviewers) provide comments intending code improvements by
manually examining the changes submitted by another developer (author) (Bacchelli andBird
2013). Guided by change and collaboration, MCR is crucial in repository-based software as
it occurs in Agile development and continuous delivery approaches, to efficiently produce
deployable software releases (Agi 2001; Humble and Farley 2010). Git Pull Requests (PRs)
accommodate a well-defined and collaborative reviewing (Git 2022), so fitting to the MRC
practice. Accordingly, reviewers may suggest improvements to the code into independent
working branches (development lines) before itsmerging (integration) to the main branch of
a repository. For that, after forking a Git branch, a developer can implement changes through
commits and open a PR to submit them for code reviewing. Chacon and Straub (2014).
Collaborative development platforms based on Git have grown in the number of developers
(over than 100 million at GitHub) around the world (Dohmke 2023).

Since changes may embrace new features, bug fixes, or other maintenance tasks, code
enhancements may incorporate refactoring edits (Palomba et al. 2017). Refactorings, coined
by Opdyke and Johnson (1990) and popularized by Fowler (1999), are performed to improve
the design quality and maintainability of object-oriented software, whereas preserving its
external behavior. In theMCR context, refactoring edits may emerge due to review comments
and discussions around code quality issues and/or spontaneous actions of a PR developer
(author) to refine her originally submitted code changes.

Empirical evidence points out the relevance of review comments and discussion for code
refactoring at the PR level when studying merged PRs containing at least one refactoring
(Pantiuchina et al. 2020). In a recent study that explored refactoring edits performed at
subsequent commits (i.e., after the initial commits included in the PR when it is created)
in merged PRs, we found a significant difference in the number of review comments and
discussion length between refactoring-inducing and non-refactoring-inducing PRs, and a
substantial number of refactoring edits induced by code review; thus identifying potential
technical aspects that might shed light on the refactoring-inducement (Coelho et al. 2021).

In a refactoring-inducing PR (Definition 1), the refactoring edits emerge after the initial
PR commit(s), resulting from review comments/discussion and/or spontaneous actions done
by the PR author. Intending fair examinations, we consider the PRs that comprise at least
one review comment.

Definition 1 A PR is refactoring-inducing if refactoring edits are performed in subsequent
commits after the initial PR commit(s), as a result of the reviewing process or spontaneous
improvements by the PR author. Let U = {u1, u2, ..., uw}, a set of repositories in GitHub.
Each repository uq, 1 ≤ q ≤ w, has a set of PRs P(uq) = {p1, p2, ..., pm} over time. Each
PR pj, 1 ≤ j ≤ m, has a set of commits C(pj) = {c1, c2, ..., cn}, in which I (pj) is the set
of initial commits included in the PR when it is created and S(pj) is the set of subsequent
commits incorporated into the PR after its creation, I (pj) ⊆ C(pj) and S(pj) ⊆ C(pj). A
refactoring-inducing PR is that in which ∃ ck | R(ck) �= ∅ and ∃ ci | RC(ci) �= ∅, where
R(ck) and RC(ci) respectively denote the set of refactoring edits performed in commit ck
and the set of review comments left in commit ci, |I (pj)| < k ≤ n and ci ∈ I (pj) ∪ S(pj).

Figure 1 depicts a refactoring-inducing PR consisting of two initial commits (c1 −c2) and
two subsequent commits (c3 − c4), which include refactoring edits, e.g., commit c3 has one
Extract Method edit. The PR also comprises review comments in commits c2 and c3. Our

123

Empirical Software Engineering (2025) 30:17 Page 3 of 49 17

Fig. 1 A refactoring-inducing PR (Apache Tinkerpop #1110), illustrating initial commits (c1−c2), subsequent
commits (c3 − c4), and the presence of review comments

study explores refactoring edits in the subsequent PR commits (c3 − c4) and review com-
ments/discussion in all PR commits (c1 − c4). To be concise, we use the format<Repository
#number> to designate a specific repository’s PR (e.g., Tinkerpop #1110).

Given that, we conjecture that refactoring-inducing and non-refactoring-inducing PRs
have distinct characteristics regarding code review.We further scrutinize refactoring-inducing
PRs with a qualitative study aiming to investigate reviewing-related aspects (review com-
ments and discussion) to understand how code review can induce refactoring edits. For
that, we search for patterns and particular characteristics intrinsic to those aspects in both
refactoring-inducing and non-refactoring-inducing PRs.

1.1 Motivation

Review comments drive the majority of code changes in a PR (Beller et al. 2014), and
consequently affect the time to merge a PR (Gousios et al. 2014). There is empirical evidence
of an extensive review effort concerning changes containing refactoring edits, given that
restructuring existing code may be complex (Wang et al. 2019; AlOmar et al. 2021). Despite
works investigating the motivations behind refactoring (Paixão et al. 2020; Pantiuchina et al.
2020; Silva et al. 2016) and refactoring review criteria (AlOmar et al. 2022) at code review
time, little is known about reviews that induce refactoring edits.

In a recentmixed-methods study,we explored technical aspects characterizing refactoring-
inducing PRs (Coelho et al. 2021). For that, we randomly sampled 1,845 Apache’s merged
PRs, encompassing 4,702 subsequent commits, 6,556 detected refactorings, and 12,547
review comments, mined from 84 distinct repositories. Our quantitative analysis revealed
557/1,845 refactoring-inducing PRs (30.2%). By examining code churn (number of altered
lines), discussion length, time to merge, and the number of subsequent commits, file changes,
and review comments, we found significant differences between refactoring-inducing and
non-refactoring-inducing PRs. In our qualitative analysis, wemanually scrutinized a stratified
sample of 228/557 refactoring-inducing PRs by cross-referencing 2,096 review comments to
1,891 detected refactorings. Code review induced refactoring edits in 133/228 refactoring-
inducing PRs (58.3%). Our findings motivate further exploration of code reviewing-related
aspects for a better knowledge of refactoring at the PR level.

Indeed, code review is a non-trivial task because of related technical and social aspects
(Rigby et al. 2015). In 2013, Bacchelli and Bird manually examined review comments and
determined motivations and challenges for MCR (Bacchelli and Bird 2013), thus leveraging

123

 17 Page 4 of 49 Empirical Software Engineering (2025) 30:17

actionable directions for researchers, practitioners, tool builders, and educators. Also, qualita-
tive studies have discovered patterns in review comments that support a better understanding
ofMCR practice in the direction of effectiveness (acceptance of changes) and efficiency (time
to accept changes) (Bosu et al. 2015; Li et al. 2017; Rahman et al. 2017; Ebert et al. 2021;
Panichella and Zaugg 2020).

Through knowledge regarding the inherent characteristics of review comments in
refactoring-inducing and non-refactoring-inducing PRs,we aim to advance the understanding
of code review practices around pull-based development, and propose actionable improve-
ments to this process. For instance, as discussions may affect the acceptance of PRs (Tsay
et al. 2014), increase code design degradation (Uchôa et al. 2020), and influence the review
time (Kononenko et al. 2018), it is relevant to scrutinize such an aspect in refactoring-inducing
and non-refactoring-inducing PRs to recognize how they affect the refactoring practice.

Moreover, and perhaps mainly, we aim to enhance guidelines/good practices intending
code review effectiveness and efficiency towards refactoring, thus supporting:

– the necessity for articulating appropriate review comments (Bosu et al. 2017; Ebert et al.
2021; Brown and Parnin 2020; Hossain et al. 2020); and

– the empirical evidence on the benefits of following best practices in code review regarding
code quality improvements, knowledge transfer, team awareness, and sharing of code
ownership – a practical challenge because code review embraces technical and social
aspects (Chouchen et al. 2021; MacLeod et al. 2018).

1.2 Research Overview

It is noteworthy that we consider code review practices at the PR level aiming to explore a
well-defined development scope, thus scrutinizing review comments from the initial com-
mits to subsequent commits of a PR. Accordingly, we could gain a global comprehension
of contributions to the original code through both commits and reviewing-related aspects.
Empirical evidence that PR discussions lead to additional refactoring edits (Pantiuchina et al.
2020) inspired such a conception.

We scrutinized a purposive sample of 118 merged PRs, 923 review comments, 361 refac-
toring edits, and the experience of their reviewers. We selected those 118 PRs from 1,639
Apache’smergedPRs, previouslymined fromGitHub. This setting can provide awell-defined
structure (of contributions and contributors) to understandmotivations, peculiarities, and code
review practices as an initial ground for investigations regarding refactoring-inducing PRs.
To establish this scenario, we considered the empirical insights on the contexts and organiza-
tional structures as influencing factors for code reviewing provided by Baysal et al. (2016).

Our qualitative study encompasses four rounds of analysis. At each one, we investigated
review comments, discussion, and the reviewers’ experience from the purposive sample of
PRs while cross-referencing their detected refactoring edits. Our results reveal motivating
factors behind refactoring-inducing PRs, technical aspects of the structure of review com-
ments in both refactoring-inducing and non-refactoring-inducing PRs, and guidelines for a
more productive code review towards code refactoring.

1.3 Contributions

We point out the main contributions of this work:

– To the best of our knowledge, this is the first pure qualitative study investigating code
reviewing-related aspects in the context of refactoring-inducing PRs (Definition 1).

123

Empirical Software Engineering (2025) 30:17 Page 5 of 49 17

– This work analyses code review in real-life and collaborative repositories driven by pull-
based development.

– Our purposive sample comprises only merged PRs that did not suffer rebasing and their
respective set of validated refactoring edits in order to mitigate threats to validity.

– We make available a complete reproduction kit, including the datasets, implemented
scripts, worksheets, and instructions to enable replications and future research (Coelho
2024).

2 Motivating Study

In our previous study (Coelho et al. 2021), we discovered significant differences between
refactoring-inducing and non-refactoring-inducing PRs in terms of code churn, number of
subsequent commits, number of file changes, number of review comments, discussion length,
and time to merge. Moreover, we found refactoring edits induced by code review in almost
60% of refactoring-inducing PRs in a stratified sample (number of refactoring edits as cri-
teria). Given that, we speculate that there are distinctions between refactoring-inducing and
non-refactoring-inducing PRs, in terms of the structure of review comments. In specific, we
hypothesize that review comments that induce refactoring edits may follow some particular
structuring pattern. Since code review and refactoring are time-consuming tasks (Alves et al.
2018; Gousios et al. 2014; Szőke et al. 2014), a better understanding of review practices in
refactoring-inducing PRsmight provide directions, such as guidelines, in order to improve the
practitioners’ effectiveness and productivity (e.g., reducing delays in merging code changes
in pull-based development) towards code refactoring.

As a preliminary study, we analyzed the time to merge in a sample of 65 refactoring-
inducing PRs, in turn, classified into (A) refactoring-inducing PRs in which code review
induced refactorings (49/65) and (B) refactoring-inducing PRs in which only authors pro-
posed refactorings (16/65). We observed that PRs in category A take 8.8 on average (SD =
13.8) and three on median (IQR = 10) days to merge, while the others (category B) take 24.8
on average (SD = 44.9) and 5.5 on median (IQR = 20.5) days (Coelho 2022). Therefore,
merging a PR in Category B takes three times as long as in Category A. Also, by manually
examining a few PRs, we discovered that uncertain review comments, which incorporate
expressions like “wondering if...”, usually have no effect (e.g., Flink #9143). However, when
structured as direct sentences, review comments often induce refactoring edits (e.g., “is an
array list here a little bit over-kill?” caused aChange Type refactoring in Dubbo #3299). This
result provides insights into the pertinence of an in-depth examination of review comments
aiming to identify patterns that, in turn, may assist us in designing guidelines for a more
effective and efficient code review in pull-based development.

3 Methodology

Our qualitative study investigates code reviewing-related aspects (review comments, discus-
sion, and reviewers’ experience) intending to characterize code review in refactoring-inducing
PRs, guided by the following research questions:

RQ1: How are review comments characterized in refactoring-inducing and non-refactoring-
inducing PRs? We first identified the characteristics of review comments in both
groups.

123

 17 Page 6 of 49 Empirical Software Engineering (2025) 30:17

RQ2: What are the differences between refactoring-inducing and non-refactoring-inducing
PRs, in terms of review comments? Then, we investigated the existence of similar-
ities/dissimilarities regarding review comments in both groups by contrasting their
corresponding characteristics.

RQ3: How do reviewers suggest refactorings in refactoring-inducing PRs? We scrutinized
the review comments in refactoring-inducing PRs to identify patterns for suggesting
refactorings.

RQ4: Do suggestions of refactoring justify the reasons? While exploring the refactoring
suggestions, we explored whether/how reviewers provide rationales for their propos-
als.

RQ5: What is the relationship between suggestions and actual refactorings in refactoring-
inducing PRs? While studying the suggestions of refactoring in review comments,
we also investigated patterns that would denote any relationship between suggestions
and actual refactorings.

It is worth clarifying that, in a previous mixed-methods work, we discovered differences
between refactoring-inducing and non-refactoring-inducing PRs by investigating quantitative
aspects of Apache’s merged PR (number of file changes and subsequent commits, code
churn, and time to merge) and code review (number of review comments and discussion).
Moreover, our qualitative analysis revealed that code review induced refactoring edits in
almost 60% of a stratified sample of refactoring-inducing PRs (Coelho et al. 2021). Based
on these results, this study is a second step aiming to gain an in-depth understanding of the
similarities/dissimilarities between refactoring-inducing and non-refactoring-inducing PRs
regarding code reviewing-related aspects. Accordingly, driven by a qualitative approach, we
concentrate on identifying the inherent characteristics of review comments in both categories
(RQ1) and recognizing their differences (RQ2). Then, we explore in more depth refactoring-
inducing PRs to know how review comments suggest refactoring edits (RQ3), whether the
refactoring suggestions provide reasons (RQ4), and the relation between these suggestions
and the actual refactoring edits (RQ5). Note that these research questions follow a chain of
evidence ranging from RQ1–RQ2 to RQ3–RQ5 to better grasp the code review practice in
the presence of refactoring edits.

To address our research questions, we considered merged PRs from Apache’s reposito-
ries on GitHub. We collected only merged PRs because they reveal finalized actions; thus,
we could explore the review comments/discussion and the refactoring edits performed that
constitute the actual history of PRs. Note that discussion, as we deemed, denotes either a
dialog between a PR author and reviewer(s) or an author’s response in opposition to one
or more review comments. We gathered repositories from the Apache ecosystem due to its
popularity and practical relevance of contributions in the Open-Source Software (OSS) sce-
nario (more than 8,200 contributors and 350 projects, in turn, completely migrated to GitHub
since February 2019) (Apa 2019a), so denoting a high maturity in pull-based development.
In particular, we picked only Java repositories given almost 28% of Apache’s source code is
developed in Java language in contrast to other languages, such as C++ (7.3%) and Python
(1.5%) (Apa 2020).

Tomine refactoring edits in those repositories, we chose theRefactoringMiner – a state-of-
the-art refactoring detection tool (precision of 97.96% and recall of 87.2%), which has been
shown superior to competitive tools to detect refactoring edits applied to Java source code
that follow pull-based development (Tsantalis et al. 2018). We considered RefactoringMiner
version 2.0 (Tsantalis et al. 2020), because it supports up to 40 different types of refactoring,
including low-level, medium-level, and high-level refactorings, allowing us to consider a

123

Empirical Software Engineering (2025) 30:17 Page 7 of 49 17

comprehensive and well-defined list of refactorings. Such a version may detect edits of
refactoring well-known by developers, including a few ones cataloged by Fowler (2018):
Extract Method, Inline Method, Rename Method, Move Method, Move Attribute, Rename
Class,Extract andMoveMethod,RenamePackage,Extract Variable, Inline Variable,Param-
eterize Variable, Rename Variable, Rename Parameter, Rename Attribute, Replace Variable
with Attribute, Replace Attribute (with Attribute),Merge Variable,Merge Parameter,Merge
Attribute, Split Variable, Split Parameter, Split Attribute, Change Variable Type, Change
Parameter Type, Change Return Type, Change Attribute Type, Extract Attribute, Move and
Rename Method, Move and Inline Method, Pull Up Method, Pull Up Attribute, Push Down
Method, Push Down Attribute, Extract Superclass, Extract Interface,Move Class,Move and
Rename Class, Extract Class, Extract Subclass, andMove and Rename Attribute (Ref 2018).
Note that newer RefactoringMiner versions might identify additional refactoring types; how-
ever, we speculate that this fact does not change our qualitative findings. Notwithstanding,
those extra refactoring types may be the focus of further research.

Our qualitative study considers code review comments (code review dataset) and refactor-
ing edits (refactorings dataset) previously detected in 1,639 merged PRs. We provide details
about the complete mining process of the merged PRs and their refactoring edits in Coelho
(2022); the datasets are publicly available (Coelho 2024). We manually inspected those PRs
to deal with rebasing issues (some PR commits may be due to external changes – outside
the scope of the code review sequence, conveying a threat to the validity (Paixão and Maia
2019)), thus providing a validated dataset of merged PRs for further investigations. A detailed
explanation of all different PR merge options is available in our previous work (Coelho et al.
2021).

As a whole, at each round of our qualitative study, we examined review comments, dis-
cussion, and reviewers’ experience of a purposive sample of PRs fitting a valuable scenario
to the current purposes of the analysis, while cross-referencing their detected refactorings
(from refactorings dataset). We adopted such non-probability sampling to select refactoring-
inducing and non-refactoring-inducing PRs from code review dataset. We followed that
sampling strategy until we reached data saturation (when no new information emerges), in
turn, was achieved after four rounds of analysis. To address our research questions, each
round of analysis follows the procedures depicted in Fig. 2.

Fig. 2 An overview of round i of our qualitative study

123

 17 Page 8 of 49 Empirical Software Engineering (2025) 30:17

We clarify that our study design does not encompass a survey among the PR reviewers
to validate our findings because this approach would require recent (open) PRs so that the
involved reviewers have fresh memory discussions. Our dataset is relatively old with PRs
ranging from 2014–2019. Contacting the code reviewers on such old PRs would not be
effective, as they would hardly remember their thoughts, and thus not willing to discuss
these PRs with researchers. Even the best-designed studies following the firehouse interview
method (Silva et al. 2016), in which the researchers contacted the developers within 24 hours
after their actions, achieved a response rate of 42%.

Next, we describe how we deal with the review comments and discussions (Sections 3.1
to 3.4) and the reviewers’ experience (Section 3.5).

3.1 Selection of a Purposive Sample

We chose purposive sampling because it supports an in-depth understanding of the data by
exploring scenarios suitable at each round, in line with emergent patterns or ideas (Patton
2014). Note that, in all rounds, we selected themost representative samples, in linewith emer-
gent patterns, intending to obtain more accurate results than those achieved by selecting other
probability sampling strategies. For instance, in the second round, we explored refactoring-
inducing PRs containing only one low-level refactoring edit. Then, in the third round, we
examined refactoring-inducing PRs comprising high-level refactoring edits in order to inves-
tigate whether the emerged patterns from Round 2 remain in their presence. Table 1 outlines
the main objective of each round of analysis. The emerged patterns from Round 1 continue
until Round 4, in which we reach a saturation point.

We empirically considered 20 as theminimum size for the purposive samples by following
Creswell’s guidelines (Creswell 2012) on the number of interviewers during a grounded
theory study, which comes close to our characterization study (when investigating comments
from reviewers), aiming at developing a well-saturated theory. Thus, as a PR has at least one
reviewer, we took into account 20: ten refactoring-inducing PRs and ten non-refactoring-
inducing PRs. Accordingly, we established 20 as a baseline in Rounds 1 and 2. Then, we
employed theoretical saturation to determine the final sample size in Rounds 3 and 4; in
particular, we deemed unexplored settings of code refactoring as a general rule to achieve
a saturation point. Next, we detail how we built the samples; note that we apply a random
purposeful strategy in all rounds.

For the first round of analysis (sample 1), looking for a fair comparison between groups
when addressing RQ1 and RQ2, we randomly selected ten refactoring-inducing and ten non-
refactoring-inducing PRs that contain five review comments and two reviewers – intermediate

Table 1 Summary of the
objective of each round of the
qualitative analysis

Round Main objective

1 Investigating an initial random sample of PRs

2 Checking if emerged patterns remain in refactoring-
inducing PRs consisting of only one refactoring

3 Exploring if emerged patterns persist in refactoring-
inducing PRs consisting of high-level refactorings

4 Inspecting if emerged patterns continue regardless of the
sequence of refactoring edits

123

Empirical Software Engineering (2025) 30:17 Page 9 of 49 17

values regarding the average and median of the number of review comments and reviewers
in both groups (in the 1,639 PRs).

We also considered 20 as the size for the second purposive sample (sample 2): ten
refactoring-inducing and ten non-refactoring-inducing PRs that contain only one subsequent
commit. We investigated whether the patterns that emerged from distinct compositions of
refactoring edits (Round1, inwhich the number of refactorings is 6.6 on average and 3.5 on the
median) even remain in refactoring-inducing PRs consisting of only one refactoring edit – the
most simple setting of refactoring in a refactoring-inducingPR.WeaddressedPRs comprising
a single subsequent commit to compare refactoring-inducing and non-refactoring-inducing
PRs (RQ1 and RQ2).

In the third purposive sample (sample 3, Round 3), to address RQ3 to RQ5, we considered
13 refactoring-inducing PRs from 36 that present high-level refactorings to explore whether
the emergent patterns from the previous rounds (which comprise less complex PRs) persist.
Those 13 refactoring-inducingPRs embrace a diversified setting of refactoring edits of distinct
types (found in those 36), including only one type of refactoring (e.g., Dubbo #3654) and a
mix of types of refactoring (e.g., Incubator-Iceberg #183).We decided to explore refactoring-
inducing PRs consisting of high-level refactorings because only 2/20 (10%) refactoring-
inducing PRs contain high-level refactoring edits in the previous samples (Rounds 1 and 2):
Flink #7945 and Kafka #5194. To deal with RQ1 and RQ2, we examined a randomly selected
sample of 13 non-refactoring-inducing PRs that present ten review comments – a median of
the number of review comments in that 13 refactoring-inducing PRs.

In the fourth purposive sample (sample 4,Round4), to addressRQ3 toRQ5,we selected the
26 refactoring-inducing PRs that present distinct sequences of refactoring edits (of different
types) in the PR commits history (e.g., edits of Rename Variable and Extract Variable in a
single commit against ones in two separated commits). In particular, we explored whether the
emergent patterns from the previous rounds persist regardless of the sequence of refactoring
edits applied to the commits history. To address RQ1 and RQ2, we investigated a randomly
selected sample of 26 non-refactoring-inducing PRs that present seven review comments –
the median value of the number of review comments in that 26 refactoring-inducing PRs.

Table 2 summarizes the number of refactoring-inducing and non-refactoring-inducing
PRs, review comments, subsequent commits, and refactoring edits considered in each round
of analysis. Table 3 displays a few statistical summaries regarding code reviewing-related
aspects and time to merge for the PRs. The different number of refactoring-inducing and non-
refactoring-inducing PRs in Round 4 is due to the manual validation of refactorings mined
by RefactoringMiner, as explained in Section 3.2. The average and the median number of
refactoring edits consisted of 6.6 (SD = 7.6) and 3.5 (IQR = 6.2) in Round 1; 1.0 (SD = 0.0)

Table 2 Summary of the purposive samples

Round Number of Number of Number of Number of Number of
refactoring- non-refactoring- review subsequent refactoring
inducing PRs inducing PRs comments commits edits

1 10 10 100 40 66

2 10 10 87 20 10

3 13 13 327 126 208

4 27 25 409 160 77

Total 60 58 923 346 361

123

 17 Page 10 of 49 Empirical Software Engineering (2025) 30:17

Table 3 Statistical summary
(code review aspects and time to
merge) of the purposive samples

Round Number of Number of Time to merge
reviewers review comments (in number of days)

Refactoring-inducing PRs

1 2.0 (0.0) 5.0 (0.0) 3.4 (6.7)

2.0 (0.0) 5.0 (0.0) 1.0 (2.2)

2 1.7 (0.5) 4.1 (4.6) 3.9 (6.8)

2.0 (0.7) 2.0 (2.2) 1.0 (2.7)

3 3.1 (1.1) 15.1 (13.7) 11.5 (14.8)

3.0 (1.0) 10.0 (14.0) 6.0 (8.0)

4 2.3 (0.9) 8.7 (5.7) 21.9 (36.4)

2.0 (1.0) 7.0 (8.5) 7.0 (15.5)

Non-refactoring-inducing PRs

1 2.0 (0.0) 5.0 (0.0) 2.5 (3.6)

2.0 (0.0) 5.0 (0.0) 1.0 (2.7)

2 2.2 (0.6) 4.6 (4.0) 2.6 (2.3)

2.0 (0.7) 3.5 (3.2) 2.5 (4.5)

3 2.7 (0.9) 10.0 (0.0) 10.9 (23.2)

3.0 (1.0) 10.0 (0.0) 2.0 (7.0)

4 2.4 (0.7) 7.0 (0.0) 6.7 (8.2)

2.0 (1.0) 7.0 (0.0) 3.0 (11.0)

where<number> (<number>) denotes the average (standard deviation)
and median (interquartile range)

and 1.0 (IQR = 0.0) in Round 2; 16.0 (SD = 18.6) and 10.0 (IQR = 12.0) in Round 3; and 2.8
(SD = 1.1) and 2.0 (IQR = 2.0). The magnitude of refactoring-inducing and non-refactoring-
inducing PRs increases in the following order (Table 4): sample 2< sample 1< sample 4<
sample 3 when considering size-related aspects (number of subsequent commits, number of
file changes, and code churn).

Table 4 Statistical summary (magnitude) of the purposive samples

Round Number of Number of Number of Number of
subsequent file changes added lines deleted lines
commits

Refactoring-inducing PRs

1 2.3 (1.2) 9.1 (9.3) 103.9 (185.7) 50.5 (61.7)

2.0 (1.7) 5.5 (12.5) 31.0 (47.0) 23.0 (43.7)

2 1.0 (0.0) 1.7 (0.7) 38.5 (66.1) 28.7 (59.1)

1.0 (0.0) 2.0 (1.0) 6.0 (31.7) 5.0 (16.2)

3 5.8 (3.6) 26.5 (34.6) 550.0 (1,198.8) 297.9 (490.7)

5.0 (6.0) 16.0 (22.0) 143.0 (332.0) 104.0 (281.0)

4 3.8 (3.3) 9.1 (12.9) 278.9 (797.6) 54.6 (79.3)

3.0 (2.5) 5.0 (6.0) 39.0 (99.5) 23.0 (27.5)

123

Empirical Software Engineering (2025) 30:17 Page 11 of 49 17

Table 4 continued

Round Number of Number of Number of Number of
subsequent file changes added lines deleted lines
commits

Non-refactoring-inducing PRs

1 1.7 (0.9) 3.0 (1.9) 21.8 (25.3) 14.8 (17.5)

1.5 (1.0) 2.0 (2.5) 8.5 (36.0) 7.5 (16.0)

2 1.0 (0.0) 2.1 (1.7) 104.1 (278.5) 97.7 (280.2)

1.0 (0.0) 1.5 (1.0) 3.5 (39.7) 4.0 (7.7)

3 3.8 (1.9) 7.7 (4.6) 47.2 (48.6) 29.9 (39.4)

3.0 (2.0) 6.0 (4.0) 23.0 (40.0) 18.0 (16.0)

4 2.2 (2.2) 4.4 (4.9) 54.2 (92.4) 31.3 (63.3)

2.0 (2.0) 3.0 (4.0) 18.0 (21.0) 6.0 (23.0)

where <number> (<number>) denotes the average (standard deviation) and median (interquartile range)

Furthermore, Table 5 describes the Apache repositories of the PRs under exploration,
accompanied by their frequency in refactoring-inducing and non-refactoring-inducing PRs.
As a whole, we investigated PRs from 27 distinct repositories, in which Kafka, Dubbo, and
Beam aremore frequent, totalizing 24/118 (20.34%), 15/118 (12.71%), and 12/118 (10.17%),
respectively.

Table 5 Repositories of the purposive samples

Repository Purpose RI nonRI

Accumulo Sorted, distributed key/value store 1/60 2/58

Avro Data serialization system 1/60 0/58

Beam Batch and streaming data processing 4/60 8/58

Brooklyn-Server Managing cloud applications 2/60 1/58

Cloudstack Deploying and managing networks of 3/60 6/58

virtual machines

Commons-Text Library for handling strings 0/60 1/58

Dubbo Web and RPC framework 7/60 8/58

Flink Framework and distributed processing 7/60 4/58

engine

Fluo Distributed processing system 1/60 1/58

Hadoop Framework for distributed processing 0/60 1/58

Incubator-Iceberg Open table format for analytic datasets 2/60 1/58

Incubator-Iotdb IoT native database 0/60 2/58

Incubator-Pinot Real-time analytics open source platform 1/60 1/58

Kafka Distributed event streaming platform 14/60 10/58

Knox REST API and application gateway 2/60 0/58

Logging-Log4j Logging framework 1/60 0/58

Parquet-Format Data file format for storage and retrieval 0/60 1/58

Plc4x Set of libraries for interacting with PLCs 0/60 1/58

123

 17 Page 12 of 49 Empirical Software Engineering (2025) 30:17

Table 5 continued

Repository Purpose RI nonRI

Rocketmq-Externals Real-time data processing platform 1/60 0/58

Samza Distributed stream processing framework 2/60 0/58

Servicecomb-Java- Java SDK to build microservices 2/60 4/58

Chassis

Sling-Org-Apache- Framework for RESTful Web applications 1/60 0/58

Sling-Feature-Analyser

Struts Framework for Java Web applications 1/60 1/58

Tika Detection and extraction of metadata 1/60 0/58

Tinkerpop Graph computing framework 2/60 4/58

Tomee JakartaEE application server 3/60 1/58

Usergrid Backend-as-a-service 1/60 0/58

where RI and non-RI denote the frequency of each repository in refactoring-inducing and non-refactoring-
inducing PRs, respectively, in our purposive sample

3.2 Sanity Check of Refactoring Edits

As shown in Fig. 2, at each round, three researchers individually checked all PR commits,
searching for refactoring edits (Step 2), by exploring the type and description of themas stored
in the refactorings dataset. For that, after selecting each purposive sample (Round 1 – Round
4), they individually examined the changed code snippets across the PR subsequent commits
at GitHub, by cross-referencing themwith the refactoring edit(s) as stored in the refactorings
dataset aiming to identify true negatives, false positives, and false positives. To document
their observations, each researcher filled out the fields confirmed_refactoring_flag and notes
in a worksheet (detailed in Section 3.3). Then, in a remote meeting, they collectively checked
their observations. With no disagreements or disputes, they identified that RefactoringMiner
mistakenly detected an edit as a Rename Method (Kafka #6565). It also did not identify an
Extract Attribute (Accumulo-Examples #19), an Extract Variable (Tinkerpop #893), and a
Rename Method (Kafka #7132). RefactoringMiner achieved a precision of 99.7% and recall
of 99.2% in the refactoring detection in 118 PRs (Table 6).

3.3 Manual Analysis of Review Comments

Each researcher examined the review comments from the PRs in each purposive sample
(Step 3), assisted by the refactorings dataset. To clarify, besides seeking patterns in review

Table 6 Results of the manual validation of refactoring edits mined by RefactoringMiner

Sample Number of Number of Number of Precision Recall
true positives false positives false positives (%) (%)

1 66 0 0 100.0 100.0

2 10 1 1 90.9 90.9

3 208 0 0 100.0 100.0

4 77 0 2 100.0 97.5

Total 361 1 3 99.72 99.18

123

Empirical Software Engineering (2025) 30:17 Page 13 of 49 17

comments, the researchers cross-referenced the type of refactorings performed (if so) and
the review comments left in all commits of a PR. In such a procedure, it was crucial to
directly examine PRs at GitHub because we could access commits and review comments in
chronological order.

For each sample, the researchers filled a worksheet structured with the following fields:

– repo: repository name,
– pr_number: PR number,
– category: refactoring-inducing PR or non-refactoring-inducing PR,
– pr_url: PR URL,
– commit: commit SHA,
– initial_flag: whether a commit is an initial or subsequent commit,
– refactoring_type: type of a refactoring edit,
– refactoring_detail: description of a refactoring edit, as RefactoringMiner output,
– confirmed_refactoring_flag: if a refactoring edit is a true positive,
– covered_refactoring_flag: if a refactoring edit was induced by code review,
– floss_refactoring_flag: if there is the presence of floss refactoring in a commit,
– direct_review_comment_flag: if a review comment directly suggests a refactoring edit,
– discussion_flag: if there was discussion related to a review comment in a commit,
– rationale_flag: if a review comment presents a rationale to suggest a refactoring edit, and
– notes: specific comments of a researcher.

In this subjective analysis, the researchers considered the refactoring inducement in
settings where review comments, either explicitly suggested refactoring edits or left any
actionable recommendation that induced refactoring, to answer the research questions. For
example, “... the name is really misleading ...” induced a Rename Method (Avro #525),
whereas “Won’t you need to use a single instance for both arguments?” inspired an Extract
Attribute (Beam #4407). It is noteworthy that the researchers have a background in such an
analysis, given their experience in our previous study (Coelho et al. 2021).

3.4 Merging of Judgements

In a remote meeting, at the end of each round, one researcher analyzed all individual judg-
ments while filling out a synthesizing worksheet for the sample. As a decision criterion, we
considered the agreement of responses by at least two researcherswhen analyzing the fields of
the worksheets. Leveraging the researchers’ expertise in subjective data analysis concerning
code review and refactoring induction, the decision criterion was adequately fulfilled (100%
of the samples attained at least two agreements, with no dispute cases). Disagreement cases
(e.g., regarding a missed indirect refactoring suggestion) were rare and promptly treated by
the researchers at the remote meetings. This setting occurred about twice in each purposive
sample.

Driven by emerging patterns, the same researcher explored the field ‘notes’ in the syn-
thesizing worksheet in order to answer the research questions. Next, the three researchers
engaged in meetings to discuss those answers, aiming to achieve a concluding comprehen-
sion concerning the sample (Step 4). For that, they carried out the following procedures to
deal with each research question: (1) read the proposed answer to the research question, (2)
highlight the emergent patterns, (3) confirm/refute/include the emergent patterns, and (4)
revise the answer.

It should be noted that the answers to the research questions are intrinsically subjective
and transcend the worksheets’ fields. To clarify, to understand the “how” (RQ1 and RQ3),

123

 17 Page 14 of 49 Empirical Software Engineering (2025) 30:17

Fig. 3 Example of a GitHub profile (author of Kafka #5784)

we searched for patterns that, in turn, rely on a discerning interpretation by the researchers.
The “what”(RQ2 and RQ5) also requires some comparative judgment in light of the iden-
tified patterns. RQ4 is less reliant on patterns but still deserves attention, as refactoring
suggestions may vary in structure and content (e.g., straightforward versus complex review
comments). Therefore, wemade an effort to carefully consider group brainstorming sessions,
discussions, and revisiting PRs on GitHub as needed, aiming to build a comprehensive and
collective understanding of each sample. Accordingly, the concluding analysis of each round
denotes incremental knowledge on refactoring-inducing PRs. We document those interme-
diate judgments and respective emerged patterns in our reproduction kit (Coelho 2024).

3.5 Reviewers’ Experience

Apache Foundation designates roles for contributors (Apa 2021). A contributor is a devel-
oper who contributes to a project in the form of code or documentation; a committer is a
contributor who has write access to the code repository, and a Project Management Com-
mittee (PMC) member is a committer who has write access to the code repository and can
approve/disapprove the changes. Not all PR participants indicate their Apache roles. Thus,
we inferred such a scenario from examining the profile of authors and reviewers. In addition
to Apache contributors, we recognized that committers and PMC members also submit PRs
to Apache repositories. It is noteworthy that we did not include the PRs with no review in
Java code to compute the experience.

We considered the number of contributions of the Apache contributors (PR authors and
reviewers) as a proxy for their experience. For that, we computed the number of contributions
taking into account the joining date of their profiles in GitHub until the PR creation date under
investigation. Namely, we summed all the number of contributions by year, in the range, for
each developer – a manual and time-consuming process because we needed to check each
profile in line with the associated PR creation date. Therefore, a developer might have distinct
computed experience in different PRs. To illustrate our counting strategy, consider Kafka
#5784, created in October 2018. Each one of the contributors has a profile from which we
can access the number and the description of their contributions by year1, as exemplified in
Fig. 3. The PR author joined GitHub in 2015; thus, we manually counted the number of his
contributions from 2015 until September 2018 (the previous month to the PR date creation),
figuring 1,123 contributions. Correspondingly, we computed the number of contributions for
all PR authors and reviewers in our sample.

1 https://github.com/rajinisivaram

123

https://github.com/rajinisivaram

Empirical Software Engineering (2025) 30:17 Page 15 of 49 17

We explored such a subject because there is empirical evidence that the reviewer expe-
rience is the main factor influencing code review quality (Kononenko et al. 2015, 2016;
Thongtanunam et al. 2016; Bosu et al. 2017; Rahman et al. 2017). Nevertheless, it is not
feasible to accurately compute reviewer experience (Kononenko et al. 2018). For instance,
Rigby et al. figured it in terms of the time a developer has been with a project whereas Baysal
et al. calculated the number of previous reviews and classified them in line with the reviewing
efforts (Baysal et al. 2016). We consider the number of contributions as a proxy for reviewer
experience, as using qualitative methods for assessing reviewer experience would be very
time-consuming, given the large number (thousands) of code reviews in our sample. Note that
whereas Rigby et al. found that reviewers typically have more experience than authors when
investigating Apache HTTP Server, we extend the knowledge of the experience of Apache
developers by studying their experience in pull-based development (on refactoring-inducing
and non-refactoring-inducing PRs).

We applied statistical hypothesis testing intending to analyze the computed experience of
PR authors and reviewers, driven by a comparison between refactoring-inducing and non-
refactoring-inducing PRs. Accordingly, these are the hypotheses:

H10 : There is no difference between authors’ experience in refactoring-inducing and non-
refactoring-inducing PRs.

H1a : Authors of refactoring-inducing PRs are less experienced than authors of non-
refactoring-inducing PRs.

H20 : There is no difference between reviewers’ experience in refactoring-inducing and non-
refactoring-inducing PRs.

H2a : Reviewers of refactoring-inducing PRs are more experienced than reviewers of non-
refactoring-inducing PRs.

H30 : There is no difference between the experience of authors and reviewers in refactoring-
inducing PRs.

H3a : Authors are less experienced than reviewers in refactoring-inducing PRs.
H40 : There is no difference between the experience of authors and reviewers in non-

refactoring-inducing PRs.
H4a : Authors are more experienced than reviewers in non-refactoring-inducing PRs.

For that, we executed each hypothesis testing in line with the following workflow, guided
by Burdess (2010):

1. Definition of null and alternative hypotheses.
2. Checking of the assumptions for parametric statistical tests: data normality by using the

Shapiro-Wilk test and homogeneity of variances via Levene’s test. The independence
assumption is already met (i.e., a developer is either an author or a reviewer in a PR).

3. Built on a significance level of 5%, performing of either parametric independent t-test
and Cohen’s d, or non-parametric Mann Whitney U test, in line with the output from 2.

Note that, since we examine differences in a specific direction in each hypothesis, we run
one-tailed tests.

4 Results and Discussion

This qualitative study aims to advance the knowledge regarding code review in refactoring-
inducing PRs; therefore, its findings are supplementary to ones from our previous study

123

 17 Page 16 of 49 Empirical Software Engineering (2025) 30:17

(Coelho et al. 2021). For instance, note that we designed distinct sampling strategies in the
two studies – a stratified sampling to explore refactorings induced by code review against a
purposive sampling in this study.

We organize this section as follows. Section 4.1 describes a few intrinsic characteristics
of our dataset, which are crucial to contextualize how we address the research questions in
light of our study objective. Sections 4.2 to 4.6 answer the research questions. In Section 4.7,
we discuss how our findings enhance the knowledge regarding code review in refactoring-
inducing PRs.

4.1 Preliminary Results

4.1.1 Refactoring-inducement Rates

Table 7 specifies the refactoring-inducing PRs in each sample. They are grouped because we
found refactoring-inducing PRs in which (i) code review induced all refactoring edits, (ii) the

Table 7 Refactoring-inducement rates

Sample Result Refactoring-inducing PRs

with refactorings induced exclusively by code review

1 4/10 (40.0%) Dubbo #3299, Flink #9143, Fluo #837, Kafka #5194

2 8/10 (80.0%) Beam #4407 #4458, Brooklyn-Server #1049, Kafka #5784

#7132, Samza #1051, Servicecomb-Java-Chassis #346,

Tomee #275

3 4/13 (30.8%) Cloudstack #2071 #3454, Kafka #4757 #5590

4 14/27 (51.8%) Brooklyn-Server #964, Cloudstack #2833, Dubbo #3174

#3257, Flink #8620, Kafka #4796 #6853, Knox #69 #74,

Sling-Org-Apache-Sling-Feature-Analyser #16, Struts #43,

Tika #234, Tinkerpop #1110, Tomee #407

Total 30/60 (50.0%)

with refactorings led exclusively by the author

1 3/10 (30.0%) Beam #4460, Flink #7971, Samza #1030

2 2/10 (20.0%) Incubator-Pinot #479, Kafka #5423

3 4/13 (30.8%) Beam #6261 Dubbo #3654, Kafka #6657, Usegrid #102

4 7/27 (25.9%) Accumulo #151, Dubbo #2445 #4099, Logging-Log4j #213,

Kafka #4574, Tinkerpop #893, Tomee #89

Total 16/60 (26.7%)

with refactorings induced by code review and other ones led by the author

1 3/10 (30.0%) Dubbo #2279, Flink #7945 #7970

2 0/10 (0.0%) None

3 5/13 (38.4%) Flink #8222, Incubator-Iceberg #119 #183, Kafka #4735,

Servicecomb-Java-Chassis #678

4 6/27 (22.3%) Avro #525, Flink #7165, Kafka #5501 #5946 #6848,

Rocketmq-Externals #45

Total 14/60(23.3%)

123

Empirical Software Engineering (2025) 30:17 Page 17 of 49 17

PRs’ authors led all refactorings, and (iii) both code review and authors triggered refactoring
edits, that is, both (i) and (ii) occurring simultaneously.

Authors led all refactoring edits in 16/60 (26.7%) of refactoring-inducing PRs; to clarify,
a refactoring-inducing PR in which a refactoring was entirely led by its author expresses that
there is no mention/suggestion (direct or indirect) of the refactoring in the review comments.
In this scenario, Fig. 4 displays a single review comment in Incubator-Pinot #479, which had
no effect in terms of refactoring. Even so, the author led an Extract Variable.

Wedetected 30/60 (50.0%) refactoring-inducingPRs that incorporate refactorings induced
exclusively by code review – a number close to the result reported in our previous work
(58.3%) (Coelho et al. 2021). In this case, review comments induced refactoring edits either
by explicitly suggesting refactorings (e.g., “How about renaming to ...?” in Samza #1051)
or leaving any actionable proposal that induced refactoring (e.g., “New private method with
obfuscated name should have some comment describing what it’s supposed to do” inspired
a Rename Method edit in Fluo #837). As well, Fig. 5 shows a review comment indicating an
outdated protocol in Cloudstack #2071, which influenced a Rename Package edit.

We also observed 14/60 (23.3%) refactoring-inducing PRs present refactoring edits
induced by code review and others led by the PR authors. For example, in Flink #7945,
the author self-performed refactoring edits in the first and second subsequent commits. In
contrast, he carried out refactorings in the third subsequent commit as suggested in review
comments.

In particular, by covering groups (i) and (iii), code review induced 162/361 (44.9%)
refactoring edits. For comparison purposes, Pantiuchina et al. found that reviewing discussion
triggered about 35% of refactoring edits when analyzing 551 PRs from 150 distinct projects
in GitHub (Pantiuchina et al. 2020), when considering refactoring edits occurring in any PR
commits (including the initial ones), regardless of what led to the refactorings (to the best
of our knowledge). Therefore, although considering a distinct research design, our result
corroborates with Pantiuchina et al. because it emphasizes refactoring as a relevant aiding
from code reviewing in the pull-based development model (Zhu et al. 2016).

Furthermore, Table 8 summarizes 31 distinct refactoring types in light of both refactoring-
inducement approaches (led by authors and induced by code review) in the validated
refactorings. Accordingly, we realized that both PR authors and reviewers address issues
on code quality, mainly focusing on readability, maintainability, and overall software design.

Fig. 4 A single review comment that induced no refactoring edit (Incubator-Pinot #479)

123

 17 Page 18 of 49 Empirical Software Engineering (2025) 30:17

Fig. 5 A review comment that
induced a Rename Package edit
(Cloudstack #2071)

As a result, this suggests that different refactoring types occur regardless of refactoring-
inducement at the PR level. In addition, for instance, the top refactoring types (Rename
Method, Change Type, etc.) are potentially API-breaking changes. If these are public meth-
ods; then all clientswould break after the next library release.Unless these are privatemethods
or methods just used internally in the project. We believe reviewers would be more reluctant
to recommend API-breaking changes unless these are new APIs. It would be interesting to
examine in depth these top refactoring changes under these aspects: (i) Are these newly added
methods or existing methods? (Maybe the methods were added in another commit in the PR)
and (ii) If they are existing methods, are they public, private, or protected? Therefore, we
claim that a further investigation of these edits, as future research, deserves attention since
they may provide insightful and practical characterizations of refactoring-inducement, thus
complementing this study.

Table 8 Refactoring types in 60 refactoring-inducing PRs (validated refactorings)

Refactoring type Refactoring-inducement Total
by authors by code review

Rename Method 29 18 47/361 (13.019%)

Change Attribute Type 26 10 36/361 (9.972%)

Change Parameter Type 11 19 30/361 (8.311%)

Change Variable Type 10 17 27/361 (7.479%)

Change Return Type 3 19 22/361 (6.094%)

Move Class 12 7 19/361 (5.263%)

Extract Method 8 10 18/361 (4.986%)

Rename Variable 8 8 16/361 (4.432%)

Pull Up Method 5 10 15/361 (4.155%)

Extract Variable 12 2 14/361 (3.878%)

Extract And Move Method 11 3 14/361 (3.878%)

Rename Attribute 10 4 14/361 (3.878%)

Move Attribute 11 0 11/361 (3.047%)

Rename Parameter 3 8 11/361 (3.047%)

123

Empirical Software Engineering (2025) 30:17 Page 19 of 49 17

Table 8 continued

Refactoring type Refactoring-inducement Total
by authors by code review

Push Down Attribute 8 2 10/361 (2.771%)

Rename Class 5 5 10/361 (2.771%)

Push Down Method 7 2 9/361 (2.493%)

Replace Variable W/ Attribute 2 5 7/361 (1.939%)

Move Method 5 0 5/361 (1.385%)

Extract Class 4 0 4/361 (1.108%)

Extract Superclass 2 2 4/361 (1.108%)

Pull Up Attribute 1 3 4/361 (1.108%)

Change Package 1 2 3/361 (0.831%)

Move And Rename Class 0 3 3/361 (0.831%)

Parameterize Variable 2 0 2/361 (0.544%)

Extract Interface 0 1 1/361 (0.277%)

Extract Attribute 0 1 1/361 (0.277%)

Inline Variable 1 0 1/361 (0.277%)

Merge Parameter 1 0 1/361 (0.277%)

Split Attribute 0 1 1/361 (0.277%)

Split Parameter 1 0 1/361 (0.277%)

4.1.2 How Authors Document Refactoring Edits

We observed the presence of self-affirmed refactorings or self-admitted refactorings (when
a refactoring is cited explicitly in a commit message by using keywords like “Refactor...”,
“Mov...”, “Renam...”) (AlOmar et al. 2019), as exemplified in Fig. 6, in subsequent commits
of 9/60 (15.0%) refactoring-inducing PRs (Table 9). In five of them (Beam #6261, Dubbo
#4099, Flink #7971, Tomee #407, Usergrid #102), all refactoring edits were led by the author.
In the other ones (Avro #525, Struts #43, Tinkerpop #1110, Tomee #407), authors submitted
self-affirmed refactorings to meet code review suggestions.

This result corroborates the findings of AlOmar et al., who analyzed how developers
document refactorings during software evolution by exploring PR commits (including initial
and subsequent ones) (AlOmar et al. 2019, 2021), given we identified a reduced number of
refactoring edits documented by PR authors. They uncovered that authors use a variety of
expressions to target the commits and to specify improvements (e.g., quality attributes and
code smell) in the commit messages as well as we observed. Also, we found direct mentions
such as “Refactor” (Avro #525).

4.1.3 Types of Change

Refactoring-inducing and non-refactoring-inducing PRs comprise the three primary types of
change (adaptive, corrective, and perfective), as presented in Table 10 and detailed in our
reproduction kit (Coelho 2024). To clarify, the researchers manually explored the objective
of each PR (considering initial and subsequent commits, PR description, and commit mes-

123

 17 Page 20 of 49 Empirical Software Engineering (2025) 30:17

Fig. 6 Example of a self-affirmed refactoring in five subsequent commits(Usergrid #102)

sages) by searching for keywords that could denote their type of changes. Thus, we classified
them according to maintenance activities, as defined in guidelines (Mockus and Votta 2000;
Swanson 1976). Adaptive, corrective, and perfective changes comprise adding new features
(e.g., “add”, “new”, “update”), fixing faults (e.g., “fix”, “correct”), and restructurings to
accommodate future changes (e.g., “simplify”, “optimize”), respectively. We emphasize that
such a judgment was subjective and endorsed by the researchers aiming to discover potential
emergent patterns from distinct types of changes toward a more comprehensive characteri-
zation of refactoring-inducing PRs.

In a few refactoring-inducing PRs, the researchers found both adaptive and corrective
changes (Accumulo #151, Dubbo #2279), and corrective and perfective changes (Cloudstack
#2714, Dubbo #3654). Only one non-refactoring-inducing PR comprises perfective changes
related to enhancements of code documentation (Kafka #6438). Even in Java repositories, PRs
can present non-Java files (e.g., Scala code), sometimes resulting in no review comment about
Java files. We found such a characteristic in 15/58 (25.9%) of the non-refactoring-inducing
PRs (Beam #4261 #4419 #5772 #5785 #7696 #8140, Cloudstack #2706, Flink #4055 #9451,
Incubator-Iotdb #342, Kafka #5368 #6298 #6758, Parquet-Format #98, Tinkerpop #690).

Table 9 Refactoring-inducing PRs containing self-affirmed refactorings in their subsequent commits

Sample No. of PRs PRs

1 1/10 (10.0%) Flink #7971

2 none

3 2/13 (15.4%) Beam #6261, Usergrid #102

4 6/27 (22.2%) Avro #525, Dubbo #4099, Struts #43, Tinkerpop #1110,

Tomee #89 #407

Total 9/60 (15.0%)

123

Empirical Software Engineering (2025) 30:17 Page 21 of 49 17

Table 10 Type of changes by
category of PRs

Sample Type of changes
Adaptive Corrective Perfective

Refactoring-inducing PRs

1 3/10 (20.0%) 4/10 (40.0%) 3/10 (30.0%)

2 4/10 (40.0%) 5/10 (50.0%) 1/10 (10.0%)

3 7/13 (53.8%) 3/13 (23.1%) 2/13 (15.4%)

4 11/27 (40.7%) 8/27 (29.6%) 7/27 (25.9%)

Total 24/60(40.0%) 20/60(33.3%) 13/60(21.7%)

non-Refactoring-inducing PRs

1 1/7 (14.3%) 6/7 (85.7%) none

2 none 7/7 (100.0%) none

3 4/11 (36.4%) 5/11 (45.5%) 1/11 (9.1%)

4 7/18 (38.9%) 11/18 (61.1%) none

Total 12/43(27.9%) 29/43(67.4%) 1/43(2.3%)

Hence, we considered 43/58 non-refactoring-inducing PRs when computing the number of
PRs by type of change.

Our results (Table 10) confirm empirical evidence on refactoring in the presence of distinct
types of change (Palomba et al. 2017). As well as Vassallo et al. (2019), we detected a
higher proportion of adaptive (40.0%) and corrective (33.3%) changes. Then, we can consider
adaptive, corrective, and perfective changes as opportunities for refactoring at the PR level.
Note that the setting is considerably different in non-refactoring-inducing PRs, in whichmore
than 67% of changes are corrective.

4.1.4 Self-affirmedMinor Review Comments

Aiming to investigate whether refactoring edits induced by code review commonly originate
from direct/simple review comments, we explored self-affirmedminor review comments.We
define it, as follows.

Definition 2 A self-affirmed minor review comment is one in which a reviewer declares it
as minor.

We conducted this exploration based on empirical evidence regarding the “somewhat
usefulness” of minor comments, such as those labeled as textitnit-picking or similar (Bosu
et al. 2015). Accordingly, we sought potential patterns that could emerge from these self-
affirmations. For instance, would they only be present in PRs that do not induce refactoring?
Given that, we manually searched for the keywords “minor” and “nit” (e.g., “LGTM, just a
minor comment. Should 32 be chunkSize?”, Kafka #4574 and “nit: Null value is encoded...
–> A null value is encoded...”, Kafka #4735). Reviewers may prefix review comments with
“nit:”, so connoting that fixing a point is not mandatory but welcome.

We identified self-affirmed minor review comments in refactoring-inducing and non-
refactoring-inducing PRs. We observed self-affirmed review comments that induced edits of

123

 17 Page 22 of 49 Empirical Software Engineering (2025) 30:17

Rename (Brooklyn-Server #964, Flink #7945 #8620, Kafka #5784 #6848), Split (Brooklyn-
Server #1049), and Extract (Flink #8620, Kafka #4735). Therefore, we distinguished no
association between self-affirmed minor review comments and refactoring-inducement.

4.1.5 Code Review Bots

The researchers identified that 7/60 (11.7%) of refactoring-inducing PRs (Flink #7945 #7970
#7971 #8222 #8620 #9143, Struts #43) and 2/58 (3.4%) of non-refactoring-inducing PRs
(Flink #9451, Hadoop #942) ran a code review bot. It is easily detectable since it leaves
comments in a PR, including the bot commands. For instance, the Apache flinkbot2 checks
the PR description, whether a PR needs attention from a specific reviewer, the architecture,
and the overall code quality. Thus, we observed no association between running a code review
bot and refactoring inducement.

Finding 1: We found 50% of refactoring-inducing PRs, in which code review solely
induced refactoring edits, in 118 Apache’s merged PRs. The refactorings happen in PRs
consisting of distinct types of change (adaptive, corrective, and perfective). We observed
no association between self-affirmed minor review comments and refactoring inducement.
Self-affirmed refactorings and code review bots are not frequently applied.

4.1.6 Experience of PR Authors and Reviewers

We explored the experience of PR authors and reviewers, by examining their number of
contributions, in GitHub profiles (e.g., a code review, the creation of a pull request, and
the submission of a commit), computed as we argued in Section 3.5. Table 11 presents the
average and median statistics computed for the experience of authors and reviewers in the
purposive samples.

It is noteworthy that, when analyzing the distribution of authors’ and reviewers’ experience
in both groups of PRs, we visually realized that authors of refactoring-inducing PRs are less
experienced than authors of non-refactoring-inducing PRs, whereas reviewers of refactoring-
inducing PRs are slightly more experienced than reviewers of non-refactoring-inducing PRs.
Then, for testing these impressions, we formulated the hypotheses described in Section 3.5.

Table 12 presents the computed statistics and p-value for each applied statistical test when
analyzing authors’ experience, as the hypotheses H10 (there is no difference between authors’
experience in refactoring-inducing and non-refactoring-inducing PRs) and H1a (authors of
refactoring-inducing PRs are less experienced than authors of non-refactoring-inducing PRs).
The computed 95% CI [-817.0, 514.2], by bootstrapping resample, of the difference in medi-
ans contains 0, thus we found no statistically significant difference in authors’ experience
in refactoring-inducing and non-refactoring-inducing PRs. Accordingly, based on the Mann-
Whitney one-sided test (U = 1,215.50, p < .05), there is no statistical evidence that authors
of refactoring-inducing PRs are less experienced than authors of non-refactoring-inducing
PRs.

Table 13 shows the computed statistics and p-value for each applied statistical test
when analyzing reviewers’ experience, in line with hypotheses H20 (there is no differ-
ence between reviewers’ experience in refactoring-inducing and non-refactoring-inducing
PRs) and H2a (reviewers of refactoring-inducing PRs are more experienced than reviewers

2 https://github.com/flinkbot

123

https://github.com/flinkbot

Empirical Software Engineering (2025) 30:17 Page 23 of 49 17

Table 11 Statistics of authors’ and reviewers’ experience

Sample Statistics
Authors Reviewers

Refactoring-inducing PRs

1 886.1 (875.2), 550 (1,118) 3,162.3 (3,674.2), 2,205.5 (3,747)

2 3,854.1 (8,884.3), 1,082 (1,064) 2,926.8 (4,013.6), 1,278 (1,037)

3 775.6 (1,586.2), 115 (663) 3,563.7 (8,059.1), 853 (2,551)

4 2,874.4 (4,753.7), 946 (2,851) 2,797.3 (4,753.3), 1,397 (2,727)

Total 2,224.9 (4, 867.4), 510 (1,289) 3,046.4 (5,671.4), 1,275 (2,928.5)

non-Refactoring-inducing PRs

1 4,025.1 (9,571), 391 (966) 3,348.9 (4,138.2), 1,460.5 (4,089)

2 2,637.8 (4,193.7), 1,285 (2,130) 1,890.1 (1,640.5), 1,639 (3,371)

3 1,612.3 (2,783.6), 158 (1,104) 3,653.8 (9,027.5), 777 (827)

4 3,828.1 (8,378.1), 808 (2,744) 3,141.4 (6,622.8), 943 (2,510)

Total 3,146.6 (6,826.1), 1,035 (1,979) 3,146.6 (6,826.1), 1,035 (1,979)

where <number> (<number>), <number> (<number>) denotes the average (standard deviation) and
median (interquartile range), respectively

of non-refactoring-inducing PRs). The computed 95% CI [-78.9, 803.6], by bootstrapping
resample, of the difference in medians contains 0, denoting no statistically significant dif-
ference in reviewers’ experience in refactoring-inducing and non-refactoring-inducing PRs.
Based on the Mann-Whitney one-sided test (U = 4,521.0, p < .05), there is no statistical
evidence that reviewers of refactoring-inducing PRs are more experienced than reviewers of
non-refactoring-inducing PRs.

Table 14 displays the computed statistics and p-value for each applied statistical test for
the hypotheses H30 (there is no difference between the experience of authors and reviewers in
refactoring-inducingPRs) andH3a (authors are less experienced than reviewers in refactoring-
inducing PRs). Based on the Mann-Whitney one-sided test (U = 2,616.0, p < .05), there is
statistical evidence that authors are less experienced than reviewers in refactoring-inducing
PRs.

Table 15 presents the computed statistics and p-value for each applied statistical test for
hypotheses H40 : (there is no difference between the experience of authors and reviewers
in non-refactoring-inducing PRs) and H4a (authors are more experienced than reviewers in
non-refactoring-inducing PRs). Based on the Mann-Whitney one-sided test (U = 1,395.5, p
< .05), there is no statistical evidence that authors are more experienced than reviewers in
non-refactoring-inducing PRs.

Table 12 Statistical tests output -
authors’ experience in
refactoring-inducing and
non-refactoring-inducing PRs

Statistical test Statistic p-value

Shapiro-Wilk Refactoring-inducing PRs: 0.48 2.64 × e−13

Non-refactoring-inducing PRs: 0.49 5.92 × e−11

Levene’s 0.61 0.44

Mann-Whitney U 1,215.5 0.26

123

 17 Page 24 of 49 Empirical Software Engineering (2025) 30:17

Table 13 Statistical tests output -
reviewers’ experience in
refactoring-inducing and
non-refactoring-inducing PRs

Statistical test Statistic p-value

Shapiro-Wilk Refactoring-inducing PRs: 0.52 8.15 × e−18

Non-refactoring-inducing PRs: 0.44 1.16 × e−15

Levene’s 0.0089 0.92

Mann-Whitney U 4,521.0 0.44

In summary, we found a significant difference between authors’ and reviewers’ experience
within refactoring-inducing PRs, suggesting that authors are less experienced than reviewers
in such a context – a pattern identified in 42/60 (70%) of refactoring-inducing PRs. Since we
found no statistical evidence that the number of reviewers is related to refactoring-inducement
(Coelho et al. 2021), this new finding denotes a relevant motivating factor behind refactoring-
inducing PRs. Based on this finding, we conjecture that less problem-prone code tends to
give origin to non-refactoring-inducing PRs more often, which can be partially explained
by the authors’ experience. We contextualize the importance of reviewers to characterize
refactoring-inducing PRs in Section 4.3. Even so, we claim that a further investigation of the
content of contributions could provide a better understanding of the relationship between the
experience of authors/reviewers and refactoring-inducing PRs.

Finding 2: The experience of the PR author, inferred from the number of contributions, is
a motivating factor behind refactoring-inducing PRs.

In addition, we identified a few particular scenarios when considering experience con-
cerning the number of authors’ and reviewers’ contributions. First, code review induced
refactoring edits in Fluo #837, although the number of the author’s contributions (3,127) is
greater than the individual number of contributions of its reviewers (3,040 and 2,192). The
same occurs in Dubbo #3174. We conjecture that the aggregate of experiences might explain
those cases. Code review also induced refactorings in PRs in which the authors have a higher
number of contributions than their reviewers, such as occurs in Brooklyn-Server #964 and
Tinkerpop #1110 (13,955 and 14,288, for authors; 1,660/2,933 and 24/556, for reviewers).
Accordingly, this seems counter-intuitive in contrast to previous findings with two reviewers
providing a more effective code review (Rigby et al. 2012). Second, we observed that a few
PR authors led refactoring edits, even when their number of contributions was shorter in
contrast to reviewers (e.g., Kafka #4574). We believe that an in-depth examination of the
code might help to explain that scenario.

Table 14 Statistical tests output -
authors’ and reviewers’
experience in
refactoring-inducing PRs

Statistical test Statistic p-value

Shapiro-Wilk Refactoring-inducing PRs: 0.48 2.64 × e−13

Non-refactoring-inducing PRs: 0.52 8.15 × e−18

Levene’s 0.42 0.52

Mann-Whitney U 2,616.0 0.002

123

Empirical Software Engineering (2025) 30:17 Page 25 of 49 17

Table 15 Statistical tests output -
authors’ and reviewers’
experience in
non-refactoring-inducing PRs

Statistical test Statistic p-value

Shapiro-Wilk Refactoring-inducing PRs: 0.49 5.92 × e−11

Non-refactoring-inducing PRs: 0.44 1.16 × e−15

Levene’s 0.04 0.84

Mann-Whitney U 1,395.5 0.92

4.2 How are Review Comments Characterized in Refactoring-inducing
and Non-refactoring-inducing PRs?

We structure this answer considering code review in non-refactoring-inducing PRs versus
three dimensions of refactoring-inducing PRs: those with refactorings led exclusively by
authors (16/60, 26.7%), thosewith refactorings induced solely by code review (30/60, 50.0%),
and those with refactorings both led by the authors and induced by code review (14/60,
23.3%). Particularly, in refactoring-inducing PRs Beam #6261, Dubbo #3654, Flink #8620,
and Kafka #4757, we found the presence of floss refactoring to accommodate new tests in
the three first ones and a new feature in a class in the last one – all suggested by reviewers.
Thereby, we judged the associated refactoring edits as led by the PR authors.

4.2.1 Review Comments in Refactoring-inducing PRs with Refactorings Led Exclusively
by Authors

Table 16 summarizes the emerged characteristics of code reviews in refactoring-inducing
PRs, with refactoring edits submitted entirely by the authors. The authors properly provide
explanations to reviewers’ questions not related to potential refactorings. A usual review
comment in this case:
– address code aesthetics (e.g., “whitespace between braces and other symbol.” in Flink
#7971),

– present questions on simple issues regarding code logic in contrast to those in PRs with
refactorings induced by code review (e.g., “Should 32 be chunkSize?” in Kafka #4574),
and

– sometimes, give reasons and suggestions on code logic, using expressions such as “could
we use...?”, “use...”, “can be replaced with...” (e.g., “token.sum() can be replaced with
getToken()” in Dubbo #3654).
In summary, we identified review comments addressing code aesthetics in 2/16 PRs

(Dubbo #2445, Flink #7971), questioning simple issues on code logic in 7/16 PRs (Accu-
mulo #151, Beam #4460 #6261, Kafka #4574 #6657, Logging-log4j2 #213, Samza #1030),
and suggesting improvements to the code in 10/16 PRs (Beam #6261, Dubbo #2445 #3654
#4099, Incubator-Pinot #479, Kafka #5423 #6657, Tinkerpop #893, Tomee #89, Usergrid
#102).

4.2.2 Review Comments in Refactoring-inducing PRs with Refactorings Induced
Exclusively by Code Review

Table 17 indicates the emerged characteristics of reviews in refactoring-inducing PRs with
refactoring edits induced only by code review. We observed that review comments:

123

 17 Page 26 of 49 Empirical Software Engineering (2025) 30:17

Table 16 Characteristics of review comments in refactoring-inducing PRs (Refactorings Led by the Authors,
i.e., refactorings suggested only by commit authors)

Characteristic Examples (PRs)

Addressing code aesthetics Code format (“format your code, pls.”, Flink #7971)

Questioning simple issues on
code logic

Access by name or index (“Don’t we still use this for Dataflow in the
NonFnApi mode (which passes connections by index)?”, Beam #4460)

Error in a conditional statement (“if the endTime is less than 0 wouldn’t
we want to throw an exception?”, Kafka #6657)

Treatment of specific values (“Does it make sense to fail if the partition
is empty?”, Samza #1030)

Dealing with potential failure (“Logback is EPL/LGPLv2.1. Not sure if
the licensing is compatible here.”, Logging-Log4j2 #213)

Method calls (“Is the mockstatic call why we’re adding powermock
here?”, questioning the effect of a call, Beam #6261)

Suggesting improvements to
the code

Adding case tests (“Add a unit test for this case?”, Kafka #5423)
Method calls (“nit: use Objects.requireNonNull with the same message
here and below” proposing a method replacement, Kafka #6657)

Adding code documentation (“Could you add detail on the documenta-
tion? perhaps some small examples, etc?”, Beam #6261)

Change the content of test files (“Could we put this into a resource file
instead of having it hang around in the test?”, Usergrid #102)

Use of assertion (“you could even use Assert instead of Precondi-
tions.check()?”, Incubator-Pinot #479)

– ask questions about code logic (e.g., “should we simply keep Timeout instance (instead
of keeping it in a map)?”, Dubbo #3299),

– suggest improvements to the code (e.g., “Maybe put the table name in a variable, so the
string parameter is more obviously the table name in this API call, rather than something
else.”, Accumulo-Examples #19),

– and provide warnings on good development practices (e.g., “Constants, private static
final, are usually all caps: MAX_RETRY_COUNT. Within the context of a retryAnalyzer
you could get away with count and MAX. They are both private.”, Brooklyn-Server
#1049).

In short, we realized review comments questioning issues on code logic in 7/30 PRs
(Beam #4407, Dubbo #3174 #3299, Fluo #837, Kafka #4757 #5784, #Tika 234), sug-
gesting improvements to the code in 21/30 PRs (Beam #4458, Brooklyn-Server #964,
Cloudstack #2071 #3454, Dubbo #3257, Flink #8620 #9143, Kafka #4796 #5194 #5590
#6853 #7132,Knox #74, Samza #1051, Servicecomb-Java-Chassis #346, Sling-Org-Apache-
Sling-Feature-Analyser #16, Struts #43, Tika #234, Tinkerpop #1110, Tomee #275 #407),

123

Empirical Software Engineering (2025) 30:17 Page 27 of 49 17

Table 17 Characteristics of review comments in refactoring-inducing PRs (Refactorings Induced by Code
Review, i.e., refactorings suggested only by code reviewers)

Characteristic Examples (PRs)

Questioning issues on code
logic

Use of specific types (“Be careful that this attachment TIMEOUT_ FIL-
TER_START_TIME will be passed throughout the RPC chain because
of the drawback of RpcContext.”, Dubbo #3174)

Method calls (“Is it safe to call toString here on arbitrary bytes?”, Fluo
#837)

Suggesting improvements to
the code

Refactoring (“Can we pass in a Path instead of a String for key-
storePath?”, Knox #69)

Adding code documentation (“it’s better to write new comments in
english.” asking for comments in English, Servicecomb-Java- Chassis
#346)

Adding case tests (“nit: add also another case for something not ending
in ConfigProvider?”, Kafka #5194)

Adding an exception handling (“Same as with deserialize. Should we
consider throwing an exception?”, Kafka #5590)

Discard a method, by providing explanations about code design (“I don’t
think there is a need for this to be left. The truncate length should always
be included when getting metrics.”, Incubator-Iceberg #254)

Issues on GUI layout (“it’s better now, but can you make them centered
left, they seem to be bottom left now.”, Cloudstack #3454)

Warnings on good
development practices

Code conventions (“Constants, private static final, are usually all caps”,
Brooklyn-Server #1049)

Switch-case against multiple if-else (“it would be better to use a switch
case instead of multiple if else, especially for comparing multiple
enums”, Cloudstack #2833)

and providingwarnings on good development practices in 4/30 PRs (Brooklyn-Server #1049,
Cloudstack #2833, Fluo #837, Knox #69).

Uncertain review comments (like “I’m not sure ...”, “wondering if...”, “just thinking loud
here ...”, and “As far as I remember ...”) are not usually welcomed; for instance, a reviewer
wondering if another strategy is appropriate to deal with code logic led to discussion but no
effect (Flink #9143, Kafka #7132), as illustrated in Fig. 7. Moreover, using embedded code
in review comments is only appreciated when it is a suggestion instead of an imposition. As
an example, Dubbo #3299’s author ignored a review comment containing an embedded code
(for treating a variable status). We speculate that such a scenario may affect code ownership,
so explaining the behavior of PR authors (more examples in Section 4.6).

4.2.3 Review Comments in Refactoring-inducing PRs with Refactorings both Led
by Authors and Induced by Code Review

In refactoring-inducing PRs, comprising refactoring edits both led by the authors and induced
by code review, the review comments present characteristics that already emerged from
exploring the refactoring-inducement in PRs (Table 18). Uncertain review comments remain
in such a scenario, where the sentences include terms such as “Looks like...” and “not sure
if...” in Incubator-Iceberg #183. Based on Tables 16, 17 and 18, when code review induces

123

 17 Page 28 of 49 Empirical Software Engineering (2025) 30:17

Fig. 7 An uncertain review comment example (Flink #9143)

Table 18 Characteristics of review comments in refactoring-inducing PRs (Refactorings both Led by the
Authors and Induced by Code Review, i.e., refactorings suggested both by commit authors and code reviewers)

Characteristic Examples (PRs)

Addressing code
aesthetics

Indentation and code format (“Nit: extra blank line.”, Incubator-Iceberg #119)

Questioning issues on
code logic

Use of specific types (“Collection is useless.”, Dubbo #2279)
Error in a conditional statement (“nit: do we want to consider setting producer
to null here as well if eosEnabled?”, Kafka #5501)

Treatment of specific values (“Do we need use the next begin offset in other
PullStatus?”, Rocketmq-Externals #45)

Method calls (“Can you not use .withClientSsl-Support(). withClientSaslSup-
port()?” suggests an optimization in a method call, Kafka #4757)

Suggesting improvements
to the code

Refactoring (“After adding the time conversions to this method the name (or the
behavior) is really misleading.”, Avro #525)

Adding an exception handling (“I think we should not easily catch on Throwable
for simplicity but instead it is clear here that we should only expect IOException
or ClassCastException.”, Flink #7970)

Adding code documentation (“Gets -> Get, let’s to be consistent with javadoc
of other methods.” to make it consistent with other classes, Flink #8222)

Adding case tests (“renameTable too? maybe add test?”, Flink #8222)

Warnings on good
development practices

Use of methods in tests (“Tests shouldn’t use methods in other tests because
they are hard to keep track of.”, Incubator-Iceberg #183)

Use of global instances (“global instance. it’s better do not use this directly.
you can save a reference in filter when UT create a new instance for it.”,
Servicecomb-Java-Chassis #678)

Instructions to create integration tests (“Adding the exception is fine, but you
can just throw it directly: throw new OffsetOutOfRangeException(...) Not need
to assign it to variable first :)”, Kafka #5946)

123

Empirical Software Engineering (2025) 30:17 Page 29 of 49 17

refactoring edits, we realize that review comments deal with more complex issues regarding
code logic and concerns on good development practices.

In summary, we found review comments addressing code aesthetics only in Incubator-
Iceberg #119, questioning issues on code logic in 5/14 PRs (Dubbo #2279, Flink #8222,
Kafka #4735 #5501, Rocketmq-Externals #45), suggesting improvements to the code in
6/14 (Avro #525, Flink #7165 #7970 #8222, Kafka #4735 #6848), and warning on good
development practices in 5/14 PRs (Flink #7945, Incubator-Iceberg #119 #183, Kafka #5946,
Servicecomb-Java-Chassis #678).

Finding 3: In refactoring-inducing PRs in which code review induces refactoring edits,
review comments address major issues on code logic, major improvements to the code
(including refactorings directly), and warnings on good development practices.

Finding 4: In refactoring-inducing PRs in which the authors lead refactoring edits, the
review comments address code aesthetics, minor issues in code logic, and minor improve-
ments to the code.

4.2.4 Review Comments in Non-refactoring-inducing PRs

Review comments in non-refactoring-inducing PRs directly address minor issues on code
logic through questions and suggestions (Table 19). We also found review comments includ-
ing embedded code as an imposition for substituting the code (“should we change...”), with
no effect (Dubbo #4870 and Kafka #5111). However, such a structure of review comment

Table 19 Characteristics of review comments in non-refactoring-inducing PRs

Characteristic Examples (PRs)

Examining code aesthetics Code format (“Code formatting for this section of code is different
(spaces used)”, Cloudstack #3430)

Addressing issues on code
logic

Error in conditional statements (“I think b==0?true:false can be
replaced with b==0.”, Fluo #929)

Exception handling (“IllegalStateException is better?”, Servicecomb-
Java-Chassis #691)

Method calls (“What about overriding the method getCause to return
this value here?” suggesting a method overriding, Cloudstack #2714)

Reverting of changes (“L116 and 118 also have changes that should be
reverted.”, Kafka #5111)

Removing of code fragments (“why those code are removed? are we
still need -Djava.net.preferIPv4Stack=true after this change aremade?”,
Dubbo #3317)

Requiring additional states for sessions (“I wonder if we could include
any additional state from the session itself to get closer to the root of the
problem.”, Kafka #6427)

Suggesting improvements
to the code

Adding assertion (“nit: Add assertion for a part of the exception mes-
sage?”, Beam #6317)

Adding case tests (“can you implement a marvin test for the test-case.”,
Cloudstack #3276)

123

 17 Page 30 of 49 Empirical Software Engineering (2025) 30:17

Table 19 continued

Characteristic Examples (PRs)

Adding code documentation (“It might nice to add some comments
describing the difference between informational and comparison.”,
Accumulo-Testing #21)

Fixing code documentation (“This comment could be improved to explain
why the client needs to be left open here. I don’t think it’s merely a matter
of ‘simplicity’.”, Accumulo-Examples #50)

Alternatives to code fragments (“we should not copy the code from the
old addGlobalStore() but rather call the old addGlobalStore() passing
the generated names.”, Kafka #4430)

Alternatives to error/output messages (“Suggest using ‘LOGGER.
error(“Cannot get PID of IoTDB process because ”, e);”, Incubator-
Iotdb #67

Fixing a typo (“typo: terminated”, Flink #91)

Use of better argument values (“I think this may cause an issue, because
the vlan.getVlanTag() could be something like a range 100-200, so if
vlanId is 101 the check should be done in the range.”, Cloudstack #3430)

is welcomed when the author asks for support from the reviewer, as it occurs in Fluo #929.
Therefore, using embedded code is appreciated in the form of a suggestion.

Those minor issues denote subjects having no relation to refactoring, such as fixing an
error in conditional statements and using the correct range of variables. Usually, the authors
provide answers to the reviewers, even in the presence of discussions, resulting in no effect
(Beam #7696, Brooklyn-server #411, Cloudstack #2553 #2714 #3276, Dubbo #3184 #3317
#3748 #4870, Incubator-Iotdb #67, Kafka #5111 #6818, Servicecomb-Java-Chassis #691
#744, Tinkerpop #282 #524).

Finding 5: In non-refactoring-inducing PRs, review comments address code aesthetics,
marginal issues on code logic, and marginal improvements to the code.

4.3 What are the Differences Between Refactoring-inducing
and Non-refactoring-inducing PRs, in Terms of Review Comments?

We realized that review comments in refactoring-inducing and non-refactoring-inducing PRs
are different concerning the following criteria:

Addressed Issues Based on Tables 16, 17, 18 and 19, review comments addresses code
aesthetics, code logic, and improvements in both refactoring-inducing and non-refactoring-
inducing PRs. From Findings 3–5, we recognize that review comments concern trivial issues
on code logic and suggestions of minor improvements to the code occurred more in non-
refactoring-inducing PRs than in refactoring-inducing PRs. In a typical PR with refactorings
induced by code review, usually, review comments point out a structural problem, as in
Samza #1051 (Fig. 8), in which the author applied a Rename Class after a review comment.
Reviewers ask questions regarding issues of minor scope in non-refactoring-inducing PRs
(in this case, a typical review comment asks on alternatives already implemented by the
author, e.g., a question on an overloaded method in Beam #6050, Fig. 9), whereas they deal

123

Empirical Software Engineering (2025) 30:17 Page 31 of 49 17

Fig. 8 A typical suggestion of Rename edit (Samza #1051)

with major issues that can induce refactoring in refactoring-inducing PRs (in this case, a
typical review comment addresses more complex structural issues, as in Tinkerpop #1110
when concerning a potential Extract Method, Fig. 10). Reviewers provide suggestions of
minor improvements to the code (e.g., alternatives to output messages) in non-refactoring-
inducing PRs, whereas directly suggest refactoring (e.g., an alternative to amethod signature)
in refactoring-inducing PRs. The same patterns emerged when comparing review comments
in refactoring-inducing PRs, where authors led the refactoring edits (Table 16), and non-
refactoring-inducing PRs (Table 19). In such a context, we found more questions on minor
issues on code logic in non-refactoring-inducing PRs (e.g., a doubt concerning a method
call) than in refactoring-inducing PRs (e.g., a question on the effect of a method call); and
suggestions of minor improvements in non-refactoring-inducing PRs (e.g., proposing the use
of “A”, “B”, instead of “X”, “Y” asmethod arguments) than in refactoring-inducing PRs (e.g.,

Fig. 9 A review comment on a minor scope issue (Beam #6050)

123

 17 Page 32 of 49 Empirical Software Engineering (2025) 30:17

Fig. 10 A review comment on a major scope issue (Tinkerpop #1110)

suggesting a method replacement). We found warnings on good practices of development
only in refactoring-inducing PRs that, in turn, may induce refactorings (Tables 17 and 18).

Discussion We found reviewing discussion in 12/60 (20.0%) refactoring-inducing PRs
and 15/43 (34.8%) non-refactoring-inducing PRs, where 43 indicates the number of non-
refactoring-inducing PRs that contain reviewed Java files. We also detected reviewing
discussion in two non-refactoring-inducing PRs (Dubbo #3447 #3184), in which review-
ers agree with each other when addressing code issues (those issues concern no structural
changes, so no inducing refactorings). In refactoring-inducing PRs, reviewing discussion
tends to arise from either warning on good practices of development (authors may require
explanations due to no knowledge of such practices, Kafka #4757) or questions/opinions
concerning code logic, such as addressing potential failures and alternatives to a specific
decision making (e.g., change a package name to meet project standards may break external
plugins to use of a service in Servicecomb-Java-Chassis #678). We realize that authors prop-
erly provide clarifications for questions/opinions of reviewers. The reviewing discussion in
non-refactoring-inducing PRs usually fits a pattern: everything begins with a review com-
ment suggesting some change, followed by direct arguments from the author to refute it. As
a result, the author’s view prevailed (as exemplified in Fig. 11).

Structure of theContent ofReviewCommentsWeobserved that, usually, reviewcomments
are more polite in refactoring-inducing PRs than in non-refactoring-inducing PRs. They
consist of sentences that incorporate expressions like “Maybe we should ...” and “How about
...?”, thus triggering the authors to think better concerning the code reviewed, which tends
to result in refactoring. Yet, we identify a lot of review comments that impose a change in
non-refactoring-inducing PRs by using expressions such as “... should be ...”, which tends to
have no effect.

123

Empirical Software Engineering (2025) 30:17 Page 33 of 49 17

Fig. 11 A typical discussion in non-refactoring-inducing PRs (Brooklyn-Server #411)

Experience of ReviewersBy counting the number of contributions of authors and reviewers,
we realized that review comments are submitted by reviewers more experienced than authors
in refactoring-inducing PRs (Tables 11 and 14). Accordingly, in non-refactoring-inducing
PRs, the experience of authors reflects in both characteristics of their code and their ability to
provide clarifications andwindiscussions;whereas the experience of reviewers in refactoring-
inducing PRs reflects in precise review comments that may induce or inspire authors to
refactor the code. Yet, we analyzed the experience of authors and reviewers in the three
subgroups of refactoring-inducing PRs (with refactoring led by the author, with refactorings
induced by code review, and with refactorings both led by the author and induced by code
review). We noticed that, in all subgroups, the reviewers are more experienced than the
authors. Thus, based on Finding 2, we conjecture that less problem-prone code seems to give
origin to non-refactoring-inducing PRs more often, which can be partially explained by the
experience of their authors.

Finding 6: The addressed issues and content structure of review comments (polite
and precise), usually leveraged due to a higher experience (inferred from the num-
ber of contributions) of a reviewer concerning an author, are motivating factors behind
refactoring-inducing PRs.

It is noteworthy the main difference between review comments in refactoring-inducing
and non-refactoring-inducing PRs lies in the following evidence: non-refactoring-inducing
PRs submit more well-structured and high-quality code (that is, adherence to object-oriented
principles, readability, andmaintainability) than refactoring-inducing PRs –what is perceived
by review comments that concentrate effort in trivial issues, in the form of suggestions that do
not require changing the code. On the other hand, review comments tend to induce changes in
refactoring-inducing PRs politely. To exemplify, consider issues on method calls: reviewers

123

 17 Page 34 of 49 Empirical Software Engineering (2025) 30:17

Fig. 12 A direct review comment that induced a Change Variable Type edit (Dubbo #3299)

typically alert on the method design in refactoring-inducing PRs (e.g., “Tests shouldn’t use
methods in other tests because they are hard to keep track of.”, Incubator-Iceberg #183)
whereas in non-refactoring-inducing PRs, they usually indicate minor suggestions (e.g.,
“What about overriding the method getCause to return this value here?”, Cloudstack #2714).

In practice, precise and polite review comments tend to induce refactoring edits because
they shed light on code issues of significant scope, therefore causing authors to embrace
refactoring suggestions or get inspired by them. In this context, polite denotes review com-
ments that make suggestions rather than impositions, while precise expresses opposition
to uncertain review comments. Thus, the benefits of refactoring the code become apparent
already in code review time, either through a direct suggestion of refactoring (Fig. 12), a
rationale (Fig. 13), or a warning on good development practices (Fig. 14). In those examples,
the review comments trigger a new author’s perception, causing their agreement with the
suggestions. In such a scenario, the experience of the PR reviewer(s) became crucial.

Therefore, our analysis suggests there is a strong relation between code review and refac-
toring edits because polite and precise review comments trigger refactorings at the PR level,
thus corroborating with previous works regarding the effectiveness of code review on refac-
toring the code (Pantiuchina et al. 2020; Paixão et al. 2020).

Fig. 13 A review comment
providing a reason (code
conventions) that induced a Split
Attribute edit (Brooklyn-Server
#1049)

123

Empirical Software Engineering (2025) 30:17 Page 35 of 49 17

Fig. 14 A warning regarding
enumerations that induced
Change Variable Type and
Rename Variable edits
(Cloudstack #2833)

4.4 How do Reviewers Suggest Refactorings in Refactoring-inducing PRs?

Refactoring suggestions are usually polite and precise, being well-understood by the PR
authors in refactoring-inducing PRs. Those suggestions use expressions such as “Maybe
... ”, Kafka #5946 and “... can we ...”, Knox #74. We recognized this pattern, considering
at least one review comment with polite and precise refactoring suggestions, in 23/30 PRs
with refactoring edits exclusively induced by code review (Beam #4458, Brooklyn-Server
#964 #1049, Cloudstack #2071 #2833 #3454, Dubbo #3174 #3299, Fluo #837, Kafka #4796
#5194 #5590 #5784 #6853 #7132, Knox #69 #74, Samza #1051, Servicecomb-Java-Chassis
#346, Struts #43, Tika #234, Tinkerpop #1110, Tomee #407) and 11/14 PRs with refactorings
induced by code review and other ones led by the PR authors (Dubbo #2279, Flink #7945
#7970 #8222, Incubator-Iceberg #119 #183, Kafka #4735 #5501 #5946 #6848, Rocketmq-
Externals #45).We conjecture that the experience of reviewers against authors in refactoring-
inducing PRs might explain such a pattern.

Sometimes, the reviewers provide a rationale for their suggestions, such as security-related
issues inCloudstack #3454 (Fig. 15). The purpose of a rationale is likely to let the author know
that an adjustment is not necessary for the code operation but to bring more benefits. Review
comments, in the form of warning on good practices of development, may induce refactoring
and provide explanations and examples (using structures of the code under analysis, e.g., a
class, a method) of how to deal with problematic points (e.g., single responsibility of methods
in Incubator-Iceberg #119, Fig. 16).

Finding 7: Reviewers tend to make polite and precise suggestions for refactoring.

4.5 Do Suggestions of Refactoring Justify the Reasons?

Reviewers provide reasons that induced refactorings in 23/60 (38.3%) of the refactoring-
inducing PRs. The refactoring type is not explicitly pointed, except for a few Rename,Move,
and Extract instances, as it occurs in Cloudstack #2071 (Fig. 5). Suggestions of low-level
refactorings may provide reasons, as in Kafka #5946 (Fig. 17). Only review comments in

123

 17 Page 36 of 49 Empirical Software Engineering (2025) 30:17

Fig. 15 A review comment
providing a reason (secure-related
issues) that induced Push Down
Attribute and Push Down Method
edits (Cloudstack #3454)

Cloudstack #2071, Flink #7945, and Incubator-Iceberg #119 #183 submit reasons for high-
level refactoring instances (Fig. 18).

Reasons are contextualized sentences regarding problematic situations, structured like
alerts (e.g., constants format in Brooklyn-Server #1049, Fig. 13), sometimes accompanied
by examples (e.g., code’s structure under analysis in Kafka #5194). In other cases, reasons
begin with a question on code logic (e.g., “Is this type over-kill?”, “Can we ... ?”) assisted
by examples (e.g., questioning a class functionality in Flink #7945, Fig. 18). In other cases,
reviewers provide a direct explanation (e.g., informing about a class useless in Dubbo #2279,
Fig. 19). This result emphasizes code review as a traditional practice, conducted by expert
reviewers, in Apache projects (Rigby et al. 2008). We identified no refactoring suggestion
providing a reason for non-refactoring-inducing PRs.

In summary, we identified reasons in 13/30 refactoring-inducing PRs with refactorings
exclusively induced by code review (Brooklyn-Server #964 #1049, Cloustack #2833 #3454,
Dubbo #3174, Kafka #4796 #5784 #5590, Knox #74, Tika #234, Tinkerpop #1110, Tomee

Fig. 16 A warning on
responsibility of methods that
induced Change Return Type,
Rename Method, Change
Parameter Type, and Rename
Parameter edits
(Incubator-Iceberg #119)

123

Empirical Software Engineering (2025) 30:17 Page 37 of 49 17

Fig. 17 A refactoring suggestion
that induced an Extract Variable
edit (Kafka #5946)

#275 #407) and 8/14 PRswith refactorings led by the PR author and others suggested by code
review (Avro #525, Dubbo #2279, Flink #8222, Incubator-Iceberg #119 #183, Kafka #5501
#5946 #6848). Reviewers provide examples in 1/30 PRs with refactorings uniquely induced
by code review (Kafka #5194) and in 1/14 PRs with refactorings led by the PR author and
others proposed by reviewers (Flink #7945).

Finding 8: Reviewers tend to provide reasons, occasionally supported by examples, to
elucidate the benefits of refactoring.

Fig. 18 A review comment
providing a reason (long class
body) that induced Move and
Rename Class edits (Flink #7945)

123

 17 Page 38 of 49 Empirical Software Engineering (2025) 30:17

Fig. 19 A warning on a class
useless that induced Change
Variable Type and Rename
Variable edits (Dubbo #2279)

4.6 What is the Relationship Between Suggestions and Actual Refactorings
in Refactoring-inducing PRs?

When the reviewers provide direct suggestions, refactoring edits are performed. We identify
such a pattern in 44/44 (100%) of refactoring-inducing PRs, in which code review induced
refactoring edits, that is, in 30/30 PRs with refactorings exclusively induced by reviewers and
14/14 PRs with refactorings led by the PR author and other ones suggested by code review.
Direct suggestions may include explanations using examples in the code under analysis (e.g.,
suggesting a rename in Flink #8620, Fig. 20) and reasons (e.g., a large class body in Flink
#7945, Fig. 18).

When there is space for discussion, refactorings may not be done. To reinforce such an
emerged pattern, as we previously argued, the proportion of discussion is higher in non-
refactoring-inducing PRs than in refactoring-inducing PRs. In particular, we identified a few
discussions due to uncertain reviewcomments (e.g., in Flink #9143, Fig. 7), and to impositions
of change consisting of embedded code (e.g., a reviewer suggests a method change, using
“should we ...” in Dubbo #4870, Fig. 21). In both cases, the authors presented arguments
leading to no subsequent change.

Finding 9: Direct suggestions of refactoring tend to be embraced by the PR authors.

Fig. 20 A review comment that induced a Rename Method edit (Flink #8620)

123

Empirical Software Engineering (2025) 30:17 Page 39 of 49 17

Fig. 21 A review comment including an embedded code (Dubbo #4870)

4.7 General Considerations

From the scrutinization of a purposive sample of 118 Apache’s merged PRs, we identified
that (i) refactoring edits occur regardless of the change type (Finding 1) and (ii) the expe-
rience of the PR author (Finding 2) and the content of review comments (Findings 6 and
8) play a relevant role for refactoring-inducing PRs (Findings 3 – 5). Accordingly, review
comments that induce refactorings submit crucial enhancements to the code and alert on
good development practice, thus providing a learning time for less experienced PR authors
and reviewers.

At a glance, our findings expand the knowledge on refactoring practice at the PR level since
we discovered how authors and reviewers deal with refactoring opportunities in three distinct
perspectives (refactoring-inducing PRs in which (i) code review induced all refactoring edits,
(ii) the PRs’ authors led all refactorings, and (iii) both code review and authors triggered
refactoring edits, that is, both (i) and (ii) occurring simultaneously). Nevertheless, we realize
the need for further investigation on the occurrence of specific refactoring types against the
refactoring-inducement categories.

Findings 7 and 9 reveal a means to deal with a few challenges during code reviews
(Bacchelli and Bird 2013; Ebert et al. 2021) when considering refactoring opportunities. In
practice, even recognizing that reviewers have authority over the acceptance of PRs (Zanaty

123

 17 Page 40 of 49 Empirical Software Engineering (2025) 30:17

et al. 2018), our findings shed light on the need for review comments to be well-understood
by the PR authors to achieve an effective (the proposed changes are eventually accepted)
and efficient (the time this takes is as short as possible) code review (Rigby et al. 2015), in a
scenario of drawbacks in communication among developers within PRs (Gousios et al. 2016)
and claims for assisting reviewers in articulating appropriate comments (Bosu et al. 2017;
Hossain et al. 2020; AlOmar et al. 2022). In this direction, review comments structured in
a direct, polite, and precise manner can reduce the occurrence of conflicts and unnecessary
discussion (Tsay et al. 2014; Chouchen et al. 2021; Ebert et al. 2021; Gonçalves et al.
2022), thus decreasing the PR review time (Kononenko et al. 2018). As a whole, our findings
also emphasize that the reviewers’ expertise is critical for a more productive code review,
whereas enforcing the relevance of review comments well-structured for more effective
communication at the PR level, thus corroborating with previous research (Kononenko et al.
2015; Gonçalves et al. 2023).

5 Implications and Guidelines

By characterizing code review in refactoring-inducing PRs, we can potentially advance the
understanding of code reviewing at the PR level while assisting researchers, practitioners,
tool builders, and educators in such a scenario.

Researchers: To the best of our knowledge, no prior MCR studies investigated PRs in light
of our refactoring-inducing definition, thus exploring the refactorings performed specifically
during the code review time (subsequent commits). In this context, Finding 1 sheds light on a
novel view of works concerning pull-based development since researchers can consider our
refactoring-inducingPRdefinitionwhendesigning studies on code review. For instance, aswe
identified 44/60 (73.3%) PRs encompassing at least one refactoring induced by code review,
replications are welcome, but also investigations concerningmissed refactoring opportunities
in code review time and fault-properness in PRs with refactorings exclusively led by authors
in contrast to ones with edits also induced by review comments.

Given Findings 2–6, we provide directions for researchers toward three dimensions. First,
our study points out a few motivating factors behind refactoring-inducing PRs (Findings 2
and 6). Finding 2 is an expected result since we suppose that more experienced developers
implement less problem-prone code. Nevertheless, Finding 6 indicates distinct characteristics
of code reviewing in refactoring-inducing and non-refactoring-inducing PRs. Thus, reviewers
of refactoring-inducing PRs are usually more experienced than their authors then such a
pattern assists the knowledge transfer and learning of a less experienced author. This result
corroborates Bacchelli and Bird that, when defining MCR, emphasize knowledge transfer as
its relevant characteristic (Bacchelli andBird 2013). However, the authors of non-refactoring-
inducing PRsmaymiss opportunities to improve their code quality due to reviewer limitations
(e.g., less experienced), although such a scenario provides a learning opportunity to a less
experienced reviewer. This result reinforces other works on code review practice, such as
Sadowski et al. which discovered education aspects as one of the main motivations behind
code review at Google (Sadowski et al. 2018). Therefore, we recommend future research to
explore strategies to support an effective code review participation of authors and reviewers,
knowledge transfer, and awareness of the changes among teammembers at thePR level. In this
sense, we suggest experimenting with requirements for reviewer recommendation systems
in line with our findings, that is, considering the experience of the PR authors against the
reviewers while monitoring the effectiveness and efficiency of code review. We conjecture

123

Empirical Software Engineering (2025) 30:17 Page 41 of 49 17

results around this setup may provide valuable insights into the refactoring practice in code
review time.

Second, Findings 3–5 reinforce the need for future (qualitative) research on MCR with
PRs, distinguishing refactoring-inducing and non-refactoring-inducing PRs or considering
their different characteristicswhen samplingPRs, aswe claimed in our previouswork (Coelho
et al. 2021). Since we found patterns in the context of review comments, future studies may
leverage supervised machine learning techniques to advance in understanding code review
practice, by searching for these patterns in other GitHub repositories while checking for the
presence of refactoring-inducement. We also conjecture that using embedded code in review
comments may be understood, by PR authors, as a ready-made solution. Such a structure
is not welcome by the authors; maybe, this could affect code authorship (in the developer’s
perception). For further investigation, the design of future studies may consider surveys with
PR authors in order to validate our impressions of the embedded code’s usefulness in code
reviews.

Third, we strongly recommend reproduction studies intending to confirm or refute our
findings by considering other GitHub projects and pull-based platforms. We provide a repro-
duction kit as support in this direction (Coelho 2024).

Practitioners: Based on our Findings 6–9, we provide a few guidelines for reviewers com-
posing valuable review comments towards code refactoring in code review time:

– Be polite when suggesting refactorings, using expressions like “can we ...?”, “maybe ...”,
as illustrated in Figs. 8, 9, 10, 14, 15, and 18;

– Be precise in both suggestions of refactoring and reasons (e.g., Figs. 10, 12, 14, and 19);
– Use the structure of the author’s code (e.g., class names, method names, etc.) when
providing explanations (e.g., Figs. 15 and 17). This usuallymakesmore clear the expected
improvements requested for the code author(s);

– Be direct when questioning the code logic, employing expressions that use the first person
plural such as “should we ...?”, as observed in Fig. 18;

– Avoid imposing any change, mainly by providing embedded code (Fig. 21 displays a
counter-example).

Since code review is intrinsically a human task comprising technical, personal, and social
aspects, following best practices may support developers in dealing with MCR challenges
(Chouchen et al. 2021; Gonçalves et al. 2023). Those guidelines may improve reviewers’
productivity by composing more effective review comments. Thus, reviewing discussions
may be reduced. As a consequence, the time to merge PRs may also decrease, as argued
by Gousios et al., because they found empirical evidence that code review affects the time
to merge a PR (Gousios et al. 2014). We know that PR authors and reviewers are devel-
opers dealing with several tasks, including refactoring and reviewing code. In this setting,
reviewers can incorporate our guidelines aiming at a more productive code review as get-
ting away from conflicts/confusion/discussion scenarios while improving their capacity to
politely communicate direct and precise refactoring suggestions to the code under review –
this may be a familiar practice of expert developers but an unfamiliar one for the beginners.
As a result, well-structured review comments also represent a rich learning opportunity for
less experienced authors and reviewers.

Tool Builders: Supported by empirical evidence that integrating static analysis tools can
improve the quality of code review (Balachandran 2013), we suggest the implementation of
checkers of review comments as a feature available at code review boards. To emphasize
the feasibility of this suggestion, Rahman et al. developed a machine learning prediction

123

 17 Page 42 of 49 Empirical Software Engineering (2025) 30:17

Table 20 Validity and reliability
countermeasures for
characterizing code review in
refactoring-inducing PRs

Type Description

Internal validity A design proposal to guide the study

Construct validity Regular revision of the study design by super-
visors

Establishment of a chain of evidence based on
data analyzed by three researchers (develop-
ers)

Manual validation of refactoring edits in
refactoring-inducing and non-refactoring-
inducing PRs

Reliability Effort towards clarifying thedata analysis pro-
cedures to enable replications

model for assisting developers when formulating code review comments, based on the text
and reviewer experience. Tool builders may leverage our guidelines in the sense of assisting
more effective code review at the PR level since authors may miss opportunities to improve
code due to not well-structured review comments. Although such a checker deals with natural
language, we already identified a few terms and expressions to be avoided (e.g., “not sure
if ...”) and others that proved to be well accepted (e.g., “How about ...?”), which can be
incorporated in comment checkers.

Concerning PR bots, the popular Stale bot has received a lot of criticism regarding its inef-
fectiveness in dealing with inactive PRs on GitHub (Khatoonabadi et al. 2023). Furthermore,
custom-made bots, such as Apache flinkbot,3 perform automated tasks, such as checking if
a PR is changing the dependencies or the public API of the project. Therefore, there is a
gap in PR bots helping with the actual code review process. We propose the development
of code review bots aligned with our guidelines to assist reviewers and PR authors with
refactoring-related issues. For instance, such bots could analyze the modified code in the PR
and search for code reviewers who have more expertise on this part of the codebase and thus
could suggest more relevant and appropriate refactorings.

Educators: Our dataset contains a large number of real code reviews from open-source
projects that can be used as case studies in software engineering courses. The students can
learn valuable lessons about how to give clear and appropriate feedback to a PR author, but
also how to properly address the changes requested by a code reviewer. All cases in our
dataset are well documented and include links to the corresponding PRs on GitHub.

6 Threats to Validity

To deal with the issues of validity and reliability, we propose the countermeasures intro-
duced in Table 20. Because we consider data obtained in line with a specific data mining
design, this study relies on its countermeasures and threats to validity and reliability described
in our previous work (Coelho et al. 2021). It is noteworthy that we elaborated the research
design supported by guidelines (Creswell 2012), whereas we employed special attention for
sampling representative PRs in each round of analysis. Accordingly, each purposive sam-
ple comprises one refactoring-inducing PR from the diversity of settings available at that

3 https://github.com/apache/flink/pull/6873

123

https://github.com/apache/flink/pull/6873

Empirical Software Engineering (2025) 30:17 Page 43 of 49 17

moment. For instance, the 13 refactoring-inducing PRs of sample 3 (Round 3) represent
a set of available compositions of high-level refactorings found in 36 refactoring-inducing
PRs, having high-level refactorings, at the beginning of the round. For each round of anal-
yses, we used randomness to select non-refactoring-inducing PRs, having an equal median
of the number of review comments in the set of refactoring-inducing PRs, intending a fair
comparison for answering RQ1 and RQ2. We considered the median value because review
comments present a non-normal distribution in our whole sample (Coelho 2024). Even so,
there are risks of threats to internal validity due to any non-previously identified deficiencies
in our research design.

We tried to establish a chain of evidence for the data interpretation and systematically
explain the procedures, decisions, and obtained results in each design step. We also pro-
pose a few actions intending to increase validity, including a sanity check of refactoring
edits (checking false positives and false negatives) and a data analysis performed by three
researchers intending to reduce researcher bias.

The subjective nature of our qualitative study does not allow generalizations. However,
we speculate that we can extend our findings to cases that have common characteristics
with Apache’s projects, that is other OSS projects that follow a geographically distributed
development (Zhong et al. 2012) and are aligned to “theApacheway” principles (Apa 2019b).
We systematically structured all procedures to deal with reliability issues, thus providing a
reproduction kit to enable replications, publicly available at (Coelho 2024).

7 RelatedWork

The code review practice has been the focus of characterization studies that explore both
OSS and industrial scenarios. Hence, it is perceptible the enhancement of techniques, tools,
and recommendations for supporting the code review as a result of research initiatives over
time.

The first studies aimed to understand the differences between software inspection as
performed in industry and peer code review in OSS development. Rigby et al., for this
purpose, provide theory and studymethodology in light ofmetrics similar to those considered
in software inspection (Rigby et al. 2008). They characterizedApache’s peer reviews as early,
frequent reviews of small, independent, complete contributions conducted asynchronously
by a small number of expert reviewers. These findings express code reviewing as a traditional
practice in Apache projects, which inspired us to explore refactoring-inducing PRs in their
repositories.

The differential of OSS code review practices for code quality has become evident, as
claimed by Rigby et al. when suggesting a few recommendations suitable to the industry
from the OSS code reviewing (Rigby et al. 2012). In this context, Rigby and Bird studied
convergent code review practices in both industrial and OSS scenarios aiming at discovering
efficientmethods of review (Rigby andBird 2013). Also, Rigby et al. extended the knowledge
on peer review practice, examining many aspects, including the experience (i.e., length of
time a developer has been with a project) of authors and reviewers (Rigby et al. 2014). They
found the reviewers typically have more experience than authors.We expand the knowledge
about the experience of Apache authors and reviewers by providing arguments denoting
a difference between the experience of authors and reviewers in refactoring-inducing and
non-refactoring-inducing PRs.

123

 17 Page 44 of 49 Empirical Software Engineering (2025) 30:17

We noticed a series of research initiatives to better understandMCR. Sadowski et al. stud-
ied code review practice at Google, discovering educational aspects as one of its motivations
(Sadowski et al. 2018). As well, our findings reinforce the intrinsic nature of code review in
terms of learning opportunities. McIntosh et al. explored the relationship between MCR and
software quality, identifying that a low proportion of changes reviewed and the involvement
degree of reviewers generate additional post-release defects (McIntosh et al. 2014, 2016).
Beller et al. investigated the benefits of MCR by examining the issues fixed at code review
time in OSS projects. They found that most of the changes are due to review comments,
concerning code improvement instead of fixing defects (Beller et al. 2014). As a whole, those
findings reinforce code improvement as a relevant objective of MCR, thus motivating us to
advance knowledge on code reviewing-related aspects such as review comments.

Also, studies explored code review quality. Kononenko et al. found empirical evidence
that aspects such as reviewer experience (i.e., the overall number of completed reviews)
and the thoroughness of feedback are associated with the code review quality (Kononenko
et al. 2015, 2016). Bosu et al. identified factors influencing the review comments’ usefulness
(Bosu et al. 2015) – for instance, review comments asking questions to understand code were
considered non-useful. However, such an aspect may induce refactoring edits at the PR level
in line with our findings. In this context, our guidelines for structuring review comments
denote a differential of our study.

Pull-based development is the focus of a few empirical studies. Gousios et al. investigated
GitHub PRs data to understand the factors influencing their effectiveness (e.g., code churn,
number of commits, and number of review comments) (Gousios et al. 2014). In particular,
besides providing us with a few features for exploring in our studies, this work found empir-
ical evidence that code review affects the time to merge a PR. We advanced the knowledge
regarding pull-based development when we found that refactoring-inducing PRs with refac-
torings induced by code review take less time to merge than refactoring-inducing PRs with
refactorings led by PR authors.

Review comments in pull-based development have been examined in a few studies. Rah-
man et al. developed a machine learning prediction model for assisting developers when
formulating code review comments in light of their usefulness, based on the content of
review comments and reviewer experience (Rahman et al. 2017). This work emphasizes the
reviewer experience as a relevant factor influencing the useful review comments, whereas our
studies shed light on considering the experience of reviewers against authors when dealing
with refactorings at the PR level. Li et al. found 15 typical code review patterns in GitHub
PRs such as reviewing for code correctness (e.g., indicating blank lines) (Li et al. 2017).
We go further in the sense of encompassing code review properties while investigating the
refactoring-inducing and non-refactoring-inducing PRs. Bosu et al. revisited the OSS and
industrial scenarios to investigate code review practice, including interactivity aspects and
human effort required in review-related tasks (Bosu et al. 2017). They identified a few sub-
jects for further research, such as assisting reviewers in articulating review comments. In
particular, our guidelines are an initiative to meet such a claim.

Distinct from the previous works focusing on the commit level, Pantiuchina et al. observed
that code readability, change- and fault-proneness, and experience of developers are factors
influencing refactoringswhen exploring the PR level (Pantiuchina et al. 2020). They analyzed
the discussion and commits of merged PRs, containing at least one refactoring in any one of
their commits, without pre-processing squashed and merged PRs (to the best of our knowl-
edge). They found that most of the refactorings are triggered by either the original intents of
PRs or discussions with other developers. Their findings are motivating, since they indicate
the influence that code review has on refactoring edits at the PR level. Our studies differ from

123

Empirical Software Engineering (2025) 30:17 Page 45 of 49 17

such previous work because we propose an exploration of refactorings performed as part of
changes at subsequent commits frommerged PRs, when investigating code reviewing-related
aspects and refactoring-inducement.

Paixão et al. investigated intentions behind refactorings performed during code reviewing,
by analyzing Gerrit reviews, and found that motivations may emerge from code reviews and,
in turn, influence the composition of edits and number of reviews (Paixão et al. 2020). Their
findings suggest aspects of refactoring and code review to be explored at the GitHub PR
level (e.g., typical types of refactoring edits). Specifically, they answered research questions
based on the evolution of refactorings at code reviewing time in light of distinct types of
developers’ intents. In addition, Panichella and Zaugg proposed a taxonomy for types of
review changes, including refactoring as a structural change (Panichella and Zaugg 2020).
Our study scrutinizes refactoring-related aspects according to the refactoring-inducement
context, independently of developers’ intents.

In a nutshell, ourmain goal is to fill up the knowledge gaponPRs aligned to our refactoring-
inducing definition instead of investigating motivations behind refactoring edits at the code
review time. For that, we first examined the differences between refactoring-inducing and
non-refactoring-inducing PRs (Coelho et al. 2021). Accordingly, we speculate that our find-
ings complement the related studies in the sense of a better understanding of MCR practice
concerning code evolution.

8 Concluding Remarks

In this qualitative study, we explored 118 PRs, the experience of their reviewers, 923 review
comments, and 361 refactoring edits aiming at characterizing code review in refactoring-
inducing PRs. Our results reveal motivating factors behind refactoring-inducing PRs,
technical aspects of the structure of review comments, and guidelines for a more productive
code review. Thus, we found the PR author’s experience and the structure of review com-
ments are two reasons behind refactoring-inducing PRs – specifically, review comments are
polite and precise while addressing major issues on code logic, improvements (including
refactorings directly), and warnings on good development practices.

MCRand code refactoring are complex processes dealingwith technical and non-technical
challenges. Thus, we believe that understanding code review in the presence of refactoring is
relevant as a baseline to identify improvement opportunities for pull-based software develop-
ment. Accordingly, we designed a qualitative investigation of a software ecosystem (Apache)
and concentrated effort into building guidance for a more productive code review, besides
suggesting directions for researchers, practitioners, tool builders, and educators.

As future research, we propose (i) scrutinizing the refactoring types in our dataset to
gain an in-depth understanding of refactoring practice in refactoring-inducing PRs with edits
exclusively led by the authors against those triggered by code review; for instance, identifying
whether there are refactoring typesmore acceptable than otherswhen suggested by reviewers;
(ii) designing surveys with developers to enhance our conclusions to confirm/refute our
guidelines for more effective review comments; (iii) assessing the guidelines for valuable
review comments towards code refactoring by running a controlled experiment with a group
of reviewers and observe both the quality of review comments and code changes during
reviewing; and (iv) confirming/refuting our findings, by replication, in other projects in both
OSS and industrial scenarios.

123

 17 Page 46 of 49 Empirical Software Engineering (2025) 30:17

Acknowledgements We thank the anonymous reviewers for their suggestions to improve this manuscript;
and Hugo Addobbati and Ramon Fragoso for their valuable contributions to the qualitative data analysis.
This research was partially supported by the National Council for Scientific and Technological Development
(CNPq)/Brazil (process 429250/2018-5).

Data Availibility The data that support the findings of this study are openly available at https://github.com/
flaviacoelho/emse-2024-reproduction-kit.

References

(2001) Manifesto for Agile software development. https://agilemanifesto.org/, accessed on: August 2020
(2018) RefactoringMiner – a refactoring detection tool. https://github.com/tsantalis/RefactoringMiner,

accessed on: September 2019
(2019a) The Apache® Software Foundation expands infrastructure with GitHub integration. https://blogs.

apache.org/foundation/entry/the-apache-software-foundation-expands, accessed on: June 2020
(2019b) Briefing: The Apache way. https://www.apache.org/theapacheway/, accessed on: June 2020
(2020) The Apache® Software Foundation projects statistics. https://projects.apache.org/statistics.html,

accessed on: December 2020
(2021) Community-led development “The Apache Way”. https://apache.org/foundation/how-it-works.html#

roles, accessed on: June 2021
(2022) GitHub pull requests. https://help.github.com/en/github/collaborating-with-issues-and-pull-requests,

accessed on: August 2022
AlOmar E, Mkaouer M, Ouni A (2019) Can refactoring be self-affirmed? An exploratory study on how

developers document their refactoring activities in commit messages. In: Proc. Int. Ws. Refactoring,
Montreal, Canada, pp 51–58, https://doi.org/10.1109/IWoR.2019.00017

AlOmar E, AlRubaye H, Mkaouer M, et al (2021) Refactoring practices in the context of modern code review:
An industrial case study at Xerox. In: Proc. IEEE/ACM Int. Conf. Softw. Eng. – Softw. Eng. in Practice,
Virtual, pp 348–357, https://doi.org/10.1109/ICSE-SEIP52600.2021.00044

AlOmar E, Chouchen M, Mkaouer M, Ouni A (2022) Code review practices for refactoring changes: An
empirical study on openstack. In: Proc. Int. Conf. Mining Softw. Repositories, pp 689–701, https://doi.
org/10.1145/3524842.3527932

Alves E, Song M, Massoni T et al (2018) Refactoring inspection support for manual refactoring edits. IEEE
Trans Softw Eng 44(4):365–383. https://doi.org/10.1109/TSE.2017.2679742

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. Proc. Int. Conf.
Softw. Eng, San Francisco, USA, pp 712–721

Balachandran V (2013) Reducing human effort and improving quality in peer code reviews using automatic
static analysis and reviewer recommendation. Proc. Int. Conf. Softw. Eng, San Francisco, USA, pp
931–940

Baysal O, Kononenko O, Holmes R, Godfrey M (2016) Investigating technical and non-technical factors
influencing modern code review. Empirical Softw Eng 21(3):932–959. https://doi.org/10.1007/s10664-
015-9366-8

Beller M, Bacchelli A, Zaidman A, Juergens E (2014) Modern code reviews in open-source projects: Which
problems do they fix? In: Proc. Working Conf. Mining Softw. Repositories, Hyderabad, India, pp 202–
211, https://doi.org/10.1145/2597073.2597082

Bosu A, Greiler M, Bird C (2015) Characteristics of useful code reviews: An empirical study at Microsoft.
Proc. Working Conf. Mining Softw. Repositories, Florence, Italy, pp 146–156

Bosu A, Carver J, Bird C et al (2017) Process aspects and social dynamics of contemporary code review:
Insights from open source development and industrial practice at Microsoft. IEEE Trans Softw Eng
43(1):56–75. https://doi.org/10.1109/TSE.2016.2576451

BrownC, ParninC (2020)Understanding the impact of github suggested changes on recommendations between
developers. In: Proc. ACM Joint Meeting European Softw. Eng. Conf. Symp. Foundations Softw. Eng.,
Virtual Event, USA, pp 1065–1076. https://doi.org/10.1145/3368089.3409722

Burdess N (2010) Starting statistics: a short, clear guide. Sage Publications
Chacon S, Straub B (2014) Pro Git, 2nd edn. Apress, New York, USA
Chouchen M, Ouni A, Kula RG, et al (2021) Anti-patterns in modern code review: Symptoms and prevalence.

In: Proc. Int. Conf. Softw. Analysis, Evol. Reengineering, Virtual, pp 531–535. https://doi.org/10.1109/
SANER50967.2021.00060

123

https://github.com/flaviacoelho/emse-2024-reproduction-kit
https://github.com/flaviacoelho/emse-2024-reproduction-kit
https://agilemanifesto.org/
https://github.com/tsantalis/RefactoringMiner
https://blogs.apache.org/foundation/entry/the-apache-software-foundation-expands
https://blogs.apache.org/foundation/entry/the-apache-software-foundation-expands
https://www.apache.org/theapacheway/
https://projects.apache.org/statistics.html
https://apache.org/foundation/how-it-works.html#roles
https://apache.org/foundation/how-it-works.html#roles
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/ICSE-SEIP52600.2021.00044
https://doi.org/10.1145/3524842.3527932
https://doi.org/10.1145/3524842.3527932
https://doi.org/10.1109/TSE.2017.2679742
https://doi.org/10.1007/s10664-015-9366-8
https://doi.org/10.1007/s10664-015-9366-8
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1109/TSE.2016.2576451
https://doi.org/10.1145/3368089.3409722
https://doi.org/10.1109/SANER50967.2021.00060
https://doi.org/10.1109/SANER50967.2021.00060

Empirical Software Engineering (2025) 30:17 Page 47 of 49 17

Coelho F (2022) Characterizing refactoring-inducing pull requests. PhD thesis, Acad. Unit Comp. Sci., Fed.
Univ. Campina Grande, Brazil

Coelho F (2024) A qualitative study on refactorings induced by code review – Reproduction kit. https://github.
com/flaviacoelho/emse-2024-reproduction-kit

Coelho F, Tsantalis N, Massoni T, Alves E (2021) An empirical study on refactoring-inducing pull requests.
In: Proc. Int. Symp. Empir. Softw. Eng. Meas., Bari, Italy, pp 1–12. https://doi.org/10.1145/3475716.
3475785

Creswell J (2012) Qualitative Inquiry and Research Design: Choosing among Five Traditions, 3rd edn. Sage
Publications, Thousand Oaks, EUA

Dohmke T (2023) 100 million developers and counting. https://github.blog/2023-01-25-100-million-
developers-and-counting/, accessed on: January 2024

Ebert F, Castor F, Novielli N, Serebrenik A (2021) An exploratory study on confusion in code reviews. Empir
Softw Eng 26(1):1–48. https://doi.org/10.1007/s10664-020-09909-5

Fowler M (1999) Refactoring: Improving the Design of Existing Code, 1st edn. Addison-Wesley Longman
Publishing, Westford, USA

Fowler M (2018) Refactoring: Improving the Design of Existing Code, 2nd edn. Addison-Wesley Professional
Gonçalves P, Çalikli G, Bacchelli A (2022) Interpersonal conflicts during code review: Developers’ experience

and practices. Proc ACM Hum-Comput Interact 6(CSCW1), https://doi.org/10.1145/3512945
Gonçalves P, Calikli G, Serebrenik A, Bacchelli A (2023) Competencies for code review. Proc ACM Hum-

Comput Interact 7(CSCW1), https://doi.org/10.1145/3579471
Gousios G, Pinzger M, Av Deursen (2014) An exploratory study of the pull-based software development

model. Proc. Int. Conf. Softw. Eng, Hyderabad, India, pp 345–355
Gousios G, Storey MA, Bacchelli A (2016) Work practices and challenges in pull-based development: The

contributor’s perspective. In: Proceedings of the 38th International Conference on Software Engineering,
ACM, Austin, USA, ICSE ’16, pp 285–296, https://doi.org/10.1145/2884781.2884826

Hossain S et al (2020) Measuring the effectiveness of software code review comments. In: Singh M, Gupta
PK, Tyagi V, Flusser J, Ören T, Valentino G (eds) Proc. Advances in Comput. and Data Sci, Springer
Singapore, Singapore, pp 247–257

Humble J, Farley D (2010) Continuous Delivery: Reliable Software Releases through Build, Test, and Deploy-
ment Automation, 1st edn. Addison-Wesley Professional

Khatoonabadi S, CostaD,Mujahid S, Shihab E (2023)Understanding the helpfulness of stale bot for pull-based
development: An empirical study of 20 large open-source projects. ACM Trans Softw Eng Methodol
33(2), https://doi.org/10.1145/3624739

Kononenko O, Baysal O, Guerrouj L, Cao Y, Godfrey M (2015) Investigating code review quality: Do people
and participation matter? In: Proc. IEEE Int. Conf. Softw. Maintenance Evol., Bremen, Germany, pp
111–120, https://doi.org/10.1109/ICSM.2015.7332457

Kononenko O, Baysal O, Godfrey M (2016) Code review quality: How developers see it. In: Proc. Int. Conf.
Softw. Eng., Austin, EUA, pp 1028–1038, https://doi.org/10.1145/2884781.2884840

Kononenko O, Rose T, Baysal O, et al (2018) Studying pull request merges: A case study of Shopify’s active
merchant. In: Proceedings of the 40th International Conference on Software Engineering: Software
Engineering in Practice, ACM, Gothenburg, Sweden, ICSE-SEIP ’18, pp 124–133, https://doi.org/10.
1145/3183519.3183542

Li ZX, Yu Y, Yin G, Wang T, Wang HM (2017) What are they talking about? Analyzing code reviews in pull-
based development model. J Comput Sci Technol 32(6):1060–1075. https://doi.org/10.1007/s11390-
017-1783-2

MacLeod L, Greiler M, Storey MA, Bird C, Czerwonka J (2018) Code reviewing in the trenches: Challenges
and best practices. IEEE Software 35(04):34–42. https://doi.org/10.1109/MS.2017.265100500

McIntosh S, Kamei Y, Adams B, Hassan A (2014) The impact of code review coverage and code review
participation on software quality: A case study of the Qt, VTK, and ITK projects. In: Proc.Working Conf.
Mining Softw. Repositories, Hyderabad, India, pp 192–201, https://doi.org/10.1145/2597073.2597076

McIntosh S, Kamei Y, Adams B, Hassan A (2016) An empirical study of the impact of modern code review
practices on software quality. Empir Softw Eng 21(5):2146–2189. https://doi.org/10.1007/s10664-015-
9381-9

Mockus A, Votta L (2000) Identifying reasons for software changes using historic databases. In: Proc. Int.
Conf. Softw. Maint., Washington, USA, pp 120–130, https://doi.org/10.1109/ICSM.2000.883028

Opdyke W, Johnson R (1990) Refactoring: An aid in designing application frameworks and evolving object-
oriented systems. In: Proc. Symp. Obj. Orien. Prg. Emph. Pract. Apps

Paixão M, Maia P (2019) Rebasing in code review considered harmful: A large-scale empirical investigation.
Proc. Int. Work. Conf. Source Code Analys. and Manip, Cleveland, USA, pp 45–55

123

https://github.com/flaviacoelho/emse-2024-reproduction-kit
https://github.com/flaviacoelho/emse-2024-reproduction-kit
https://doi.org/10.1145/3475716.3475785
https://doi.org/10.1145/3475716.3475785
https://github.blog/2023-01-25-100-million-developers-and-counting/
https://github.blog/2023-01-25-100-million-developers-and-counting/
https://doi.org/10.1007/s10664-020-09909-5
https://doi.org/10.1145/3512945
https://doi.org/10.1145/3579471
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/3624739
https://doi.org/10.1109/ICSM.2015.7332457
https://doi.org/10.1145/2884781.2884840
https://doi.org/10.1145/3183519.3183542
https://doi.org/10.1145/3183519.3183542
https://doi.org/10.1007/s11390-017-1783-2
https://doi.org/10.1007/s11390-017-1783-2
https://doi.org/10.1109/MS.2017.265100500
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1109/ICSM.2000.883028

 17 Page 48 of 49 Empirical Software Engineering (2025) 30:17

Paixão M, Uchôa A, Bibiano A et al (2020) Behind the intents: An in-depth empirical study on software
refactoring in modern code review. Proc. Int. Conf. Mining Softw. Repositories, Virtual, pp 125–136

Palomba F, Zaidman A, Oliveto R, De Lucia A (2017) An exploratory study on the relationship between
changes and refactoring. In: Proc. Int. Conf. on Prg. Comprehension, Buenos Aires, Argentina, pp 176–
185, https://doi.org/10.1109/ICPC.2017.38

Panichella S, Zaugg N (2020) An empirical investigation of relevant changes and automation needs in modern
code review. Empir Softw Eng 25:4833–4872. https://doi.org/10.1007/s10664-020-09870-3

Pantiuchina J, Zampetti F, Scalabrino S et al (2020) Why developers refactor source code: A mining-based
study. ACM Trans Softw Eng Methodol 29(4):1–30. https://doi.org/10.1145/3408302

Patton M (2014) Qualitative Research & Evaluation Methods: Integrating Theory and Practice, 4th edn. Sage
Publications, Thousand Oaks, EUA

Rahman M, Roy C, Kula R (2017) Predicting usefulness of code review comments using textual features
and developer experience. In: Proc. Int. Conf. Mining Softw. Repositories, Buenos Aires, Argentina, pp
215–226, https://doi.org/10.1109/MSR.2017.17

Rigby P, Bird C (2013) Convergent contemporary software peer review practices. In: Proc. JointMeeting Foun-
dations Softw. Eng., Saint Petersburg, Russia, pp 202–212, https://doi.org/10.1145/2491411.2491444

Rigby P, German D, StoreyMA (2008) Open source software peer review practices: A case study of the apache
server. In: Proc. Int. Conf. Softw. Eng., Leipzig, Germany, pp 541–550, https://doi.org/10.1145/1368088.
1368162

Rigby P, Cleary B, Painchaud F et al (2012) Contemporary peer review in action: Lessons from open source
development. IEEE Softw 29(6):56–61. https://doi.org/10.1109/MS.2012.24

Rigby P, German D, Cowen L, Storey MA (2014) Peer review on open-source software projects: Parameters,
statistical models, and theory. ACM Trans Softw Eng Methodol 23(4):1–33. https://doi.org/10.1145/
2594458

Rigby P, Bacchelli A, Gousios G, Mukadam M (2015) Chapter 9 - a mixed methods approach to mining code
review data: Examples and a study of multicommit reviews and pull requests. In: Bird C, Menzies T,
Zimmermann T (eds) The Art and Science of Analyzing Software Data. Morgan Kaufmann, Boston, pp
231–255

Sadowski C, Söderberg E, Church L, et al. (2018) Modern code review: A case study at Google. In: Proc.
Int. Conf. Softw. Eng.: Softw. Eng. Prac., Gothenburg, Sweden, pp 181–190, https://doi.org/10.1145/
3183519.3183525

Silva D, Tsantalis N, Valente M (2016) Why we refactor? confessions of GitHub contributors. In: Proc. Proc.
ACM SIGSOFT Int. Symp. Found. Softw. Eng., pp 858–870, https://doi.org/10.1145/2950290.2950305

Swanson E (1976) The dimensions of maintenance. Proc. Int. Conf. Softw. Eng, San Francisco, USA, pp
492–497

Szőke G, Nagy C, Ferenc R, Gyimóthy T (2014) A case study of refactoring large-scale industrial systems
to efficiently improve source code quality. Proc. Int. Conf. Comput. Sci. Apps, Guimarães, Portugal, pp
524–540

Thongtanunam P, McIntosh S, Hassan A, Iida H (2016) Revisiting code ownership and its relationship with
software quality in the scope of modern code review. In: Proc. Int. Conf. Softw. Eng., Austin, Texas, pp
1039—-1050, https://doi.org/10.1145/2884781.2884852

Tsantalis N, Mansouri M, Eshkevari L, et al. (2018) Accurate and efficient refactoring detection in commit his-
tory. In: Proceedings of the 40th International Conference on Software Engineering, ACM, Gothenburg,
Sweden, ICSE ’18, pp 483–494, https://doi.org/10.1145/3180155.3180206

Tsantalis N, Ketkar A, Dig D (2020) RefactoringMiner 2.0. IEEE Transactions on Software Engineering pp
1–1, https://doi.org/10.1109/TSE.2020.3007722, early access article

Tsay J, Dabbish L,Herbsleb J (2014) Let’s talk about it: Evaluating contributions through discussion inGitHub.
In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ACM,HongKong, China, FSE ’14, pp 144–154, https://doi.org/10.1145/2635868.2635882

Uchôa A, Barbosa C, Oizumi W et al (2020) How does modern code review impact software design degrada-
tion? an in-depth empirical study. Proc. IEEE Int. Conf. Softw. Maintenance Evol, Adelaide, Australia,
pp 511–522

Vassallo C, Grano G, Palomba F et al (2019) A large-scale empirical exploration on refactoring activities in
open source software projects. Sci Comput Program 180:1–15

Wang S, Bansal C, Nagappan N, Philip A (2019) Leveraging change intents for characterizing and identifying
large-review-effort changes. In: Proc. Int. Conf. Predictive Models and Data Analytics in Softw. Eng.,
Recife, Brazil, pp 46–55, https://doi.org/10.1145/3345629.3345635

Zanaty F, Hirao T, McIntosh S, Ihara A,Matsumoto K (2018) An empirical study of design discussions in code
review. In: Proc. Int. Symp. Empir. Softw. Eng. Meas., Oulu, Finland, https://doi.org/10.1145/3239235.
3239525

123

https://doi.org/10.1109/ICPC.2017.38
https://doi.org/10.1007/s10664-020-09870-3
https://doi.org/10.1145/3408302
https://doi.org/10.1109/MSR.2017.17
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1145/1368088.1368162
https://doi.org/10.1145/1368088.1368162
https://doi.org/10.1109/MS.2012.24
https://doi.org/10.1145/2594458
https://doi.org/10.1145/2594458
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1145/2884781.2884852
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/2635868.2635882
https://doi.org/10.1145/3345629.3345635
https://doi.org/10.1145/3239235.3239525
https://doi.org/10.1145/3239235.3239525

Empirical Software Engineering (2025) 30:17 Page 49 of 49 17

Zhong H, Yang Y, Keung J (2012) Assessing the representativeness of open source projects in empirical
software engineering studies. Proc. APac. Softw. Eng. Conf, Hong Kong, China, pp 808–817

Zhu J, Zhou M, Mockus A (2016) Effectiveness of code contribution: From patch-based to pull-request-based
tools. In: Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng., Seattle, USA, pp 871–882, https://doi.
org/10.1145/2950290.2950364

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1145/2950290.2950364
https://doi.org/10.1145/2950290.2950364

	A qualitative study on refactorings induced by code review
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Research Overview*-2.5pt
	1.3 Contributions*-2.5pt

	2 Motivating Study
	3 Methodology
	3.1 Selection of a Purposive Sample
	3.2 Sanity Check of Refactoring Edits*-2.5pt
	3.3 Manual Analysis of Review Comments*-2.5pt
	3.4 Merging of Judgements
	3.5 Reviewers' Experience

	4 Results and Discussion
	4.1 Preliminary Results
	4.1.1 Refactoring-inducement Rates
	4.1.2 How Authors Document Refactoring Edits
	4.1.3 Types of Change
	4.1.4 Self-affirmed Minor Review Comments
	4.1.5 Code Review Bots
	4.1.6 Experience of PR Authors and Reviewers

	4.2 How are Review Comments Characterized in Refactoring-inducing and Non-refactoring-inducing PRs?
	4.2.1 Review Comments in Refactoring-inducing PRs with Refactorings Led Exclusively by Authors
	4.2.2 Review Comments in Refactoring-inducing PRs with Refactorings Induced Exclusively by Code Review
	4.2.3 Review Comments in Refactoring-inducing PRs with Refactorings both Led by Authors and Induced by Code Review
	4.2.4 Review Comments in Non-refactoring-inducing PRs

	4.3 What are the Differences Between Refactoring-inducing and Non-refactoring-inducing PRs, in Terms of Review Comments?
	4.4 How do Reviewers Suggest Refactorings in Refactoring-inducing PRs?
	4.5 Do Suggestions of Refactoring Justify the Reasons?
	4.6 What is the Relationship Between Suggestions and Actual Refactorings in Refactoring-inducing PRs?
	4.7 General Considerations

	5 Implications and Guidelines
	6 Threats to Validity
	7 Related Work
	8 Concluding Remarks
	Acknowledgements
	References

