
Empirical Software Engineering (2025) 30:13
https://doi.org/10.1007/s10664-024-10549-2

Towards effectively testing machine translation systems
fromwhite-box perspectives

Hanying Shao1 · Zishuo Ding 2 ·Weiyi Shang1 · Jinqiu Yang3 · Nikolaos Tsantalis3

Accepted: 19 September 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Neural Machine Translation (NMT) has experienced significant growth over the last decade.
Despite these advancements, machine translation systems still face various issues. In
response, metamorphic testing approaches have been introduced for testing machine trans-
lation systems. Such approaches involve token replacement, where a single token in the
original source sentence is substituted to create mutants. By comparing the translations of
mutantswith the original translation, potential bugs in the translation systems can be detected.
However, the selection of tokens for replacement in the original sentence remains an intrigu-
ing problem, deserving further exploration in testing approaches. To address this problem,
we design two white-box approaches to identify vulnerable tokens in the source sentence,
whose perturbation is most likely to induce translation bugs for a translation system. The first
approach, namedGRI, utilizes the GRadient Information to identify the vulnerable tokens for
replacement, and our second approach, named WALI, uses Word ALignment Information
to locate the vulnerable tokens. We evaluate the proposed approaches on a Transformer-
based translation system with the News Commentary dataset and 200 English sentences
extracted from CNN articles. The results show that both GRI and WALI can effectively gen-
erate high-quality test cases for revealing translation bugs. Specifically, our approaches can
always outperform state-of-the-art automatic machine translation testing approaches from
two aspects: (1) under a certain testing budget (i.e., number of executed test cases), both GRI
andWALI can reveal a larger number of bugs than baseline approaches, and (2) when given a
predefined testing goal (i.e., number of detected bugs), our approaches always require fewer
testing resources (i.e., a reduced number of test cases to execute).

Keywords Neural network · Neural machine translation · Software testing

1 Introduction

Machine translation systems have enabled the automatic translation of text from a source
language to a target language, breaking the communication barriers among people from

Communicated by: Andrea Stocco, Matteo Biagiola, Vincenzo Riccio, Foutse Khomh, Nicolás Cardozo and
Dongwan Shin

This article belongs to the Topical Collection: Special Issue on Innovations in Software System Testing with
Deep Learning

Extended author information available on the last page of the article

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10549-2&domain=pdf

 13 Page 2 of 38 Empirical Software Engineering (2025) 30:13

different countries over the Internet. Despite the significant advancements, machine trans-
lation systems are still susceptible to various forms of noise and input variations (Belinkov
and Bisk 2018; Karpukhin et al. 2019; Khayrallah and Koehn 2018), resulting in potential
misunderstandings and translation errors. Consequently, testing machine translation systems
have become increasingly critical as the use of these systems continues to expand (Lihua
2022; Zhang et al. 2022).

In recent years, several techniques, including SIT (He et al. 2020), PathInv (Gupta et al.
2020), TransRepair (Sun et al. 2020), and CAT (Sun et al. 2022), have been proposed to
evaluate the efficacy of machine translation systems. Most of the existing research (He et al.
2020; Gupta et al. 2020; Sun et al. 2020, 2022; Xie et al. 2020) utilizes metamorphic testing
strategies wherein a token or phrase from the original source sentence is substituted. Such
substitutes may introduce controlled modifications to the translation output. The resulting
translations are then compared to detect errors in the translation systems.

A potential problem for the aforementioned testing techniques is that they do not consider
the different levels of impact that each token of a source sentence has on the translation output.
Substituting a randomly selected tokenmay cause slowexecution,waste resources, and hinder
scalability for large datasets. For example, only 100 translation bugs are detected using over
ten thousand mutated sentences by the PathInv strategy (Gupta et al. 2020), yielding a very
low bug detection rate. Similarly, CAT (Sun et al. 2022) may substitute a token that has little
impact on the translation output. For example, for a source sentence “It has retreated from
them since it nearly collapsed eight years ago and had to be bailed out.”, CAT (Sun et al.
2022) generatesmutants by replacing the token “eight” with “three”, “five”, “ten”, and “two”.
However, the token “eight” has little effect on the translation output, making these mutants
less effective test cases. On the contrary, replacing other tokens such as “ago” with “back”
can cause a significant change in the translation, exposing the susceptibility of the translation
system under test to subtle modifications. These examples highlight the importance of token
selection for replacement in the machine translation system testing approaches.

Therefore, in this work, we propose two white-box approaches to identify vulnerable
tokens in source sentences, whose perturbation is most likely to induce translation bugs for
a translation system. The first approach, named GRI, utilizes the GRadient Information to
identify the vulnerable tokens for replacement, and our second approach, namedWALI, uses
Word ALignment Information to locate the vulnerable tokens. GRI identifies the tokens in
the source sentence with large gradients as candidates for replacement. WALI calculates the
confidence score for each of the tokens in the target translation sentence and then adopts the
word alignment information to map the target token to the source token. The source token
whose aligned target token has a low confidence score is identified as a vulnerable token
for replacement. The identified tokens can be iteratively replaced with semantically similar
substitutions for mutant (i.e., test cases) generation. The translation system takes the newly
generated mutants as input and returns corresponding translations. If the difference between
the new translations and the original translation exceeds a threshold, a translation bug will
be reported.

We compare our approaches with three baseline approaches, CAT (Sun et al. 2022),
TransRepair (Sun et al. 2020), and SIT (He et al. 2020), which are state-of-the-art machine
translation testing techniques. We apply the approaches (our GRI and WALI, and baseline
approaches) to test a Transformer-based translation system (Helsinki-NLP 2020b) with two
commonly used datasets (Sun et al. 2022, 2020; He et al. 2020): the News Commentary
dataset (WMT18 2018) and 200 English sentences fromCNN1 articles. Our evaluation shows

1 https://edition.cnn.com

123

https://edition.cnn.com

Empirical Software Engineering (2025) 30:13 Page 3 of 38 13

that both of our approaches, GRI andWALI outperform the baseline approaches by reporting
more translation bugs while executing fewer test cases. Furthermore, we find that GRI and
WALI can detect newbugs that are not detected by prior approaches and thus, can complement
the current techniques for testing translation systems.

The contributions of this paper include:
– This paper proposes two white-box approaches, namely GRI and WALI, to identify
the vulnerable tokens in source sentences whose perturbation is most likely to induce
translation bugs.

– Our proposed approaches, GRI andWALI can complement the current translation system
testing methodologies by detecting translation bugs that were not reported before.

– A further analysis is conducted to investigate the factors that increase the likelihood
of detecting translation bugs. This finding suggests that paying more attention to the
selection of nouns and short sentences for translation system testing may expose more
translation bugs.

Our work is an important step toward advancing the performance of machine translation
testing approaches from the White-Box perspective. Our techniques have the potential to
increase efficacy and reduce resource consumption by emphasizing the significance of word
selection before replacement. Furthermore, our findings pave the way for future research to
explore the application of various types of white-box approaches in identifying vulnerable
words, which could enhance the quality of machine translation testing methodologies. The
replication package including the data, manual labeling results, and the source code are
publicly accessible2.

Paper organization Section 2 gives an overview of the approaches and introduces the two
white-box approaches proposed to identify the vulnerable words in the source sentence.
Section 3 describes the experimental settings used to evaluate the approaches. Section 4
demonstrates the results of our evaluation of the proposed approaches. Section 6 presents the
prior studies related to this work. Section 7 discusses the threats to the validity of our results.
Finally, Section 8 concludes the paper.

2 Approaches

In this section, we first formally define the task of testing neural machine translation systems.
We then describe the details of our white-box approaches that leverage gradients and align-
ment information to efficiently generate new translation sentences by perturbing the original
one.

2.1 Problem definition and our goal

Problem definition Assume we have a neural machine translation system, F (·), that takes
in a source sentence x = (x1, x2, . . . , xN), and returns a translation in target language,
y = (y1, y2, . . . , yM). To test the system, it is required to generate a new source sentence
xnew by slightly perturbing the original sentence xorig (e.g., replacing xi with x ′

i , where
xi �= x ′

i), of which the new translation should be different from that of xorig. Given the
small perturbation of the original source sentence, if the difference between the translations
is larger than the expected threshold, a new translation bug will be reported.

2 https://github.com/conf2024-8888/NMT-Testing.git

123

https://github.com/conf2024-8888/NMT-Testing.git

 13 Page 4 of 38 Empirical Software Engineering (2025) 30:13

Formally, the optimization problem can be expressed as follows:

maximize Sim
(
xnew, xorig

)
(1a)

subject to Dist
(F (

xnew
)
,F (

xorig
))

> ξ (1b)

where Sim (·, ·) measures the similarity (e.g., BERT-based semantic similarity) between
two input sentences, and Dist (·, ·) measures the distance (e.g., edit distance) between two
translations, ξ is the threshold for identifying the translation bug.

Goal Considering the main challenges stated in Section 1 during the machine translation
testing and the limitations of the existing work, in this section, we propose our white box-
based approaches, aiming to effectively identify the vulnerable tokens for new sentence
generation.

2.2 Approach overview

Figure 1 provides an overview of our proposed approaches. For each original source sen-
tence and its translation, we first identify vulnerable tokens in the source sentence. The
vulnerable tokens are the tokens that most likely can cause the translation system to make
a different translation (i.e., Dist

(F (xnew) ,F (
xorig

))
> ξ) once they are replaced. Under

our white-box setting, we propose two efficient strategies to identify such vulnerable tokens:
(1) gradient-based vulnerable tokens identification (GRI) and (2) word alignment-based vul-
nerable tokens identification (WALI). Then, we iteratively replace each of the vulnerable
tokens with its semantically similar tokens. Note that one sentence may have several vulner-
able tokens and each vulnerable token can have multiple replacements. As a result, each of
the replacements leads to a newly generated sentence (i.e., test case or mutant) that can be
used for testing. Finally, the translation system takes the newly generated sentences (i.e., test
cases or mutants) as input and returns corresponding translations. If the difference between
the new translations and the original translation exceeds a threshold, a translation bug will
be reported.

2.3 Vulnerable token identification

In this subsection, we detail our proposed two strategies for identifying the vulnerable tokens
in the original source sentence.

Source
sentence

Target
translation

Translation
system

GRI
 Calculate
gradients

1. Vulnerable Token Identification

Sort source tokens
by gradients

 Calculate
confidence score

 Extract
attention weights

Sort target tokens
by confidence

 Calculate
alignment score

Identified top-k
source tokens

Replace
identified tokens

Mutants Translation
system

Measure
difference

WALI

2. Word Replacement 3. Bug Detection

Fig. 1 An overview of our approach

123

Empirical Software Engineering (2025) 30:13 Page 5 of 38 13

2.3.1 Gradient-based strategy (GRI)

Gradient information has been extensively utilized in various deep learning-based tasks,
especially the task of adversarial examples generation for both natural language processing
(NLP) and computer vision (CV) (Goodfellow et al. 2015; Fursov et al. 2020; Zhang et al.
2019; Grosse et al. 2016; Pei et al. 2019).

While gradient information is widely used for testing classification systems, there exists
little work utilizing such information for testing neural machine translation systems.Machine
translation can also be considered as a sequence of multiclass classification problems, with
vocabulary-size classes, where the translation system needs to predict the current token based
on both the source sentence and the previously generated tokens. Therefore, we assume that
the gradient information would be helpful in identifying the vulnerable tokens in translation
systems as well. Drawing inspiration from this concept, we propose our first strategy, GRI,
which uses gradient information to identify the vulnerable tokens in the source sentence.
Similar to prior work (Li et al. 2019), our assumption is that the higher the gradient of a token
is, the more likely this token can cause the system to generate a different translation once it
is replaced.

Algorithm 1 GRI
Input: a source sentence x, and the translation system F (·) and tokenizer Tokenizer
Output: a set of mutated sentences X′

1 begin
2 tokens ← Tokenizer(x)
3 embeddings ← F (tokens)
4 output ← F (embeddings)
5 G ← GetGradient(output)
6 Gsorted ← Sort(G)
7 Tordered ← SortTokensbyGrad(tokens)
8 foreach wi ∈ Tordered do
9 Cw ← FindReplacementWord(x, wi)

10 X′ ← replace wi with cw ∈ Cw

11 return X′

In GRI, we calculate the partial derivative of the loss values with respect to each token
in the input sentence to obtain the corresponding gradients. The gradients can be computed
using the chain rule and the Jacobian matrix of the output of the model with respect to the
input tokens. Specifically, the gradient of the loss function with respect to the i-th input token
xi can be computed as:

∂L

∂xi
=

|V|∑

j=1

∂L

∂ y j

∂ y j
∂xi

(2)

where L is the loss function, xi is the i-th source token, y j is the output for the j-th element
in the output vocabulary V , and |V| is the size of the output vocabulary. Using automatic
differentiation, we compute the Jacobian matrix for the loss values with respect to the given
source sentence x = (x1, x2, ..., xN).

After obtaining the gradient information of each token in the source sequence, we sort
the tokens in descending order based on the magnitude of their corresponding gradients. The
top-k tokens are identified as the k most vulnerable tokens of the source sentence and will
be replaced in the later stage.

123

 13 Page 6 of 38 Empirical Software Engineering (2025) 30:13

Algorithm 1 outlines the entire process of creating mutants for each source sentence using
theGRI approach. For each token in the original sentences, the vulnerable tokens are identified
using the GRI methodology. Subsequently, replacement words for each identified vulnerable
token are selected based on the replacement strategies employed in baseline approaches.
These replacement words are then integrated into the sentences to create the mutants. This
systematic approach ensures a targeted modification of the source sentences, leveraging
identified vulnerabilities to test and enhance the testing strategy.

2.3.2 Word alignment-based strategy

Word alignment is one of the most fundamental tasks in NLP, which aims to identify the
correspondence between source and target words in a bitext. Prior studies (Wang and Zheng
2020; Nguyen et al. 2021; Zhang and van Genabith 2021; Song et al. 2020) have shown
that word alignment can benefit many multilingual tasks such as neural machine translation,
annotation projection, and grammatical error correction. Motivated by earlier research, in
this section, we propose WALI, which adopts such information from the machine translation
system to identify the vulnerable tokens in the source sentence. Unlike GRI, which directly
identifies the vulnerable tokens of the source sentence, WALI first identifies the vulnerable
tokens of the target translation sentence and then uses the alignment information to identify
the vulnerable tokens of the source sentence. In other words, if the target token yi is identified
as a vulnerable token and is aligned to the source token x j , x j will be finally identified as
the vulnerable token for replacement. Figure 2 shows a visualization of word alignments
between an English and Chinese sentence.

InWALI, we first calculate the generation probability score (also known as the confidence
score) p (yi |y1:i−1, x) for each token yi in the target translation. The generation probability
captures the likelihood of the target token based on the source sentence x and the previously

Fig. 2 An example of alignment using attention weights. The horizontal axis represents the source tokens and
the left vertical axis represents the aligned target tokens(gold alignment)[generation probability after so f tmax
function]. The circled squares highlight the alignments obtained using the alignment matrix A presented in
Section 2.3.2

123

Empirical Software Engineering (2025) 30:13 Page 7 of 38 13

generated target sequence y1:i−1. The higher the score, the greater the level of certainty
exhibited by the model in making its prediction, and vice versa. Therefore, we assume that
the lower the probability score of a target token is, themore likely its aligned source token can
cause the system to generate a different translation once its aligned source token is replaced.
For example, in Fig. 2, the third target token “年前 (years ago)” has the lowest score3 and is
identified as the vulnerable tokens of the target sentence.

Algorithm 2 WALI
Input: a source sentence x, and the translation system F (·) and tokenizer Tokenizer
Output: a set of mutated sentences X′

1 begin
2 tokens ← Tokenizer(x)
3 con f idenceScore ← F (tokens)
4 attnWeights ← F (tokens)
5 Cordered ← Sort(con f idenceScore)
6 Wordered ← Alignment(Cordered , attnWeights)
7 foreach wi ∈ Wordered do
8 Cw ← FindReplacementWord(x, wi)
9 X′ ← replace wi with cw ∈ Cw

10 return X′

We then map the tokens in the target translation to the tokens in the source sentence
based on the attention weights. Following previous work (Sun et al. 2022, 2020), we use
Transformer as the translation system for testing (cf., Section 3.2), which is an encoder-
decoder model that relies on attention4.

Like prior work (Bahdanau et al. 2015; Ghader and Monz 2017; Wang and Zheng 2020),
we use the attentionweights of aTransformermodel to obtain the alignmentmapping between
the target token yi and the source token x j , shown as below:

αi, j = softmax

(
Qi K T

j√
dk

)

(3)

where Qi is the query matrix, K j is the key matrix,
√
dk is a normalization factor where dk is

the dimension of the key/query matrix. Query and key matrix are central components in the
attention mechanism of Transformer models. The query matrix represents the set of queries
in an attention mechanism where each query is associated with a token in the input sequence
that is looking for correlated tokens in the sequence. The keymatrix holds the keys associated
with each element in the sequence. These keys are used to compute attention scores with the
query matrix. Based on the extracted attention weights α, the alignment matrix A is then
calculated as:

Ai, j (α) =
⎧
⎨

⎩

1 j = arg max
j ′

αi, j ′

0 otherwise
(4)

where Ai, j = 1 indicates yi is aligned to x j . To provide an example, as shown in Fig. 2, the
third target token “年前 (years ago)” is aligned to “ago” in the source sentence. Based on the
lowest generation probability score and the alignment result, “ago” is thus identified as one
of the vulnerable tokens of the source sentence.

3 Punctuations, like “◦” and “_ _” are ignored.
4 Due to space limitation, we refer readers to the paper (Vaswani et al. 2017) for details.

123

 13 Page 8 of 38 Empirical Software Engineering (2025) 30:13

Once the alignment between the target and source tokens is obtained, the source tokens are
sorted in ascending order according to the confidence scores of their aligned target tokens.
The top k tokens with the lowest confidence scores are identified as the k most vulnerable
tokens in the source sentence and are considered candidates for replacement. Afterward,
WALI approach is used to select and replace the vulnerable tokens in the input sentence.

Algorithm 2 outlines the procedure for generating mutants, leveraging the WALI algo-
rithm. Initially, for each sentence, vulnerable tokens are identified and ranked based onWALI.
For each vulnerable token, potential replacement words are sought using the replacement
strategies defined in baseline approaches. After identifying valid replacement candidates,
these are substituted into the original sentence to create testmutants. This systematic approach
encapsulates the complete process of mutant generation.

2.4 Word replacement

In Section 2.3, we have introduced our two strategies: GRI and WALI for identifying the
vulnerable tokens of a source sentence. In this part, we discuss howwe replace the vulnerable
tokens to generate new source sentences for testing.

As shown in (1a), we need to maximally preserve the meaning of the original source
sentence during the word replacement process. To ensure a fair comparison with the existing
baselines, we follow the replacement strategies proposed by baselines (Sun et al. 2022, 2020;
He et al. 2020). A brief description of the baseline approaches is provided below.

2.4.1 TransRepair

TransRepair employs a context-similar word replacement strategy, utilizing a pre-built
context-similarity corpus. This corpus is constructed using two vector models: GloVe (Pen-
nington et al. 2014) and SpaCy (Spa 2019). Words that exhibit a cosine similarity exceeding
0.9 across both vector models are included in the corpus. We adopted the identical word cor-
pus provided by the original authors for consistency. For each word in the original sentence,
a search is conducted within the corpus to find a suitable candidate for replacement. A struc-
tural filtering process, guided by the Stanford Parser (Manning et al. 2014), is then applied to
ensure that the sentence structure remains intact. Tomaintain correct syntax, candidate words
that have different part-of-speech (POS) tags compared to the original words are filtered out.
This methodological approach ensures that replacements are contextually appropriate and
grammatically coherent.

2.4.2 CAT

CATutilizes theBERT (Devlin et al. 2019)model to identify candidates forword replacement.
Initially, eachword in the input sentence is replaced by the specialmarker “[MASK]”, and this
altered sentence is then processed by the BERT model. The model predicts substitute words
for themasked position, which serve as potential replacements. Given that the BERTmodel is
designed for context-aware masking tasks, it ensures that the predicted words are consistent
with the original sentence’s syntax and semantics. To confirm that these replacement words
do not alter the sentence’s semantic meaning, each candidate word is inserted back into
the sentence and re-encoded using the BERT model. A cosine similarity is then computed
between the context-aware vector representations of the original and the replacement words.
This semantic evaluation process discards any replacements with a cosine similarity score
below 0.85.

123

Empirical Software Engineering (2025) 30:13 Page 9 of 38 13

2.4.3 SIT

SIT employs the BERT model to identify replacement candidates as well. Each word in
the original sentence is processed by the Masked Language Model (MLM), BERT, which
predicts contextually appropriate words. To maintain the integrity of the sentence structure,
only words that share the same part-of-speech (POS) tag as the original word are considered
for replacement. This ensures that substitutions are syntactically coherent with the rest of the
sentence.

The selected candidates are used to replace the vulnerable tokens, and each replacement
will result in a new source sentence xnew for testing the machine translation system. We
adhere to the identical replacement strategies outlined in prior research to facilitate a fair
evaluation, with and without the incorporation of GRI andWALI. For each original sentence,
we substitute one token with a contextually appropriate synonym, allowing for the creation
of up to five mutants per sentence.

2.5 Translation bug detection

For translation bug detection, we adopt the same test oracle presented in the prior studies (Sun
et al. 2022, 2020; He et al. 2020). Specifically, given a translation systemF (·) and an original
source sentence xorig and its newly generated one xnew, the automatic bug detection oracle
calculates the difference between the two translations,F (xnew) andF (

xorig
)
. If the difference

score is above a predefined threshold, a translation bug is reported. In our work, to ensure a
fair comparison with baselines, we employ identical distance metrics and thresholds with the
previous study (Sun et al. 2022, 2020; He et al. 2020) and avoid fine-tuning these settings
only for our methods. We provide a brief definition of each metric below, where the first four
metrics are used to evaluate TransRepair (Sun et al. 2020) and CAT (Sun et al. 2022) and the
fifth metric is for SIT (He et al. 2020):

2.5.1 LCS-basedmetric

It measures the normalized length of the longest subsequence that is common between the
original sentence and the mutated sentence (Hunt and Szymanski 1977). The LCS metric
ranges from 0 to 1, where 1 indicates that the two sentences are identical and 0 indicates no
overlap between the two sentences.

2.5.2 ED-basedmetric

The edit distancemetric determines theminimumnumber of edit operations, such as insertion,
deletion, substitution, and transposition, required to transform one string to another (Ristad
and Yianilos 1998). It is widely used in applications that involve string comparison and spell-
checking and can quantify the dissimilarity between two strings (Gu et al. 2018; Zhang et al.
2018).

2.5.3 TFIDF-based metric

The tf-idf (term frequency-inverse document frequency)metric is a statisticalmeasure used to
evaluate the similarity with the word frequency (Robertson 2004). In this study, we compute
a weight wid f for each word w using the same corpus used in CAT. The word vectors are

123

 13 Page 10 of 38 Empirical Software Engineering (2025) 30:13

then multiplied by their respective weights, and the cosine similarity between the resulting
vectors of s1 and s2 is used to determine the similarity between the translations after the
replacement process.

2.5.4 BLEU-basedmetric

BLEU score is a metric for evaluating the quality of machine-translated text against one or
more human reference translations. It measures the overlap between the machine-generated
translation and the reference translation(s) using n-gram analysis. It ranges from 0 to 1, where
1 indicates a perfect match between the candidate and reference translations. Those who seek
further elaboration can refer to prior research studies (Sun et al. 2020; Papineni et al. 2002)
for additional information.

2.5.5 Relation distance between dependency parse trees metric

In order to assess the structural consistency of the translations, the relation distance metric
measures the dissimilarity between two sets of constituency relations. This measurement is
achieved by calculating the distance between two arrays of constituency grammars, defined
as the sum of the absolute differences in the frequency of each phrasal type. Constituency
relations represent a type of syntax representation in linguistics that organizes words into
nested hierarchical structures called constituents or phrases. For instance, ”a flight” forms a
Noun Phrase (NP). Sentences can be represented as parse trees with constituents like NP, VP,
and PP. The distance is calculated by counting changes in the smallest constituents between
original and new translations. The sentences are parsed using Stanford CoreNLP (de Marn-
effe et al. 2014), which provides a detailed analysis of the grammatical structure of sentences.
We adhere to the Universal Dependencies annotation scheme, following the guidelines estab-
lished in prior research (He et al. 2020).

For TransRepair (Sun et al. 2020) and CAT (Sun et al. 2022), the distance metrics, as
outlined in 1) - 4), quantify the similarity between the translation of the original input and
the translation of the generated mutants. Consequently, a bug is flagged when the value of
the distance metric falls below predefined thresholds. Following previous work (Sun et al.
2020, 2022), the threshold is set to 0.963, 0.999, 0.906, 0.963 for LCS, TF-IDF, BLEU and
ED respectively.

For SIT (He et al. 2020), theDependency distancemetricmeasures the distinction between
the dependency lists of the translations of the original input and those of the generatedmutants.
The greater the metric, the larger the structural difference between the translations derived
from the original. Following previous work (He et al. 2020), the top-3 sentences exhibiting
the greatest divergence are reported.

3 Experimental setup

3.1 Dataset

To ensure a fair comparison with baselines, following prior work (Sun et al. 2022, 2020),
we utilize the News Commentary (NC) testing dataset (WMT18 2018) to evaluate CAT (Sun
et al. 2022) and TransRepair (Sun et al. 2020) and 200 English sentences crawled from
CNN (Cable News Network)5 to evaluate SIT. The New Commentary dataset comprises

5 https://edition.cnn.com

123

https://edition.cnn.com

Empirical Software Engineering (2025) 30:13 Page 11 of 38 13

Table 1 Statistics of the dataset for evaluation

Corpus # of words mean # of words median # of words # of words
per sentence per sentence per sentence distinct total

NC [2, 73] 23.8 23 11,173 47,636

Politics [4, 32] 19.2 19.5 1,918 933

Business [4, 33] 19.5 19 1,949 944

2,001 English-to-Chinese sentence pairs and the CNN dataset consists of articles from two
categories: Politics and Business, where each contains 100 sentences. The statistics of the
three datasets are illustrated in Table 1. Table 1 provides a detailed breakdown of the average
number of words per sentence and the total number of distinct words in each dataset. The
first column shows sentence length ranges in each dataset. The second and third columns
present mean and median word counts per sentence. Specifically, the News Commentary
dataset shows an average of 23.8 words per sentence, which is significantly higher compared
to 19.2 and 19.5 words per sentence for the Politics and Business datasets, respectively. The
final column lists total and unique word counts. This data suggests that sentences from the
News Commentary dataset are relatively longer.

3.2 Translation system

The same as prior work (Sun et al. 2022; He et al. 2020; Gupta et al. 2020; He et al. 2021;
Sun et al. 2020), we consider Transformer as the studied translation system6. It is one of the
most widely used translation systems (Khan et al. 2022; Li et al. 2020) and has been widely
studied in the research community (Sun et al. 2022; He et al. 2020; Gupta et al. 2020; He
et al. 2021; Sun et al. 2020). Transformer-based pretrained language models have signifi-
cantly advanced performance across NLP tasks. Many prominent Large Language Models
are also based on the Transformer architecture, such as GPT and BERT. Following GPT and
BERT, models like XLNet, RoBERTa, ELECTRA, ALBERT, T5, BART, and PEGASUS
were developed (Kalyan et al. 2021). Consequently, the Transformer model represents a crit-
ical, state-of-the-art language model that merits study. Specifically, we utilize the pre-trained
Transformer translation model, opus-mt-en-zh (Helsinki-NLP 2020b) as our tested transla-
tion system. The model is trained on the opus-2020-07-14 dataset (Helsinki-NLP 2020a).We
fine-tune the model with the News Commentary training set (WMT18 2018), which consists
of 2, 513, 475 English-to-Chinese sentence pairs, with a learning rate of 2e−5 for 20 epochs.

3.3 Baseline approaches

We compare our approach with TransRepair (Sun et al. 2020), CAT (Sun et al. 2022), and
SIT (He et al. 2020), which are by far the state-of-the-art approaches for machine translation
system testing. All of these methods rely on the concept of metamorphic relations between
the input sentence and its semantically similar variations. They operate under the assumption
that input texts exhibiting semantic similarity should yield consistent translations.

6 Note that we do not consider Bing or Google Translate for testing, as we cannot access the systems’
architectures and parameters.

123

 13 Page 12 of 38 Empirical Software Engineering (2025) 30:13

3.4 Implementation settings

In this experiment, we identify the top 5 vulnerable tokens using GRI andWALI for replace-
ment. For the purpose of a fair comparison, we adopt the same approach as in the previous
study (Sun et al. 2022, 2020; He et al. 2020) for replacing the identified vulnerable tokens
and generating amaximum of five new sentences for each original source sentence.7 For each
selected token, we first identify valid candidates using the replacement strategy presented in
Section 2.4 and use them to create test cases. We then proceed to the next token until we
have five test cases. For example, if one token has three valid substitutes, the strategy then
looks for substitutes for the next token until five test sentences are generated. We conducted
the experiment on Ubuntu 18.04 with an NVIDIA GTX 1080Ti GPU.

4 Evaluation

In this section, we evaluate our proposed approaches against the SOTA testing baseline
(i.e., TransRepair, CAT and SIT). The effectiveness of our approach can be evaluated by
considering two aspects: (1) the ability to identify a larger number of bugs using an equivalent
number of test cases, and (2) the ability to detect an equal number of bugs with a reduced
number of test cases, resulting in enhanced efficiency. Specifically, we aim to answer the
following research questions (RQs):

RQ1: How effectively can GRI and WALI detect translation bugs compared to base-
lines?

Motivation Extensive approaches have been proposed for testing machine translation sys-
tems, while few consider conducting the testing from a white-box perspective. Meanwhile,
studies (Grosse et al. 2016; Li et al. 2019; Wang and Zheng 2020) have shown that using
white-box methods can benefit many NLP tasks, such as the testing of the classification
systems. Therefore, in this RQ, we would like to explore whether our two white-box-based
approaches (i.e., GRI and WALI) can detect translation bugs with better performance than
the baseline approaches (i.e., CAT, TransRepair and SIT).

Approach To answer this research question, we apply GRI and WALI as well as the baseline
approaches on each source sentence in the NC, Politics, and Business dataset. With the
generated mutants, we then examine whether the mutants can reveal translation bugs (cf.
Section 2.5). We evaluate GRI andWALI using a combination of quantitative evaluation and
human evaluation. For quantitative evaluation, we focus on 1) the number of translation bugs
detected using the five distance metrics and 2) the number of test cases needed to detect a
certain number of translation bugs. For human evaluation, following previouswork (Sun et al.
2020, 2022; He et al. 2020), we randomly sample 100 test cases for CAT and TransRepair,
and compute the Top-3 accuracy for SIT.

Result Both of our proposed approaches, GRI and WALI generally outperform the
baseline approaches under identical experimental settings. Our results comparing GRI
and WALI with baseline approaches are presented in Fig. 3. Figure 3 illustrates the cumu-
lative count of bugs detected by different approaches, plotted against the number of test

7 Note that the baseline approaches utilized a predefined maximum number of generated mutants to prevent
an excessive number of test cases. This condition is maintained in our experiments to ensure a fair comparison.

123

Empirical Software Engineering (2025) 30:13 Page 13 of 38 13

Fig. 3 Cumulative counts of detected bugs for each of the approaches

cases executed during the testing process8. It can be observed that our approaches always
outperform the baselines from two aspects: (1) under a certain testing budget (i.e., number of
executed test cases, indicated by the vertical dotted line), both GRI and WALI can reveal a
larger number of bugs, and (2) when given a predefined testing goal (i.e., number of detected
bugs, indicated by the horizontal dotted line), our approaches always require less testing
resource (i.e., a reduced number of test cases). For example, when running 6,000 test cases,
GRI and WALI can detect 3,252 and 3,568 bugs, which is higher than the 2,982 detected by
CAT (Fig. 3(b)); meanwhile, GRI and WALI only need to execute 5,586 and 5,032 tests to
detect 3,000 bugs, while CAT needs 6,036 tests. The results demonstrate that our approaches
can detect translation bugs more effectively.

We also observe that our proposed approaches may not always improve the performance
significantly. For example, in Fig. 3(a), when running 2,000 test cases, TransRepair detects
940 bugs, relatively fewer than 979 and 940 reported by GRI and WALI. This may be due
to the fact that TransRepair relies on a pre-established similarity dictionary9 to provide
suitable substitutions for specific tokens. Unlike the BERT model used in CAT and SIT
(see Section 2.4), the dictionary only contains a limited number of tokens, which imposes
constraints on the replacement of the tokens identified as vulnerable by GRI and WALI. In
caseswhere a corresponding similarity pair does not exist in the dictionary, the replacement of

8 To ensure a fair comparison, we randomly shuffle all test cases before plotting the bug detection curve for
each approach.
9 We used the dictionary provided by the author of Sun et al. (2020).

123

 13 Page 14 of 38 Empirical Software Engineering (2025) 30:13

these tokens becomes unfeasible. Upon reviewing the tokens that were substituted, it became
evident that only 3,194 out of 18,387 tokens identified by GRI could be replaced within the
corpus, leading to an insignificant improvement of our proposed approaches.

Table 2 details the number of reported bugs by the LCS metric at the 25%, 50%, and
75% percentiles of test cases executed for each approach, aligning with the Fig. 3. The
first column lists approaches. Subsequent columns show bug counts at each percentile, with
exact test numbers in parentheses. The percentiles are calculated based on the approach
with the fewest generated test cases to ensure a standardized comparison. For example, for
TransRepair, GRI, and WALI, the 75% percentile is computed based on 3,194 test cases,
which is 2,395, ensuring that all approaches have a sufficient number of test cases. This table
demonstrates that within a given testing budget, both GRI and WALI can detect a larger
number of bugs, as indicated by the vertical dotted line in Fig. 3. Table 2 demonstrates
explicitly the improved bug detection performance of white-box approaches within a fixed
test budget.

Meanwhile, we find that GRI and WALI always have a higher test success rate (i.e., the
number of bugs detected divided by the number of total tests). The comparison results are
shown in Table 3, with the best results highlighted in bold font. Each table presents the success
rates of different approaches, with the number of reported test cases indicated in parentheses.

Table 2 Cumulative count of reported bugs by the LCS metric at 25%, 50%, 75% percentile of test cases
executed

Percentile 25% (798) 50% (1,597) 75% (2,395)

(Number of test cases)

NC

TransRepair 388 755 1,112

GRI 394 783 1,194

WALI 379 745 1,114

Percentile

(Number of test cases) 25% (1,786) 50% (3,573) 75% (5,359)

NC

CAT 838 917 1,053

GRI 917 1,791 2,703

WALI 1,053 2,070 3,064

Percentile 25% (270) 50% (540) 75% (810)

(Number of test cases)

Business

SIT 20 40 37

GRI 44 83 73

WALI 67 118 115

Percentile 25% (252) 50% (505) 75% (757)

(Number of test cases)

Politics

SIT 15 35 40

GRI 35 80 61

WALI 40 112 100

123

Empirical Software Engineering (2025) 30:13 Page 15 of 38 13

Table 3 Comparison of the test success rate with TransRepair, CAT, and SIT

Metric TransRepair GRI WALI

LCS 46.05% (2,581) 49.27% (1,574) 45.93% (1,704)

ED 46.65% (2,615) 49.65% (1,586) 46.47% (1,724)

TFIDF 54.75% (3,069) 57.33% (1,831) 54.45% (2,020)

BLEU 43.55% (2,441) 46.49% (1,485) 42.94% (1,593)

of test cases 5,605 3,194 3,710

(a) Comparison with TransRepair

Metric CAT GRI WALI

LCS 50.31% (5,002) 54.95% (3,927) 57.92% (5,114)

ED 51.00% (5,070) 55.68% (3,979) 58.53% (5,168)

TFIDF 57.39% (5,706) 61.21% (4,374) 63.90% (5,642)

BLEU 47.54% (4,726) 51.25% (3,662) 55.15% (4,870)

of test cases 9,942 7,146 8,830

(b) Comparison with CAT

Dataset Metrics SIT GRI WALI

Politics Dependency 8.74% (143) 15.17% (164) 14.11% (154)

of test cases 1,635 1,081 1,091

Business Dependency 8.71% (141) 14.16% (143) 12.96% (151)

of test cases 1,619 1,010 1,165

(c) Comparison with SIT

Table (a) specifically illustrates the success rates for TransRepair, GRI, and WALI across
the four distance metrics detailed in Section 2.5. The final row of this table enumerates the
total number of test cases generated by each approach. The remaining two tables (Table (b)
and (c)) follow the same layout. For example, GRI and WALI outperform SIT in terms of
identifying more translation bugs across both the Politics and Business datasets. In addition,
both GRI and WALI execute significantly fewer test cases, leading to an average increase
in the success rate of 6.17% and 4.85%, respectively. This confirms that our approach can
efficiently exploit the vulnerable spots of the translation systems by utilizing the gradients
and word alignment information, thus leading to an increase in the success rate of the testing.

As observed in previous research on testing machine translation systems, it’s acknowl-
edged that automatic test oracles relying on distance metrics may yield results differing from
those provided by human oracles. Specifically, False Positives (FP)—correct outputs mistak-
enly reported as errors by the automatic oracle—can arise due to the limitations inherent in
using distance metrics as the basis for error detection. To address this, we carry out a manual
inspection, adhering to the same evaluation process as the baseline approaches. The purpose
of this manual examination is to confirm that introducing our approach does not compro-
mise the validity of the testing methods. Therefore, the bugs reported by our approaches are
reliable and comparable to those reported by the baseline approaches.

To ensure statistical validity, we employed a uniform sampling strategy at a 95% con-
fidence level to derive sample sizes that accurately represent the generated test cases for
each method (Ding et al. 2023; Chen et al. 2023). We uniformly sampled from all test cases
labeled as Positive and Negative by the automatic test oracle, specifically the distance met-
rics. The calculated representative sample sizes, shown in Table 4, were calculated to achieve

123

 13 Page 16 of 38 Empirical Software Engineering (2025) 30:13

Table 4 The Precision, Recall, F1-Score, False Positive, and FalseNegative of differentmetrics for the samples
from all approaches and datasets

Dataset News Commentary News Commentary

Approaches TransRepair GRI WALI CAT GRI WALI

Sample Size 360 343 349 370 365 369

Precision LCS 0.7005 0.8103 0.7528 0.7435 0.7591 0.7609

ED 0.6906 0.7966 0.7458 0.7397 0.7551 0.7511

TF-IDF 0.5943 0.6826 0.6186 0.6682 0.6651 0.7035

BLEU 0.7798 0.8402 0.8170 0.7647 0.7914 0.8020

Recall LCS 0.9763 0.9724 0.9781 0.9797 0.9666 0.9750

ED 0.9842 0.9724 0.9854 0.9797 0.9866 0.9812

TF-IDF 0.9921 0.9793 0.9708 0.9797 0.9666 0.9937

BLEU 0.9763 0.9793 0.9781 0.9661 0.9866 0.9875

F1-score LCS 0.8157 0.8840 0.8507 0.8454 0.8504 0.8547

ED 0.8116 0.8757 0.8490 0.8430 0.8554 0.8509

TF-IDF 0.7433 0.8045 0.7556 0.7945 0.7880 0.8238

BLEU 0.8671 0.9044 0.8903 0.8537 0.8783 0.8851

FP LCS 53 33 44 50 46 49

ED 56 36 46 51 48 52

TF-IDF 86 66 82 72 73 67

BLEU 35 27 30 44 39 39

FN LCS 3 4 3 3 5 4

ED 2 4 2 3 2 3

TF-IDF 1 3 4 3 5 1

BLEU 3 3 3 5 2 2

Dataset Business Politics

Approach SIT GRI WALI SIT GRI WALI

Sample Size 312 284 285 311 279 289

Precision 0.7037 0.7692 0.7250 0.7500 0.7391 0.7446

Recall 0.8261 0.9375 0.8285 0.7058 0.9189 0.8750

F1-Score 0.7600 0.7450 0.7733 0.7272 0.8192 0.8045

FP 8 9 11 4 12 12

FN 4 2 6 5 3 5

the necessary accuracy and to identify significant variations or correlations within the study
population.

For reliable ground truth, the primary authors manually annotated the sampled test cases,
creating human-generated labels that served as the benchmark for comparing automated
metric scores. Our evaluation framework included multiple performance indicators such as
precision, recall, F1-score, false positive rate, and false negative rate. These metrics were
computed for each method and distance metrics are detailed in Table 4. The third row in
Table 4 indicates the number of samples extracted from each approach. The sample sizes
were calculated to be representative at a 95% confidence level. For TransRepair and CAT,
Table 4 presents the precision, recall, F1-score, false positive (FP), and false negative (FN)
rates for each distance metric: LCS, ED, TF-IDF, and BLEU. Conversely, for SIT, which

123

Empirical Software Engineering (2025) 30:13 Page 17 of 38 13

employs the Distance between Dependency Parse Tree for the Business and Politics datasets,
the second half of the table displays the precision, recall, F1-score, FP, and FN of the distance
metric specifically for the Business and Politics datasets.

Table 4 shows the number of false positives and false negatives in the samples. It is
evident that false positives significantly outnumber false negatives. To illustrate the false
positives, consider the following example. For the test sentence “But the finding was not
distributed outside Central Command, The Times reported in September.” the token “the”
was replaced by “it” to generate a test case using GRI. The translation changed from “但
《纽约时报》9月报道说,这一发现并未在中央指挥部以外分发◦ (But the finding was
not distributed outside Central Command, The Times reported in September.)” to “但据《纽
约时报》9月报道,该发现并未在中央指挥部外分发◦ (But the finding was not distributed
outside Central Command, The Times reported in September.)” Although the translation’s
meaning remained unchanged, the distance metrics flagged this as a potential bug because
“这一” and “该” in Chinese are synonymsmeaning “this,” and there are subtle token changes
in the translation such as “但 (but)” to “但据 (but according to)” and “报道说 (reported)”
to “报道 (reported),” which do not alter the translation’s meaning. This exemplifies a false
positive in our experiment. The complexity of languages results in expression variations,
posing a significant challenge for automatic oracles to distinguish between actual semantic
changes and false positives in translation testing. False positives continue to pose a major
challenge in all NLP tasks involving automatic testing. Consequently, manual evaluation is
essential to verify the validity of the results.

As observed in Table 4, the precision, recall, and F1-score of GRI and WALI remain
consistent compared to the baseline approaches across all distance metrics. For instance, the
BLEU metric for GRI and WALI achieved precision scores of 0.79 and 0.80, recall scores of
0.98 and 0.98, and F1-score of 0.87 and 0.88, respectively with the CAT-based replacement
strategy. Previous studies, such as CAT and TransRepair, reported similar metrics, with
TransRepair showing precision, recall, and F1-scores of 0.7, 0.95, and 0.8, and CAT showing
scores of 0.72, 0.9, and 0.8. The precision, recall, and F1-score for GRI, WALI, TransRepair,
and CAT in our experiment closely align with the results from their original evaluations.
These findings indicate that the bug reports generated by the baseline approaches correspond
closely with the outcomes of their original experiments, especially when using identical
evaluation processes. Additionally, it is noteworthy that GRI and WALI exhibit relatively
higher recall, indicating that most erroneous translations are correctly detected.

SIT employsTop-3 accuracy as itsmanual evaluationmetric, andwe also leverage identical
metrics. In our experiment, using the transformer model, SIT obtained a precision of 0.70
for the Business dataset, whereas in the original experiment, they achieved a Top-3 accuracy
of 0.73 and 0.78 for Google and Bing translators. The variance in accuracy is marginal and
can be attributed to the difference in the translation systems used. In the case of GRI and
WALI, the accuracy remains at 0.82 and 0.76 for the Business dataset, which closely aligns
with that of SIT in our experiment and the accuracy reported in the original experiment.
Consequently, Table 4 demonstrates that our methods do not impede the performance of the
testing approaches.

Overall, our manual inspection demonstrates that the validity of the bug reported by GRI
andWALI is similar to those reported by the baseline approaches. Therefore, when using the
same distance metrics and experimental settings, our results are reliable and can be compared
to those of the baseline approaches. The distance metrics do not compromise the superiority
of our approaches over the baseline methods.

123

 13 Page 18 of 38 Empirical Software Engineering (2025) 30:13

Our proposed approaches, i.e., GRI and WALI, generally outperform the state-of-the-art
baseline approaches in quantitative evaluations while preserving the accuracy of human
evaluations. The results illustrate the promising future research opportunity of usingmore
white-box approaches for testing machine translation systems efficiently and effectively.

RQ2: Can GRI andWALI complement the existing baseline approaches in terms of the
detected translation bugs?
Motivation In addition to the efficiency improvement offered by our approaches, it is also
worth exploring whether our detected translation bugs are different from those of the existing
approaches when employing the same maximum number of generated mutants, as utilized
in previous studies.10 Such analysis allows us to determine whether GRI and WALI can
detect bugs that are not previously detected by the baseline approaches, thus complementing
the existing baseline approaches towards a more comprehensive translation system testing.
Moreover, leveraging these two types of white-box information can more effectively identify
vulnerable tokens, enhancing testing efficiency. If different approaches identify different sets
of vulnerable tokens (and thus generate different test cases), practitioners with sufficient
testing resources might consider combining these approaches to detect more translation
bugs. As the focus of this work is on effectively identifying the vulnerable tokens for a
source sentence, therefore, in this RQ, we will investigate the overlap between the replaced
tokens in the bug-inducing test inputs generated by our proposed approaches and those by
the baseline approaches.

Approach To address this research question, we examine the intersection of the tokens iden-
tified for replacement by different approaches among the detected translation bugs. The
overlap is defined as the test cases generated by substituting the same token. The degree of
overlap among these approaches signifies the distinctiveness of the bugs detected by different
approaches11.

Result Our approaches GRI and WALI can identify different tokens for replacement
from that of baseline approaches and thus can detect unique bugs that were not detected
previously. Figure 412 shows the overlap of the replaced tokens in the detected translation
bugs by different approaches. As shown in Fig. 4, the majority of the tokens replaced by our
approaches are not replaced by CAT. For example, under the LCSmetric, CAT only shares an
overlap of 25% (594 + 694 = 1,288/5,002) and 21% (659 + 694 = 1,353/5,002) with GRI and
WALI, respectively. As a result, each of the distinct tokens leads to at least one bug-revealing
test case. Similar results are observed with SIT on both Politics and Business datasets. With
the Politics dataset, SIT shares an overlap of 25% (37/143)withGRI andWALI. Additionally,
we notice that there is a limited overlap betweenGRI andWALI,meaning they can reveal bugs
that the other approach didn’t identify. This indicates that combining both approaches can
complement the existing testing strategy by identifying a greater variety of susceptible tokens
that were previously not replaced by the baseline approaches, which can further be used for

10 Note that the baseline approaches utilized a predefined maximum number of generated mutants to prevent
an excessive number of test cases. This condition is maintained in our experiments to ensure a fair comparison.
11 Note that each different replaced token can at least result in one different translation bug.
12 Due to the space limitation, we only show the results using LCS metric for comparison with TransRepair
and CAT for Figs. 4, 5 and 6. More results are shared in Appendix A.

123

Empirical Software Engineering (2025) 30:13 Page 19 of 38 13

Fig. 4 Overlap of the replaced
tokens in translation bugs
detected by GRI, WALI, and
baseline approaches

generating new test cases with a word replacement strategy. Note that for TransRepair, we
observe a more significant overlap. As it relies on a restricted dictionary to locate substitutes
for specific tokens (cf. Section 4-RQ1), a considerable number of tokens identified by GRI
and WALI do not have corresponding substitutes in the corpus. Consequently, the overlap
among these three approaches is quite extensive.

To better demonstrate our complementary to the existing baseline approach, Table 5 pro-
vides examples of metamorphic test cases generated by SIT, CAT, GRI, and WALI where
only GRI and WALI have successfully detected bugs.

For instance, the first example pertains to a sentence in which CAT generates four mutants
by replacing the word “eight” with “three”, “five”, “ten”, and “two”. However, such replace-
ments have little effect on the final translations, rendering CAT incapable of detecting
translation bugs for this sentence. On the contrary, GRI identifies the word “retreated” as
a replacement target, which is substituted with “moved”, a word that has a similar semantic
meaning. As the result shows, this perturbation has a relatively large impact on the translation,
specifically affecting the segment “It has moved from them,” which, due to the substitution
of “moved” is translated to a Chinese phrase with a totally different meaning (i.e., “The
government has already got rid of the predicament”). Similarly, WALI identifies “ago” as
a vulnerable token and replaces it with “back”, which does not alter the sentence’s mean-
ing. Interestingly, this substitution affects the translation of the unchanged word “collapsed”,
which was initially translated as “崩溃(crumbled)” and subsequently translated as “倒塌(fell
apart)” due to the replacement of “ago” with “back”. “崩溃(crumbled)” generally refers
to a breakdown or collapse, often used metaphorically to describe emotional or system
failure. “倒塌(fell apart)” specifically means a physical collapse or falling of a structure.

123

 13 Page 20 of 38 Empirical Software Engineering (2025) 30:13

Table 5 Examples of test cases generated by CAT, SIT, GRI and WALI where only GRI and WALI have
detected bugs

This demonstrates a unique translation bug caused by the token substitution selected by
WALI.

Our proposed approaches GRI and WALI can detect unique translation errors that are
not detected by the baseline approaches, and thus, can complement current translation
system testing methodologies.

RQ3: What are the contributing factors that could raise the probability of generating
bug-revealing test cases for translation systems?
Motivation Our previous results indicate that the impact of token substitution on the sys-
tem’s performance varies depending on the specific token being replaced. To gain a deeper
understanding of the factors that contribute to the generation of bug-revealing test cases for
translation systems, we conduct further analysis of the results. Such analysis aims to identify
the key factors that increase the likelihood of generating effective test cases for translation
systems, with the goal of providing valuable insights for future research in this field.

Approach To answer this research question, we focus on the source sentences that can detect
translation bugs and conduct the analysis from two aspects: 1) the distribution of part-of-
speech (POS) tags (Xia 2000) in these source sentences and 2) the length of the source
sentences for the three studied approaches.

Result To a greater extent, the substitution of nouns tends to expose more bugs for
translation systems. Figure 5 shows the distribution of the POS tags in the bug-revealing
source sentences. We can see that translation bugs can be detected by replacing the tokens
of various part-of-speech (POS) tags in the source sentences. For example, GRI can detect
translation bugs aroused by over 20 types of POS tags. Meanwhile, for all three approaches,

123

Empirical Software Engineering (2025) 30:13 Page 21 of 38 13

Fig. 5 Number of reported bugs (y-axis) per mutant type (x-axis). This figure shows the distribution of bugs
in terms of POS tags

it is clear that nouns are the predominant POS tag that contributes to bug detection. This
observation can be attributed to the significance of lexical items in determining the meaning
of the sentence. Nouns often play a crucial role in shaping the meaning of the sentence and
are frequently associated with polysemous words, which further complicates their interpreta-
tion (Zhang et al. 2017). Therefore, perturbing nouns can increase the likelihood of detecting
translation bugs.

Furthermore, sentences that contain a larger number of tokens tend to bemore chal-
lenging for exposing translation bugs in translation systems.As illustrated in Fig. 6, under
all distance metrics except TF-IDF, with the increase of the length of source sentences, the
percentage of reported bugs decreases. We further calculate the Spearman correlation (Mood
et al. 1973) between the proportion of reported bugs and the length of source sentences, and
we find that overall, they have a negative correlation between each other (e.g., for BLEU-
based metric, the correlation coefficients are -0.79, -1.0, and -1.0 for CAT, GRI, and WALI
respectively). This is attributed to the fact that, as the length of the source sentence increases,
substituting a single token has less impact on the overall semantic meaning of the sentence.
When a sentence is short (e.g., length≤ 5), a single substitution can cause a significant devia-
tion in the sentence’s meaning, as the sentence is short, it may not provide enough context for
the translation system to comprehend. This finding suggests that putting more attention on
the selection of short sentences for translation system testing, may expose more translation
bugs (Guo et al. 2021; Deng et al. 2022).

123

 13 Page 22 of 38 Empirical Software Engineering (2025) 30:13

Fig. 6 Percentage of reported bugs (y-axis) vs. length of the input sentence (x-axis). This figure shows the
distribution of bugs in terms of sentence length

The replacement of nouns in a source sentence has a higher chance of exposing bugs in
translation systems. Additionally, there exists a negative correlation between the length
of source sentences and the percentage of reported bugs.

5 Discussion

In the previous section, we conducted several experiments and showed that both of our
proposed approaches, GRI and WALI can effectively detect bugs in translation systems. In
this section, we would like to discuss the possibility of combining GRI and WALI into one
approach, and our initial attempt of trying to include large language models (LLMs) for
generating tests and as target translation systems.

The possibility of combining GRI and WALI We included both GRI and WALI in our
study because they utilize different types of white-box information. GRI leverages gradient
information, whileWALI employs word alignment information to identify vulnerable tokens.
By presenting both approaches, we aim to provide a comprehensive evaluation, enabling
researchers andpractitioners to select themost suitablemethod for their specific requirements.
However, as indicated by the intersection of tokens highlighted by both approaches (see
Fig. 4), these intersecting tokens warrant further study.

Therefore, to explore the effectiveness of combining the two approaches, we analyzed
the success rate of test cases generated by replacing the tokens identified by both methods.

123

Empirical Software Engineering (2025) 30:13 Page 23 of 38 13

Specifically, we examined how many test cases in the intersection of the GRI and WALI
approaches were flagged as potential bugs.

Using a simple combination strategy, the results indicate that integrating GRI and
WALI achieves a slightly higher success rate compared to each method used alone.

Table 6 exhibits the number of reported test cases for each metric across different
approaches. The first row lists the distance metrics for TransRepair and CAT, while the
following rows present the success rate in the intersection of GRI and WALI using the Tran-
sRepair and CAT replacement strategies, with the number of reported bugs in parentheses.
The second half of the table reports the success rate reported by the Distance between the
Dependency Parse Tree for SIT in the intersection of GRI and WALI for the Business and
Politics datasets. For example, for the TransRepair-based approach, there are 3,216 total
test cases at the intersection of the GRI and WALI approaches. Using the LCS metric, this
approach reported 1,578 suspicious bugs, resulting in a 49.06% success rate. Each row shows
the success rate of the intersection of GRI andWALI on top of each baseline approach. Com-
paring Table 6 to the results in Table 3, we observe that the success rate is similar to that of
GRI and WALI separately and sometimes slightly better. This discussion utilizes a simple
combination strategy to explore the possibility of employing both white-box approaches. The
results show that the combination can slightly improve the performance (i.e., success rate) of
the proposed approaches. Thus, it could be a promising direction to explore other strategies
to combine these two types of information. In RQ 2, we further explored the intersection and
the complementarity of these approaches, showing that each white-box method can identify
unique bugs separately. Therefore, we believe that both approaches are valuable and should
be considered for future research.

LLM-basedExperiments In this part,wefirst explore the applicationofwhite-box approaches
to LargeLanguageModels (LLMs),which currently play a dominant role inNLP tasks.Given
the significant influence and extensive use of LLMs in various domains, it is crucial to assess
whether our white-boxmethodologies are compatible with these advancedmodels.We aim to
apply our white-box strategies to one of the prominent LLMs to determine their applicability
and effectiveness in providing insights and improvements for these models.

We selected LLaMA-3, Large Language Model Meta AI (Touvron et al. 2023), as our
targetmodel for this discussion. This choicewasmade because LLaMA-3 is an autoregressive
language model based on a transformer architecture, recognized as one of the state-of-the-
art large language models and is open-sourced for research. Released by Meta in 2023,
it is available in two configurations: one with 8 billion (8B) and another with 70 billion
(70B) parameters. This model has been trained on trillions of tokens sourced from publicly
available datasets. Research indicates that LLaMA-13B, one of its variants, outperformsGPT-
3 (175B) inmost benchmarks.Due to hardware and cost limitations,we opted toworkwith the
LLaMA-3 8B version, specifically fine-tuned on the deepctrl-sft-data (deepctrl 2024), known

Table 6 Success rate of test cases in the intersection of GRI and WALI for different approaches

LCS ED TFIDF BLEU # of test cases

TransRepair 49.06% (1578) 49.59% (1595) 55.94% (1799) 46.21% (1486) 3216

CAT 59.22% (607) 59.71% (612) 65.27% (669) 55.71% (571) 1025

SIT Business Politics

of reported bugs # of test cases # of reported bugs # of test cases

14.32% (60) 419 10.87% (45) 414

123

 13 Page 24 of 38 Empirical Software Engineering (2025) 30:13

as Llama3-Chinese (Zhichen Zhang 2024). This choice enables us to assess the applicability
of our white-box approaches within feasible resource constraints.

Given the resource demands associated with experimenting on LLaMA-3, we chose the
Politics andBusiness datasets as the test sentences for our evaluation. Importantly, asLLaMA-
3 is not a Sequence-to-Sequence model and lacks a cross-attention layer, theWALI approach
is not applicable to this model. Therefore, for this discussion, we focus exclusively on eval-
uating the Gradient-based Identification (GRI) approach on the LLaMA-3 Chinese model,
detailed as Llama-Chinese (Zhichen Zhang 2024), using the Politics and Business datasets
as outlined in Section 3.1.

Upon reviewing the results and test cases, we noted that, although LLaMA-3 functions
as a chat model and was set with the context ”Translate from English to Chinese,” some test
cases did not translate successfully. The occurrences of unsuccessful translations in the chat
model are random and arbitrary. In addition due to the inherent complexities of LLMs, the
translations given by LLMs are often unstable. For example, given the same input sentence
“Imagine if you’re a very large retailer that has a large number of locations, said Martin
Fleming, chief economist at IBM,” Llama-Chinese produces different translations on two
runs: first outputting “想象一下，如果您是一家拥有大量分店的大型零售商, IBM首
席经济学家马丁弗林姆将会说◦ (Let’s imagine, if you are a very large retailer that has a
large number of locations, the chief economist at IBM, Martin Fleming will say.),” and the
second time, “如果你是一家非常大的零售商，并拥有许多分店，那么Martin Fleming,
IBM首席经济学家所说的想象会变得非常有意义◦ (If you’re a very large retailer and
has a large number of locations, then Martin Fleming, what the chief economist at IBM said
becomes meaningful.)” Therefore, it is challenging to induce controlled modifications to the
translations of LLMs, which is the fundamental idea behind themetamorphic testing strategy.

This discussion explores the applicability of the white-box approaches on LLMs, except
for the hardware and cost limitations, it is possible to apply the white-box testing approaches
on the LLMs.However, applying the approaches to the LLMs as a targetmodel is challenging.
However, using LLMs in the NLP task testing is a promising direction that is worth further
study.

In addition to utilizing LLMs as target translation systems, we further investigate
their potential as a baseline replacement approach. Unlike replacement strategies that use
BERT (Devlin et al. 2019) to find substitutes and generate test cases, LLMs possess the capa-
bility to directly produce test cases. For this experiment, we utilized Llama3-8b (Touvron
et al. 2023) as the baseline replacement strategy. The model was provided with the following
prompt to generate test sentences: “when I give you a sentence, you can only replace ONE
random word with its synonym and try not to change the semantic of the phrase, generate
FIVE sentences as required.” This experiment was conducted using the Politics and Busi-
ness datasets. For GRI and WALI approaches, we employed the prompt: “when I give you
a sentence, you can only replace {selected tokens} with its synonym and try not to change
the semantic of the phrase, output ONLY the generated sentence.” In this case, we explicitly
specified the token to be replaced, rather than selecting a random token from the sentence.
We utilized the same model, opus-mt-en-zh (Helsinki-NLP 2020b), as the target translation
system across all experimental conditions.

The experimental results are presented in Table 7. Table 7 details the number of test cases
generated by Llama3 using random replacement and the specified replacements for GRI and
WALI, as listed in the last column. We employed the same distance metric as the test oracle
to detect translation bugs, following the predefined threshold mentioned in Section 2.4. The
number of reported bugs detected by different metrics is listed in Table 7. Analysis of Table 7
reveals that Llama3 successfully generated approximately 500 test cases for all approaches

123

Empirical Software Engineering (2025) 30:13 Page 25 of 38 13

Table 7 Number of bugs reported
by Llama-based approach VS.
GRI and WALI

LCS ED TF-IDF BLEU # test cases

Business Llama 451 453 461 449 500

GRI 318 321 335 303 463

WALI 353 358 364 341 479

Politics Llama 443 444 446 438 499

GRI 306 311 322 298 453

WALI 315 319 327 311 464

as specified (five test cases for each of the 100 sentences from the dataset). Notably, the
random replacement method implemented by Llama3 yielded a higher number of reported
bugs compared to both the GRI and WALI approaches.

By inspecting the test cases generated by Llama3 and the results, we have identified
several notable insights. First, Llama3 demonstrates the ability to generate semantically
equivalent test cases by replacing one word in the sentence with a context-appropriate syn-
onym. This capability surpasses that of baseline approaches such as TransRepair, CAT, and
SIT, which rely on the BERT-masked language model. Llama3’s superior performance can
be attributed to its larger corpus and enhanced comprehension of semantic and syntactic sen-
tence structures. Furthermore, Llama3 achieves this substitution under a black-box setting,
eliminating the need for sentence encoding and word embedding extraction. Consequently,
without the complex computation typically associated with encoding and embedding pro-
cesses, the replacement procedure is executed more rapidly.

On the other hand, the test cases generated by Llama3 exhibit occasional instability.
As previously noted, the output of Large Language Models (LLMs) can be inconsistent,
particularly when the prompt imposes fewer constraints. When instructed to generate five
test cases by replacing one random word in a sentence, Llama3 sometimes alters more
than three tokens and even the sentence structure. For instance, given the sentence from the
Business dataset, “Anxiety over flying on Boeing’s 737Max planes reached a fever pitch after
the crash in Ethiopia.”, Llama3 produced “Panic set in as anxiety over flying on Boeing’s
737 Max planes reached a peak after the crash in Ethiopia.” with the provided prompt. This
example demonstrates the replacement of multiple words and the uncontrolled modification
to the sentence rather than the specified single-word substitution. These inconsistencies can
be mitigated by explicitly specifying the word to be replaced in the prompt. The higher
frequency of such deviations in the baseline Llama3 approach accounts for the increased
number of flagged bugs observed in our results.

In summary, these experiments motivate us to explore alternative approaches for utilizing
LLMs for generating test cases and detecting translation bugs. For example, instead of directly
asking LLMs to generate test cases, it can be used to identify the vulnerable tokens in the
original source sentence for replacement and then apply the word replacement strategy to
generate test cases. The potential of this methodology to enhance both the efficiency and
accuracy of translation testing presents a compelling direction for our future research.

Evaluation of GRI and WALI with top-10 tokens. In our evaluation of the proposed
approaches, we selected the top 5 tokens for both GRI and WALI for token substitution
and test case generation. We then conducted an identical experiment using the top 10 identi-
fied tokens. The number of generated test cases and reported bugs are presented in Table 8.

A comparative analysis of Tables 8 and 3 reveals a positive correlation between the number
of selected tokens and the quantity of generated test cases. Notably, the test cases generated
by GRI for the TransRepair-based approach increased from 3,194 to 5,239. Concurrently, an

123

 13 Page 26 of 38 Empirical Software Engineering (2025) 30:13

Table 8 Test cases generation and test success rate for TransRepair, CAT, and SIT with 10 selected tokens

Metric GRI WALI

LCS 2,504 (47.80%) 2,561 (46.90%)

ED 2,534 (48.37%) 2,594 (47.50%)

TFIDF 2,923 (55.80%) 3,009 (55.10%)

BLEU 2,363 (45.10%) 2,400 (43.95%)

of test cases 5,239 5,461

(a) TransRepair

Metric GRI WALI

LCS 4069 (55.05%) 4530 (61.28%)

ED 4123 (55.78%) 4530 (61.28%)

TFIDF 4530 (61.28%) 4530 (61.28%)

BLEU 4530 (61.28%) 4530 (61.28%)

of test cases 7,392 9,615

(b) CAT

Dataset Metrics GRI WALI

Business Dependency 146 (6.98%) 152 (7.59%)

of test cases 2089 2001

Politics Dependency 155 (7.37%) 152 (7.49%)

of test cases 2103 2028

(c) SIT

increase in reported bugs was observed. However, this was accompanied by a decrease in the
success rate.

For the CAT and SIT approaches, the success rate using top-10 tokens was found to be
comparable to or lower than that achieved with top-5 tokens. This experimental outcome
indicates that while an increase in the number of selected tokens leads to a higher volume
of test cases, it does not necessarily correlate with improved performance of the approaches.
Consequently, we select top-5 tokens for the experiment.

6 Related work

We present the related work in two parts: machine translation testing in Section 6.1 and
adversarial attacks in Section 6.2.

6.1 Machine Translation Testing

Machine translation is widely used in today’s society, leading to increased attention towards
testing the accuracy of translation systems. However, testing translation systems presents a
challenge compared to other supervised tasks, such as classification, due to the complexity
of the output format. To determine the correctness of a translation, metamorphic relations are
typically used as the mainstream testing methodology because of their universal applicability

123

Empirical Software Engineering (2025) 30:13 Page 27 of 38 13

and cost-effectiveness (Sun et al. 2021). Recent works (Sun et al. 2022; He et al. 2021, 2020;
Gupta et al. 2020; Pesu et al. 2018; Wang et al. 2019; Zhou and Sun 2018; Xie et al. 2020,
2022) have explored the use of metamorphic testing approaches, where a token in the input
sentence is mutated to test resulting translations. The intuition is that similar sentences should
generate similar translations, and any change in the semantic meaning of the input sentence
should be reflected in the translated sentence.

Recent works such as SIT (He et al. 2020), PatInv (Gupta et al. 2020), TransRepair (Sun
et al. 2020) and CAT (Sun et al. 2022) propose machine translation testing approaches that
generate sentence pairs through modifying a single token in the original sentence.

TransRepair (Sun et al. 2020) utilizes vector representations of tokens to compute the sim-
ilarity between each pair of tokens. SIT leverages the mask language model (MLM) (Devlin
et al. 2019) to identify contextually similar replacements for a given token, thus ensuring
the preservation of the sentence’s structural coherence. In addition to SIT (He et al. 2020),
CAT (Sun et al. 2022) employs a grey-box approach to assess the impact of the replacement,
using the MLM and vector representations of tokens to calculate context-aware semantic
similarity between the original and substitute tokens. This ensures that the replacement only
makes subtle changes to the original sentence and eliminates false positives that may arise
from the replacement process. In contrast, PathInv generates pairs of sentences that are syn-
tactically similar but semantically different to evaluate the translation system. The idea behind
this approach is that sentences with distinct semantic meanings should not result in the same
translation, which is beyond the scope of our study. Therefore, we selected TransRepair,
CAT, and SIT as our baseline approaches.

In addition, a recently proposed method, DCS (Liu et al. 2023), similarly to SIT, employs
constituency parsing to partition original sentences. The central concept of DCS is to achieve
more precise similarity metrics between the translations of original and mutated sentences
through the compositionality algorithm (Hintikka 1984).

In contrast to SIT, which computes the relation distance between constituency grammars,
DCS calculates similarity scores between phrases. This approach mitigates the issue of col-
lapse in long sentences, where the encoding of extended sentences tends to converge (Yan
et al. 2021). By leveraging constituency parsing, DCS enhances detection precision. It rep-
resents a black-box testing approach that utilizes constituency parsing to detect translation
bugs in the sub-structures of sentences.

However, it is important to note thatDCS remains a black-box approach, like all previously
mentioned methodologies. As such, it does not account for token-level differences in the
substitution process. The primary focus of DCS is to address the collapse issue inherent in
sentence embeddings. This is achieved through a strategic approach of sentence segmentation,
effectively truncating sentences into constituent parts. This segmentation strategy allows for
more granular analysis, potentially mitigating the loss of information that often occurs when
encoding long sequences.

It is an intriguing idea to enhance the precision of distance metrics using DCS. However,
this approach introduces the risk of generating more false positives or false negatives due to
the segmentation of the translation. In many languages, sentence segmentation can be prob-
lematic as it might completely alter the semantics of the sentence. Nonetheless, experiments
employing this approach could be of interest for future research.

123

 13 Page 28 of 38 Empirical Software Engineering (2025) 30:13

STP (Zhang et al. 2024), introduced in 2024, represents one of the most recent strategies
for testing machine translation. Unlike traditional methods that focus on word replacement,
STP advocates for the removal of contextual information from the original sentence. Based
on the principles of linguistic rhetorical structure theory (MANN and Thompson 1988), this
approach posits that removing such contextual elements should not affect the translation
outcomes of the core content, or “trunk” of the sentence. Compared to prior replacement-
based strategies, STP aims to remove redundant parts of the sentence to assess the consistency
of translation.

STP is a black-box approach that incrementally removes contextual words from the sen-
tence, generating sentence pairs. However, this method may lead to inefficiencies, as it could
produce a large number of test cases, potentially resulting in a waste of execution resources.
To enhance performance, GRI and WALI can be employed to identify words that are more
vulnerable to attack (i.e., those that should be removed).

In summary, none of the existing approaches considered the effect of the tokens chosen
for replacement or deletion on the machine translation systems. We propose therefore two
white-box approaches, GRI and WALI, that are applicable to all aforementioned testing
approaches, which can identify the tokens in the source sentences that are more likely to be
unstable and generate errors in the translation model. Our proposed approaches can be used
in addition to current testing techniques, and have the potential to enhance efficiency and
decrease computation costs.

6.2 Adversarial attacks

In the context of testing machine learning models, the adversarial attack is a crucial tech-
nique to evaluate the robustness of the model. It involves making slight and unnoticeable
modifications to the input data, aimed at intentionally distorting the model’s output. There
exist various methods to create adversarial texts that are designed to evaluate classification
systems (Goodfellow et al. 2015; Fursov et al. 2020; Zhang et al. 2019; Grosse et al. 2016).
For example, TextBugger (Li et al. 2019) utilizes gradient information to generate adversarial
examples for text classification systems. Wang et al. (Wang and Zheng 2020) propose to use
the word alignment information to generate training examples to improve the grammatical
error correction models. The prior studies (Goodfellow et al. 2015; Fursov et al. 2020; Zhang
et al. 2019; Grosse et al. 2016; Wang and Zheng 2020) have demonstrated the usefulness
of the internal information of DL models. This insight has served as the inspiration for the
development of our methodologies, GRI and WALI, which are designed to leverage infor-
mation derived from the gradients and confidence scores of the translation model, for testing
neural machine translation systems.

7 Threats to validity

External validity In our study, we have utilized three datasets (i.e., News Commen-
tary (WMT18 2018) and 100 English sentences extracted from each of the CNN Business
and Politics articles) and a translation system (i.e., Transformer (Helsinki-NLP 2020b)). The
dataset and translation system are for English-to-Chinese translation, following the exper-
imental setup of CAT, TransRepair and SIT. Therefore, it is necessary for future research
to examine the effectiveness of our proposed approaches on other translation models and

123

Empirical Software Engineering (2025) 30:13 Page 29 of 38 13

datasets covering various languages. GRI andWALI can be extended to other models. Specif-
ically, GRI can be utilized with other systems since gradient information is accessible for
any model that can be fine-tuned or trained. Conversely, WALI relies on the cross-attention
layer for word alignment information, which may limit its application to models without
this layer. In Section 5, we discuss the potential of applying these white-box approaches on
LLMs, highlighting both promising insights and challenges. These experiments encourage
us to investigate alternative methods for detecting translation bugs.

Internal validity InWALI, we use the encoder-decoder attention weights of the Transformer
model to align the target and source tokens, which although effective, may not always be
precise. For future research, we can employ a more sophisticated alignment approach to
enhance the approach. In addition, the automatic test oracle used for bug detection relies
on distance metrics to evaluate the quality of translations. However, the metrics used for
evaluating translations may not accurately reflect human perceptions of translation quality,
and human evaluation may be subject to individual biases. We followed the same human
evaluation criteria as used in the baseline approaches and randomized the test inputs to
reduce bias. To address this issue, future research could incorporate more manual evaluations
to assess the effectiveness of GRI and WALI with a larger number of evaluators to minimize
bias.

8 Conclusion

In this paper, we present two white-box approaches, GRI and WALI, which can improve
current machine translation testing techniques. By comparing the bug detection outcomes
of our approaches with those of the baseline approach, we demonstrate that our approaches
can enhance the efficacy of the existing testing methods. Specifically, our approaches are
able to detect a greater number of bugs with fewer test cases and can identify previously
unnoticed bugs, complementing the existing testing approaches. Our research illuminates
the advances in using white-box approaches to improving neural machine translation testing
techniques. Furthermore, our approaches demonstrate the potential of using white-box-based
information in the quality assurance of AI software.

A Figures

123

 13 Page 30 of 38 Empirical Software Engineering (2025) 30:13

Fig. 7 Overlap of the replaced tokens in translation bugs detected by GRI, WALI, and baseline approaches

123

Empirical Software Engineering (2025) 30:13 Page 31 of 38 13

Fig. 8 Number of reported bugs (y-axis) per mutant type (x-axis). This figure shows the distribution of bugs
in terms of POS tags

123

 13 Page 32 of 38 Empirical Software Engineering (2025) 30:13

Fig. 9 Percentage of reported bugs (y-axis) vs. length of the input sentence (x-axis). This figure shows the
distribution of bugs in terms of sentence length

Data Availability Statements The replication package including the data, manual labeling results, and the
source code are publicly accessible at https://github.com/conf2024-8888/NMT-Testing.git

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

(2019) Spacy. https://spacy.io/
Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In:

Bengio Y, LeCun Y (eds) 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, arXiv:1409.0473

Belinkov Y, Bisk Y (2018) Synthetic and natural noise both break neural machine translation. In: 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings, OpenReview.net, https://openreview.net/forum?id=BJ8vJebC-

Chen J, Ding Z, Tang Y, SayaghM, Li H, Adams B, ShangW (2023) Iopv: On inconsistent option performance
variations. In: Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Association for Computing Machinery, New
York, NY, USA, ESEC/FSE 2023, pp 845–857, https://doi.org/10.1145/3611643.3616319

deepctrl (2024) deepctrl-sft-data. https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data/summary

123

https://github.com/conf2024-8888/NMT-Testing.git
https://spacy.io/
http://arxiv.org/abs/1409.0473
https://openreview.net/forum?id=BJ8vJebC-
https://doi.org/10.1145/3611643.3616319
https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data/summary

Empirical Software Engineering (2025) 30:13 Page 33 of 38 13

Deng C, Liu M, Qin Y, Zhang J, Duan HX, Sun D (2022) ValCAT: Variable-length contextualized adversarial
transformations using encoder-decoder language model. In: Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Association for Computational Linguistics, Seattle, United States, pp 1735–1746, https://doi.org/
10.18653/v1/2022.naacl-main.125, https://aclanthology.org/2022.naacl-main.125

Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for
language understanding. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), Association for Computational Linguistics, pp 4171–4186, https://doi.org/10.18653/v1/n19-
1423

Ding Z, Tang Y, Li Y, Li H, Shang W (2023) On the temporal relations between logging and code. In: 2023
IEEE/ACM 45th International conference on software engineering (ICSE), pp 843–854, https://doi.org/
10.1109/ICSE48619.2023.00079

Fursov I, Zaytsev A, Kluchnikov N, Kravchenko A, Burnaev E (2020) Differentiable language model adver-
sarial attacks on categorical sequence classifiers. arXiv:2006.11078

Ghader H, Monz C (2017) What does attention in neural machine translation pay attention to? In: Kondrak
G, Watanabe T (eds) Proceedings of the Eighth International Joint Conference on Natural Language
Processing, IJCNLP 2017, Taipei, Taiwan, November 27 - December 1, 2017 - Volume 1: Long Papers,
Asian Federation of Natural Language Processing, pp 30–39, https://aclanthology.org/I17-1004/

Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: Bengio Y,
LeCun Y (eds) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7–9, 2015, Conference Track Proceedings, arXiv:1412.6572

Grosse K, Papernot N, Manoharan P, Backes M, McDaniel PD (2016) Adversarial perturbations against deep
neural networks for malware classification. arXiv:1606.04435

Gu J, Wang Y, Cho K, Li VOK (2018) Search engine guided neural machine translation. In: McIlraith SA,
Weinberger KQ (eds) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovativeApplications of Artificial Intelligence (IAAI-18), and the 8thAAAI Sym-
posium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, AAAI Press, pp 5133–5140, https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/17282

Guo J, Zhang Z, Zhang L, Xu L, Chen B, Chen E, Luo W (2021) Towards variable-length textual adversarial
attacks. arXiv:2104.08139

Gupta S, He P, Meister C, Su Z (2020) Machine translation testing via pathological invariance. In: Devanbu
P, Cohen MB, Zimmermann T (eds) ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA,November
8-13, 2020, ACM, pp 863–875, https://doi.org/10.1145/3368089.3409756

He P, Meister C, Su Z (2020) Structure-invariant testing for machine translation. In: Rothermel G, Bae D (eds)
ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19
July, 2020, ACM, pp 961–973, https://doi.org/10.1145/3377811.3380339

He P, Meister C, Su Z (2021) Testing machine translation via referential transparency. In: 43rd IEEE/ACM
International conference on software engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021, IEEE,
pp 410–422, https://doi.org/10.1109/ICSE43902.2021.00047

Helsinki-NLP (2020a) opus-2020-07-14. https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/
models/eng-zho/README.md

Helsinki-NLP (2020b) opus-mt-en-zh. https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
Hintikka J (1984) A hundred years later: The rise and fall of frege’s influence in language theory. Synthese

59:27–49, https://api.semanticscholar.org/CorpusID:46975316
Hunt JW, Szymanski TG (1977) A fast algorithm for computing longest subsequences. Commun ACM

20(5):350–353
Kalyan KS, Rajasekharan A, Sangeetha S (2021) Ammus : A survey of transformer-based pretrained models

in natural language processing. arXiv:2108.05542
Karpukhin V, Levy O, Eisenstein J, Ghazvininejad M (2019) Training on synthetic noise improves robustness

to natural noise in machine translation. In: XuW, Ritter A, Baldwin T, Rahimi A (eds) Proceedings of the
5th Workshop on Noisy User-generated Text, W-NUT@EMNLP 2019, Hong Kong, China, November
4, 2019, Association for Computational Linguistics, pp 42–47, https://doi.org/10.18653/v1/D19-5506

Khan S, Naseer M, Hayat M, Zamir SW, Khan FS, Shah M (2022) Transformers in vision: A survey. ACM
Comput Surv 54(10s), https://doi.org/10.1145/3505244

Khayrallah H, Koehn P (2018) On the impact of various types of noise on neural machine translation. In: Birch
A, Finch AM, Luong M, Neubig G, Oda Y (eds) Proceedings of the 2nd Workshop on Neural Machine

123

https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/2022.naacl-main.125
https://aclanthology.org/2022.naacl-main.125
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/ICSE48619.2023.00079
https://doi.org/10.1109/ICSE48619.2023.00079
http://arxiv.org/abs/2006.11078
https://aclanthology.org/I17-1004/
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1606.04435
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17282
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17282
http://arxiv.org/abs/2104.08139
https://doi.org/10.1145/3368089.3409756
https://doi.org/10.1145/3377811.3380339
https://doi.org/10.1109/ICSE43902.2021.00047
https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/models/eng-zho/README.md
https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/models/eng-zho/README.md
https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
https://api.semanticscholar.org/CorpusID:46975316
http://arxiv.org/abs/2108.05542
https://doi.org/10.18653/v1/D19-5506
https://doi.org/10.1145/3505244

 13 Page 34 of 38 Empirical Software Engineering (2025) 30:13

Translation and Generation, NMT@ACL 2018, Melbourne, Australia, July 20, 2018, Association for
Computational Linguistics, pp 74–83, https://doi.org/10.18653/v1/w18-2709

Li J, Ji S, Du T, Li B, Wang T (2019) Textbugger: Generating adversarial text against real-world applications.
In: 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego, Cali-
fornia, USA, February 24-27, 2019, The Internet Society, https://www.ndss-symposium.org/ndss-paper/
textbugger-generating-adversarial-text-against-real-world-applications/

Li J, Wu Y, Gaur Y, Wang C, Zhao R, Liu S (2020) On the comparison of popular end-to-end models for large
scale speech recognition. In: Meng H, Xu B, Zheng TF (eds) Interspeech 2020, 21st Annual Conference
of the International Speech Communication Association, Virtual Event, Shanghai, China, 25-29 October
2020, ISCA, pp 1–5, https://doi.org/10.21437/Interspeech.2020-2846

Lihua Z (2022) The relationship between machine translation and human translation under the influence
of artificial intelligence machine translation. Mobile Inf Syst 2022:1–8. https://doi.org/10.1155/2022/
9121636

Liu S, Dou S, Chen J, Zhang Z, Lu Y (2023) Differential testing of machine translators based on compositional
semantics. IEEE Trans Softw Eng 49(12):5046–5059. https://doi.org/10.1109/TSE.2023.3323969

Mann W, Thompson S (1988) Rethorical structure theory: Toward a functional theory of text organization.
Text 8:243–281. https://doi.org/10.1515/text.1.1988.8.3.243

Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D (2014) The Stanford CoreNLP natural
language processing toolkit. In: Bontcheva K, Zhu J (eds) Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System Demonstrations, Association for Computational
Linguistics, Baltimore, Maryland, pp 55–60, https://doi.org/10.3115/v1/P14-5010, https://aclanthology.
org/P14-5010

de Marneffe MC, Dozat T, Silveira N, Haverinen K, Ginter F, Nivre J, Manning CD (2014) Universal Stanford
dependencies: A cross-linguistic typology. In: Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14), European Language Resources Association (ELRA),
Reykjavik, Iceland, pp 4585–4592, http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf

Mood A, Graybill F, Boes D (1973) Introduction to the Theory of Statistics. International Student edition,
McGraw-Hill, https://books.google.ca/books?id=Viu2AAAAIAAJ

Nguyen T, Nguyen L, Tran P, Nguyen H (2021) Improving transformer-based neural machine translation with
prior alignments. Complex 2021:5515407:1–5515407:10, https://doi.org/10.1155/2021/5515407

Papineni K, Roukos S,Ward T, ZhuWJ (2002) Bleu: Amethod for automatic evaluation ofmachine translation.
In: Proceedings of the 40th annual meeting on association for computational linguistics, association for
computational linguistics, USA, ACL ’02, pp 311–318. https://doi.org/10.3115/1073083.1073135

Pei K, Cao Y, Yang J, Jana S (2019) Deepxplore: automated whitebox testing of deep learning systems.
Commun ACM 62(11):137–145. https://doi.org/10.1145/3361566

Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Moschitti
A, Pang B, Daelemans W (eds) Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, Ameeting of SIGDAT, a Special
Interest Group of the ACL, ACL, pp 1532–1543, https://doi.org/10.3115/V1/D14-1162

Pesu D, Zhou ZQ, Zhen J, Towey D (2018) A monte carlo method for metamorphic testing of machine
translation services. In: Xie X, Pullum LL, Poon P (eds) 3rd IEEE/ACM International Workshop on
Metamorphic Testing, MET 2018, Gothenburg, Sweden, May 27, 2018, ACM, pp 38–45, https://doi.org/
10.1145/3193977.3193980

Ristad E, Yianilos P (1998) Learning string-edit distance. IEEE Trans Pattern Anal Machine Intell 20(5):522–
532. https://doi.org/10.1109/34.682181

Robertson S (2004) Understanding inverse document frequency: on theoretical arguments for IDF. J Docu-
mentation 60(5):503–520. https://doi.org/10.1108/00220410410560582

Song K, Zhou X, Yu H, Huang Z, Zhang Y, Luo W, Duan X, Zhang M (2020) Towards better word alignment
in transformer. IEEE ACM Trans Audio Speech Lang Process 28:1801–1812. https://doi.org/10.1109/
TASLP.2020.2998278

Sun C, Fu A, Poon P, Xie X, Liu H, Chen TY (2021) Metric$∧{+}$+ : Ametamorphic relation identification
technique based on input plus output domains. IEEE Trans Software Eng 47(9):1764–1785. https://doi.
org/10.1109/TSE.2019.2934848

Sun Z, Zhang JM, Harman M, Papadakis M, Zhang L (2020) Automatic testing and improvement of machine
translation. In: RothermelG, BaeD (eds) ICSE ’20: 42nd International Conference on Software Engineer-
ing, Seoul, South Korea, 27 June - 19 July, 2020, ACM, pp 974–985, https://doi.org/10.1145/3377811.
3380420

Sun Z, Zhang JM, Xiong Y, HarmanM, Papadakis M, Zhang L (2022) Improving machine translation systems
via isotopic replacement. In: 44th IEEE/ACM 44th International conference on software engineering,

123

https://doi.org/10.18653/v1/w18-2709
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://doi.org/10.21437/Interspeech.2020-2846
https://doi.org/10.1155/2022/9121636
https://doi.org/10.1155/2022/9121636
https://doi.org/10.1109/TSE.2023.3323969
https://doi.org/10.1515/text.1.1988.8.3.243
https://doi.org/10.3115/v1/P14-5010
https://aclanthology.org/P14-5010
https://aclanthology.org/P14-5010
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
https://books.google.ca/books?id=Viu2AAAAIAAJ
https://doi.org/10.1155/2021/5515407
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/3361566
https://doi.org/10.3115/V1/D14-1162
https://doi.org/10.1145/3193977.3193980
https://doi.org/10.1145/3193977.3193980
https://doi.org/10.1109/34.682181
https://doi.org/10.1108/00220410410560582
https://doi.org/10.1109/TASLP.2020.2998278
https://doi.org/10.1109/TASLP.2020.2998278
https://doi.org/10.1109/TSE.2019.2934848
https://doi.org/10.1109/TSE.2019.2934848
https://doi.org/10.1145/3377811.3380420
https://doi.org/10.1145/3377811.3380420

Empirical Software Engineering (2025) 30:13 Page 35 of 38 13

ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, ACM, pp 1181–1192, https://doi.org/10.1145/
3510003.3510206

Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M, Lacroix T, Rozière B, Goyal N, Hambro E, Azhar
F, Rodriguez A, Joulin A, Grave E, Lample G (2023) Llama: Open and efficient foundation language
models. CoRR abs/2302.13971, https://doi.org/10.48550/ARXIV.2302.13971, arXiv:2302.13971

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention
is all you need. In: Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN,
Garnett R (eds) Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp 5998–6008,
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Wang L, Zheng X (2020) Improving grammatical error correction models with purpose-built adversarial
examples. In: Webber B, Cohn T, He Y, Liu Y (eds) Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, Association
for Computational Linguistics, pp 2858–2869, https://doi.org/10.18653/v1/2020.emnlp-main.228

WangW, ZhengW, Liu D, Zhang C, Zeng Q, Deng Y, YangW, He P, Xie T (2019) Detecting failures of neural
machine translation in the absence of reference translations. In: 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN (Industry Track) 2019, Portland, OR, USA,
June 24-27, 2019, IEEE, pp 1–4, https://doi.org/10.1109/DSN-Industry.2019.00007

WMT18 (2018) Wmt.2018.news-commentary. http://data.statmt.org/wmt18/translation-task/
Xia F (2000) The part-of-speech tagging guidelines for the penn chinese treebank (3.0)
Xie X, Zhang Z, Chen TY, Liu Y, Poon P, Xu B (2020)METTLE: Ametamorphic testing approach to assessing

and validating unsupervised machine learning systems. IEEE Trans Reliab 69(4):1293–1322. https://doi.
org/10.1109/TR.2020.2972266

Xie X, Yin P, Chen S (2022) Boosting the revealing of detected violations in deep learning testing: A diversity-
guided method. In: 37th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2022, Rochester, MI, USA, October 10-14, 2022, ACM, pp 17:1–17:13, https://doi.org/10.1145/
3551349.3556919

Yan Y, Li R, Wang S, Zhang F, Wu W, Xu W (2021) Consert: A contrastive framework for self-supervised
sentence representation transfer. arXiv:2105.11741

Zhang C, Laroche M, Richard MO (2017) The differential roles of verbs, nouns, and adjectives in english and
chinese messages among bilingual consumers. J Business Res 72:127–135

Zhang H, Zhou H, Miao N, Li L (2019) Generating fluent adversarial examples for natural languages. In:
Korhonen A, Traum DR, Màrquez L (eds) Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers,
Association for Computational Linguistics, pp 5564–5569, https://doi.org/10.18653/v1/p19-1559

Zhang J, van Genabith J (2021) A bidirectional transformer based alignment model for unsupervised word
alignment. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
Association for Computational Linguistics, Online, pp 283–292, https://doi.org/10.18653/v1/2021.acl-
long.24, https://aclanthology.org/2021.acl-long.24

Zhang J, Utiyama M, Sumita E, Neubig G, Nakamura S (2018) Guiding neural machine translation with
retrieved translation pieces. In: Proceedings of the 2018 Conference of the North American Chapter of
theAssociation for Computational Linguistics: HumanLanguage Technologies, Volume 1 (Long Papers),
Association for Computational Linguistics, New Orleans, Louisiana, pp 1325–1335, https://doi.org/10.
18653/v1/N18-1120, https://aclanthology.org/N18-1120

Zhang JM, Harman M, Ma L, Liu Y (2022) Machine learning testing: Survey, landscapes and horizons. IEEE
Trans Software Eng 48(2):1–36. https://doi.org/10.1109/TSE.2019.2962027

Zhang Q, Zhai J, Fang C, Liu J, Sun W, Hu H, Wang Q (2024) Machine translation testing via syntactic tree
pruning. CoRR abs/2401.00751, https://doi.org/10.48550/ARXIV.2401.00751, arXiv:2401.00751

Zhichen Zhang LC Xin LU (2024) Llama3-chinese. https://github.com/seanzhang-zhichen/llama3-chinese
ZhouZQ, SunL (2018)Metamorphic testing formachine translations:MT4MT. In: 25thAustralasian Software

Engineering Conference, ASWEC 2018, Adelaide, Australia, November 26-30, 2018, IEEE Computer
Society, pp 96–100, https://doi.org/10.1109/ASWEC.2018.00021

123

https://doi.org/10.1145/3510003.3510206
https://doi.org/10.1145/3510003.3510206
https://doi.org/10.48550/ARXIV.2302.13971
http://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.228
https://doi.org/10.1109/DSN-Industry.2019.00007
http://data.statmt.org/wmt18/translation-task/
https://doi.org/10.1109/TR.2020.2972266
https://doi.org/10.1109/TR.2020.2972266
https://doi.org/10.1145/3551349.3556919
https://doi.org/10.1145/3551349.3556919
http://arxiv.org/abs/2105.11741
https://doi.org/10.18653/v1/p19-1559
https://doi.org/10.18653/v1/2021.acl-long.24
https://doi.org/10.18653/v1/2021.acl-long.24
https://aclanthology.org/2021.acl-long.24
https://doi.org/10.18653/v1/N18-1120
https://doi.org/10.18653/v1/N18-1120
https://aclanthology.org/N18-1120
https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.48550/ARXIV.2401.00751
http://arxiv.org/abs/2401.00751
https://github.com/seanzhang-zhichen/llama3-chinese
https://doi.org/10.1109/ASWEC.2018.00021

 13 Page 36 of 38 Empirical Software Engineering (2025) 30:13

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Hanying Shao successfully obtained her Master’s degree in 2024
from the University of Waterloo under the supervision of Prof. Weiyi
Shang. She completed her B.Sc. degree in Statistics and Computer
Science at McGill University. Her research interests focus on leverag-
ing intelligent approaches, such as machine learning, deep learning,
and large language models, to enhance various software engineering
tasks.

Zishuo Ding is an Assistant Professor at the Hong Kong University of
Science and Technology (Guangzhou). Prior to this, he received his
Ph.D. from the University of Waterloo in 2024. His research primar-
ily focuses on leveraging intelligent approaches (e.g., ML/DL/LLMs)
to enhance various software engineering tasks. His work has been
published in flagship conferences and journals including ICSE, FSE,
ASE, TOSEM, and EMSE, and recognized with the SIGSOFT Dis-
tinguished Paper Award at ICSE 2020. More information at https://
personal.hkust-gz.edu.cn/ding/.

Weiyi Shang is a an Associate Professor in the Department of Elec-
trical and Computer Engineering at the University of Waterloo. His
research interests include AIOps, big bata software engineering, soft-
ware log analytics and software performance engineering. He serves
as a Steering committee member of the SPEC Research Group. He
is ranked top worldwide SE research stars in a recent bibliometrics
assessment of software engineering scholars. He is a recipient of var-
ious premium awards, including the SIGSOFT Distinguished paper
award at ICSE 2013 and ICSE 2020, best paper award at WCRE
2011 and the Distinguished reviewer award for the Empirical Soft-
ware Engineering journal. His research has been adopted by industrial
collaborators (e.g., BlackBerry and Ericsson) to improve the quality
and performance of their software systems that are used by millions
of users worldwide.

123

https://personal.hkust-gz.edu.cn/ding/.
https://personal.hkust-gz.edu.cn/ding/.

Empirical Software Engineering (2025) 30:13 Page 37 of 38 13

Jinqiu Yang is an Assistant Professor in the Department of Computer
Science and Software Engineering at Concordia University, Montreal,
Canada. Her research interests include automated program repair, soft-
ware testing, quality assurance of machine learning software, and min-
ing software repositories. Her work has been published in flagship
conferences and journals such as ICSE, FSE, EMSE. She serves reg-
ularly as a program committee member of international conferences
in Software Engineering, such as ASE, ICSE, ICSME and SANER.
She is a regular reviewer for Software Engineering journals such as
EMSE, TSE, TOSEM and JSS. Dr. Yang obtained her BEng from
Nanjing University, and MSc and PhD from University of Waterloo.
More information at: https://jinqiuyang.github.io/

Nikolaos Tsantalis is an Associate professor in the department of
Computer Science and Software Engineering at Concordia University,
Montreal, Canada, and was a Concordia University Research Chair in
Web Software Technologies between 2015-2020. His research inter-
ests include software maintenance, software evolution, empirical soft-
ware engineering, refactoring recommendation systems, refactoring
mining, and software quality assurance. He has developed tools, such
as the Design Pattern Detection tool, JDeodorant and Refactoring-
Miner, which are used by many practitioners, researchers, and educa-
tors.
He has received three Most Influential Paper awards at SANER 2018,
SANER 2019 and CASCON 2023, and two ACM SIGSOFT Distin-
guished Paper awards at FSE 2016 and ICSE 2017.

123

https://jinqiuyang.github.io/
http://www.cs.concordia.ca/
http://www.concordia.ca/
https://www.concordia.ca/research/chairs.html
https://github.com/tsantalis/DPD4Eclipse
https://github.com/tsantalis/JDeodorant
https://github.com/tsantalis/RefactoringMiner
https://users.encs.concordia.ca/~nikolaos/awards.html
https://users.encs.concordia.ca/~nikolaos/awards.html

 13 Page 38 of 38 Empirical Software Engineering (2025) 30:13

Authors and Affiliations

Hanying Shao1 · Zishuo Ding 2 ·Weiyi Shang1 · Jinqiu Yang3 · Nikolaos Tsantalis3

B Zishuo Ding
zishuoding@hkust-gz.edu.cn

Hanying Shao
h9shao@uwaterloo.ca

Weiyi Shang
wshang@uwaterloo.ca

Jinqiu Yang
jinqiu.yang@concordia.ca

Nikolaos Tsantalis
nikolaos.tsantalis@concordia.ca

1 Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON,
Canada

2 Data Science and Anaytics Thrust, Information Hub, The Hong Kong University of Science and
Technology (Guangzhou), Guangzhou, Guangdong, China

3 Department of Computer Science and Software Engineering, Concordia University, Montreal, QC,
Canada

123

	Towards effectively testing machine translation systems from white-box perspectives
	Abstract
	1 Introduction
	2 Approaches
	2.1 Problem definition and our goal
	2.2 Approach overview
	2.3 Vulnerable token identification
	2.3.1 Gradient-based strategy (GRI)
	2.3.2 Word alignment-based strategy

	2.4 Word replacement
	2.4.1 TransRepair
	2.4.2 CAT
	2.4.3 SIT

	2.5 Translation bug detection
	2.5.1 LCS-based metric
	2.5.2 ED-based metric
	2.5.3 TFIDF-based metric
	2.5.4 BLEU-based metric
	2.5.5 Relation distance between dependency parse trees metric

	3 Experimental setup
	3.1 Dataset
	3.2 Translation system
	3.3 Baseline approaches
	3.4 Implementation settings

	4 Evaluation
	5 Discussion
	6 Related work
	6.1 Machine Translation Testing
	6.2 Adversarial attacks

	7 Threats to validity
	8 Conclusion
	A Figures
	References

