
An Empirical Study on Refactoring-Inducing Pull Requests
Flávia Coelho

Federal University of Campina Grande
Campina Grande, Brazil
flavia@copin.ufcg.edu.br

Nikolaos Tsantalis
Concordia University
Montreal, Canada

nikolaos.tsantalis@concordia.ca

Tiago Massoni
Federal University of Campina Grande

Campina Grande, Brazil
massoni@computacao.ufcg.edu.br

Everton L. G. Alves
Federal University of Campina Grande

Campina Grande, Brazil
everton@computacao.ufcg.edu.br

ABSTRACT
Background: Pull-based development has shaped the practice of
Modern Code Review (MCR), in which reviewers can contribute
code improvements, such as refactorings, through comments and
commits in Pull Requests (PRs). Past MCR studies uniformly treat all
PRs, regardless of whether they induce refactoring or not. We define
a PR as refactoring-inducing, when refactoring edits are performed
after the initial commit(s), as either a result of discussion among
reviewers or spontaneous actions carried out by the PR developer.
Aims: This mixed study (quantitative and qualitative) explores code
reviewing-related aspects intending to characterize refactoring-
inducing PRs. Method: We hypothesize that refactoring-inducing
PRs have distinct characteristics than non-refactoring-inducing
ones and thus deserve special attention and treatment from re-
searchers, practitioners, and tool builders. To investigate our hy-
pothesis, we mined a sample of 1,845 Apache’s merged PRs from
GitHub, mined refactoring edits in these PRs, and ran a comparative
study between refactoring-inducing and non-refactoring-inducing
PRs. We also manually examined 2,096 review comments and 1,891
detected refactorings from 228 refactoring-inducing PRs. Results:
We found 30.2% of refactoring-inducing PRs in our sample and
that they significantly differ from non-refactoring-inducing ones in
terms of number of commits, code churn, number of file changes,
number of review comments, length of discussion, and time to
merge. However, we found no statistical evidence that the number
of reviewers is related to refactoring-inducement. Our qualitative
analysis revealed that at least one refactoring edit was induced by
review in 133 (58.3%) of the refactoring-inducing PRs examined.
Conclusions:Our findings suggest directions for researchers, prac-
titioners, and tool builders to improve practices around pull-based
code review.

CCS CONCEPTS
• Software and its engineering → Programming teams; Soft-
ware evolution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEM ’21, October 11–15, 2021, Bari, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8665-4/21/10. . . $15.00
https://doi.org/10.1145/3475716.3475785

KEYWORDS
refactoring-inducing pull request, code review mining, empirical
study

ACM Reference Format:
Flávia Coelho, Nikolaos Tsantalis, Tiago Massoni, and Everton L. G. Alves.
2021. An Empirical Study on Refactoring-Inducing Pull Requests. In ACM /
IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM) (ESEM ’21), October 11–15, 2021, Bari, Italy. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3475716.3475785

1 INTRODUCTION
In Modern Code Review (MCR), developers review code changes
in a lightweight, tool-assisted, and asynchronous manner [18]. In
this context, regular change-based reviewing, in which code im-
provements are embraced, became an essential practice in the MCR
scenario [18, 66]. Code changes may comprise new features, bug
fixes, or other maintenance tasks, providing potential opportunities
for refactorings [60], which in turn form a significant part of the
changes [19, 75]. Empirical evidence suggests a distinction between
refactoring-dominant changes and other types. For instance, review-
ing bug fixes is more time-consuming than reviewing refactorings,
since the latter preserve code behavior [69]. Given the nature of
changes significantly affects code review effectiveness [63], as it di-
rectly influences how reviewers perceive the changes, the provision
of suitable resources for assisting code review is essential.

Characterization studies of MCR have been conducted to inves-
tigate technical aspects of reviewing [20, 24, 41, 66–68, 71], factors
leading to useful code review [25], circumstances that contribute to
code review quality [45], and general code review patterns in pull-
based development [49]. Those studies are relevant because MCR
is critical in repository-based software development, especially in
Agile software development, driven by change and collaboration [1].

In practice, Git Pull Requests (PRs) are relevant to MCR as they
promote well-defined and collaborative reviewing. Through PRs,
the code is subject to a review process in which reviewers may
suggest improvements before merging the code to the main branch
of a repository [29]. Such improvements may take the form of
refactorings, resulting from discussions among the PR author and
reviewers on code quality issues, including spontaneous actions
of the PR author aiming to refine the originally submitted solu-
tion. We hypothesize that PRs that induce refactoring edits have
different characteristics from those that do not, as refactoring may
involve design and API changes that require more extensive effort,
discussion and knowledge of the project. It is worth clarifying that

https://doi.org/10.1145/3475716.3475785
https://doi.org/10.1145/3475716.3475785

ESEM ’21, October 11–15, 2021, Bari, Italy Coelho, Tsantalis, Massoni, and Alves

this study sheds light on refactorings induced by code review (Sec-
tion 4) aiming to provide an initial understanding of how review
discussions induce such edits.

Motivation: By distinguishing refactoring-inducing from non-
refactoring-inducing PRs, we can potentially advance the under-
standing of code reviewing at the PR level and assist researchers,
practitioners, and tool builders in this context. No prior MCR
studies made a distinction between refactoring-inducing and non-
refactoring-inducing PRs, when analyzing their research questions,
which might have affected their findings or discussions. For in-
stance, by also regarding refactoring-inducing PRs, Gousios et al.
[37] and Kononenko et al. [46] could have found different factors
influencing the time to merge a PR; Li et al. [49] could have included
refactoring concerns to the multilevel taxonomy for review com-
ments in the pull-based development model; Pascarella et al. [62]
could have identified further information to perform a proper code
review in presence of refactorings; Paixão et al. [17] could have com-
plemented the study on the reasons for refactorings during code
review when analyzing projects in Gerrit; whereas, Pantiuchina
et al. [61] could have different conclusions on the motivations for
refactorings in PRs, since they analyzed PRs in which refactorings
were detected even in the initial commit (i.e., these refactorings
were not induced from reviewer discussions). In practice, being
unaware of refactoring-inducing PRs’ characteristics, practitioners
and tool builders might miss opportunities to manage better their
resources and to assist developers in PRs, respectively. Moreover,
a refactoring-aware notification system could help in allocating
reviewers with more knowledge on the design of the refactored
code when a PR becomes refactoring-inducing, as design changes
caused by refactoring need to be more extensively discussed and
agreed upon.

Definition 1.1. A PR is refactoring-inducing if refactoring edits
are performed in subsequent commits after the initial PR commit(s),
as a result of the reviewing process or spontaneous improvements
by the PR contributor. Let𝑈 = {𝑢1, 𝑢2, ..., 𝑢w}, a set of repositories
in GitHub. Each repository 𝑢q, 1 ≤ 𝑞 ≤ 𝑤 , has a set of pull requests
𝑃 (𝑢q) = {𝑝1, 𝑝2, ..., 𝑝m} over time. Each pull request 𝑝 j, 1 ≤ 𝑗 ≤
𝑚, has a set of commits 𝐶 (𝑝 j) = {𝑐1, 𝑐2, ..., 𝑐n}, in which 𝐼 (𝑝 j) is
the set of initial commits included in the PR when it is created,
𝐼 (𝑝 j) ⊆ 𝐶 (𝑝 j). A refactoring-inducing pull request is that in which
∃ 𝑐k | 𝑅(𝑐k) ≠ ∅, where 𝑅(𝑐k) denotes the set of refactorings
performed in commit 𝑐k and |𝐼 (𝑝 j) | < 𝑘 ≤ 𝑛.

To clarify our definition, Figure 1 depicts a refactoring-inducing
PR consisting of three initial commits (𝑐1 − 𝑐3) and six subse-
quent commits (𝑐4 − 𝑐9), three of which include refactoring ed-
its (𝑐5, 𝑐7, 𝑐8), e.g., commit 𝑐7 has two Rename Class and three
Change Variable Type refactoring instances. Our study explores
differences/similarities between PRs based on the refactorings per-
formed in PR commits subsequent to the initial ones (𝑐4 − 𝑐9).

We propose an investigation at the PR level because we un-
derstand it as a complete scenario for exploring code reviewing
practices in a well-defined scope of development, which allows us
to go beyond an investigation at the commit level. For instance, we
can obtain a global comprehension of contributions to the original
code, in terms of both commits and reviewing-related aspects (e.g.,
reviewers’ comments). Our conception is mainly inspired by em-
pirical evidence showing that pull-based development is associated

with larger numbers of contributions [81], and that PR discussions
lead to additional refactorings [61]. To guide our investigation, we
designed the following research questions:
• RQ1: How common are refactoring-inducing PRs?
• RQ2: How do refactoring-inducing PRs compare to non-refactoring-
inducing ones?

• RQ3: Are refactoring edits induced by code reviews?

Figure 1: A Refactoring-Inducing Pull Request (Apache
bookkeeper PR #2010), Illustrating Initial Commits (𝑐1 − 𝑐3)
and Subsequent Commits (𝑐4 − 𝑐9).

Weminedmerged PRs fromApache’s Java repositories in GitHub,
and we used state-of-the-art tools and techniques, such as Refactor-
ingMiner [11] and Association Rule Learning (ARL) [23] to answer
the first two questions. RefactoringMiner is currently considered
the state-of-the-art refactoring detection tool (precision of 97.96%
and recall of 87.2% [78], whereas ARL can discover non-obvious re-
lationships between variables in large datasets [12]. We used Refac-
toringMiner to detect refactorings in a sample of 1,845 merged PRs.
Then, we performed ARL on two groups (refactoring-inducing and
non-refactoring-inducing PRs), and formulated eight (8) hypotheses
on differences between refactoring-inducing and non-refactoring-
inducing PRs by manually exploring 562 association rules discov-
ered by ARL. We found that refactoring-inducing PRs significantly
differ from non-refactoring-inducing ones in terms of number of
subsequent commits, code churn, number of file changes, number
of review comments, length of discussion, and time to merge; how-
ever, we found no statistical evidence that the number of reviewers
is related to refactoring-inducement.

In order to address the third research question, we carried out a
manual investigation of 2,096 review comments cross-referenced
to 1,891 detected refactorings from 228 refactoring-inducing PRs
– a stratified sample from our original sample (by considering a
confidence level of 95% and a margin of error of 5%). We found 133
refactoring-inducing PRs (58.3%) in which at least one refactoring
edit was induced by review comments.

Contributions:
(1) To the best of our knowledge, this is the first study investigating

aspects related to refactoring and code review in the context of
refactoring-inducing PRs (Def. 1.1).

(2) We investigate PRsmerged bymerge pull request and squash and
merge options. We tried to avoid either PRs merged by rebase
and merge or merged PRs that suffered rebasing, intending to
minimize threats to validity (Section 4.1). To deal with squashed
commits, we implemented a script that recovers them (git squash
converts all commits in a PR into a single commit).

An Empirical Study on Refactoring-Inducing Pull Requests ESEM ’21, October 11–15, 2021, Bari, Italy

(3) We performed a manual analysis of refactoring-inducement, by
exploring more than 2,000 review comments.

(4) We made available a complete reproduction kit [10] including
the mined dataset and implemented scripts to enable replica-
tions and future research.

2 BACKGROUND
2.1 Refactoring and Modern Code Review
As software evolves to meet new requirements, its code becomes
more complex. Throughout this process, design and quality deserve
attention [44]. For that, code restructurings, coined as refactorings
by Opdyke and Johnson [57], are performed to improve the design
quality of object-oriented software, while preserving its external
behavior, and they should be performed in a structured manner
[33, 56]. Developers can recover those restructurings through refac-
toring detection tools – which automatically identify refactoring
types applied to the code, for assisting tasks such as studies on code
evolution [60] and MCR [14, 35]. MCR consists of a lightweight
code review (in opposition to the formal code inspections specified
by Fagan [32]), tool-assisted, asynchronous, and driven by review-
ing code changes, submitted by a developer (author), and manually
examined by one or more other developers (reviewers) [18].

2.2 Git-Based Development and Pull Requests
Git-based collaborative development as implemented in GitHub
[8] has presented a fast growth in the number of developers (more
than 56 million) [4]. Each Git repository maintains a full history
of changes [29] structured as a linked-list of commits, in turn,
organized into multiple lines of development (branches). A PR is a
commonly used way for submitting contributions to collaboration-
based projects [9]. After forking a Git branch, a developer can
implement changes, and open a PR to submit them for reviewing in
line with the MCR process. Next, reviewers can submit comments
based on a diff output that highlights the changes, whereas the
author and other contributors can answer the reviewers’ comments.
After the reviewing, there are three options of merging:
• Merge pull request merges the PR commits into a merge commit
and adds them into the main branch, chronologically ordered, as
depicted in Figure 2. Note that the arrows indicate a commit’s
parent, and the before and after markers indicate the commits
searchable in the PR, respectively, before and after merging;

Figure 2: Illustrating Merge Pull Request Option (Apache
accumulo-examples PR #19)

• Squash and merge squashes the PR commits into a single commit
and merges it into the main branch (Figure 3); and

• Rebase and merge re-writes all commits from one branch onto
another, by updating their SHA, in a manner that unwanted

history can be discarded, as illustrated in Figure 4. In this case,
commits 0be3d3f and 66f02d3 received review comments, but they
are not accessible via PR. Hence, it is mandatory to recover the
original commits when investigating reviewing-related aspects.
Nonetheless, such a recovery is not trivial [42].

Figure 3: Illustrating Squash and Merge Option (Apache ac-
cumulo PR #106)

Figure 4: Illustrating Rebase and Merge Option (Apache ac-
cumulo PR #190)

2.3 Association Rule Learning
ARL discovers rules that denote non-obvious relationships between
variables in large datasets, e.g., refactoring-inducing PRs with a
high number of added lines tend to have a high number of reviewers.
Formally, let 𝐼 = {𝑖1, 𝑖2, ..., 𝑖𝑛}, a set of n binary attributes (items)
and 𝐷 = {𝑡1, 𝑡2, ..., 𝑡𝑚}, a set of m transactions (dataset), in which
each transaction in 𝐷 consists of items in 𝐼 . Thus, an Association
Rule (AR) {𝑋 } → {𝑌 } indicates the co-occurrence of the tuples {𝑋 }
(antecedent) and {𝑌 } (consequent), where {𝑋 }, {𝑌 } ⊆ 𝐼 , {𝑋 }∩{𝑌 } =
∅ [12]. Support indicates the number of transactions in 𝐷 that
supports an AR, so expressing its statistical significance.

Interestingness measures can determine the strength of an AR.
Confidence means how likely {𝑋 } and {𝑌 } will occur together. Lift
reveals how X and Y are related to one another (0 denotes no asso-
ciation, < 1 indicates a negative co-occurrence of the antecedent
and consequent, and > 1 express that the two occurrences are de-
pendent on one another and the ARs are useful) [36]. Conviction is
a measure of implication, ranging in the interval [0,∞]. Conviction
1 denotes that antecedent and consequent are unrelated, while∞
expresses logical implications, where confidence is 1 [26].

ARL usually follows this workflow: feature selection, feature
engineering (applying any encoding technique, such as one-hot en-
coding using a group of bits to represent mutually exclusive features
[80]), algorithm choice and execution, and result interpretation (as-
sisted by interestingness measures) [79].

3 MOTIVATING EXAMPLE
This study has evolved from results of preliminary investigations
on refactorings and code reviews to get a better understanding of

ESEM ’21, October 11–15, 2021, Bari, Italy Coelho, Tsantalis, Massoni, and Alves

the topic and plan the research design. As a motivating example,
we describe a case history, in which we explored the refactoring-
inducement and code review aspects. We randomly selected 24 PRs
from Apache’s drill repository. Then, we ran RefactoringMiner and
obtained 11 (45.8%) refactoring-inducing PRs.

We compared refactoring-inducing and non-refactoring-inducing
PRs concerning code churn (number of changed lines), and discus-
sion length (i.e., review and non-review comments). As a result,
we identified that the refactoring-inducing PRs presented a higher
code churn and discussion length than non-refactoring-inducing
PRs. Note that we took into account one measure of each context
under investigation: changes (code churn), code review (length of
discussion), besides the number of refactoring edits.

We manually analysed the refactoring-inducing PRs, by contrast-
ing the descriptions of the detected refactorings by Refactoring-
Miner against review comments. Our strategy of analysis consisted
of reading comments and searching for keywords (e.g., “refac”,
“mov”, “extract”, and “renam”). We observed refactorings directly
induced by review comments in four refactoring-inducing PRs. To
exemplify, in PR #17621, the review comment “Lot of code here and
in DefaultMemoryAllocationUtilities are duplicate. May be create a
separate MemoryAllocationUtilities to keep the common code...” moti-
vated one Extract Superclass and four Pull Up Method refactorings.

In a nutshell, those results provided insights on the pertinence
of (i) exploring technical aspects of changes, code review, and refac-
torings in the PR level, since we perceived differences between
refactoring-inducing and non-refactoring-inducing PRs in terms of
code churn and length of discussion; (ii) considering refactorings as
part of contributions to the code improvement during code review,
and (iii) investigating quantitatively and qualitatively technical
aspects in light of the refactoring-inducing PR definition.

4 STUDY DESIGN
The main goal of this study is to investigate code reviewing-related
data to characterize refactoring-inducing PRs in Apache’s reposito-
ries hosted in GitHub, from the reviewers’ perspective. Thus, we
formulated these research questions:

• RQ1: How common are refactoring-inducing PRs? We firstly
explored the presence of PRs that met our refactoring-inducing
PR definition (Def. 1.1).

• RQ2: How do refactoring-inducing PRs compare to non-refactoring-
inducing ones? We quantitatively investigated code reviewing-
related aspects aiming to find out similarities/differences in PRs
based on the refactorings performed.

• RQ3: Is refactoring induced by code reviews? We qualitatively
scrutinized a stratified sample of refactoring-inducing PRs to val-
idate the occurrence of refactoring edits induced by code review-
ing, by manually examining review comments and discussions.

Accordingly, supported by guidelines [70], we designed an em-
pirical study that comprises five steps, as shown in Figure 5 and
described in the next subsections. Also, we made publicly available
a reproduction kit containing the mined datasets and developed
scripts for replicating the results for our research questions [10].

1Apache drill PR #1762, available in https://git.io/JczHh.

4.1 Mining Merged Pull Requests
We mined merged PRs from Apache’s repositories at GitHub. We
focused on merged PRs because they reveal actions that were in
fact finalized, therefore, we can get a more in-depth understanding
of refactoring-inducement. We chose GitHub due to its popularity
[4] and to the mining resources available through extensive APIs –
GitHub REST API v3 [7] and GitHub GraphQL API v4 [6].

The Apache Software Foundation (ASF) manages more than 350
open-source projects, with more than 8,000 contributors from all
over the world; all of its projects migrated to GitHub in February
2019 [2]. Given Apache’s popularity and relevance of contributions
in the open-source software development context, we selected it for
mining PRs [5]. The refactoring mining tool we selected (Section
4.2) only supports projects developed in the Java, so we considered
Java projects (almost 57% of Apache’s code is developed in Java).

In August 2019, we searched on Apache’s non-archived Java
repositories in GitHub (to take into account only actively main-
tained repositories), resulting in 65,006 merged PRs, detected in
467 out of 956 repositories; we then implemented a script to mine
their merged PRs. We obtained two datasets: pull requests dataset
consists of 48,338 merged PRs (merge PR option) from 453 distinct
repositories while commits dataset contains 53,915 recovered com-
mits from 16,668 merged PRs (squash and merge or rebase and merge
options) from 255 repositories.

Then, we recovered the commit history of squashed and merged
PRs before any exploration of its original commits, assisted by the
HeadRefForcePushedEvent object accessible via GitHub GraphQL
API [6]. To clarify, consider the Apache’s PR 1807 (Figure 6) that,
originally, had 12 commits (𝑐1 − 𝑐12) that were squashed into single
commit (𝑐𝑎𝑓 𝑡𝑒𝑟𝐶𝑜𝑚𝑚𝑖𝑡) after a force–pushed event. Consequently,
only one commit may be gathered from the PR (𝑐𝑎𝑓 𝑡𝑒𝑟𝐶𝑜𝑚𝑚𝑖𝑡).

Our recovery strategy follows two steps: (1) we recover the
commits 𝑐𝑎𝑓 𝑡𝑒𝑟𝐶𝑜𝑚𝑚𝑖𝑡 and 𝑐𝑏𝑒 𝑓 𝑜𝑟𝑒𝐶𝑜𝑚𝑚𝑖𝑡 through HeadRefForce-
PushedEvent object; and (2) we rebuild the original commits’ his-
tory through tracking the commits from 𝑐𝑏𝑒 𝑓 𝑜𝑟𝑒𝐶𝑜𝑚𝑚𝑖𝑡 , which
has the same value of 𝑐12, until reaching the same SHA of the
𝑐𝑎𝑓 𝑡𝑒𝑟𝐶𝑜𝑚𝑚𝑖𝑡 ’s parent, by using the compare operation, as available
in GitHub REST API v3 [7]. We executed the strategy’s Step 1 for
gathering the after and before commits from 65,006 pull requests,
obtaining 53,915 commits after running the strategy’s Step 2.

We discarded PRs merged by rebase and merge option since,
in rebasing, some commits within the PR may be due to external
changes (outside the scope of the code review sequence), conveying
a threat to the validity, as argued in [59]. Accordingly, we considered
the number of HeadRefForcePushedEvent events and PR commits to
identify PRs merged by squash and merge. In specific, PRs merged
by merge pull request and squash and merge present zero and one
HeadRefForcePushedEvent event, respectively (squashed andmerged
PRs keep one PR commit). Moreover, we dropped all PRs containing
at least one subsequent commit with two parents, because such
commits may represent external changes rebased onto a branch,
as depicted in Figure 7. Note that, once commit ee88dea has two
parents, it integrates external changes, which were not reviewed in
PR reviewing time.

 https://git.io/JczHh

An Empirical Study on Refactoring-Inducing Pull Requests ESEM ’21, October 11–15, 2021, Bari, Italy

Figure 5: Overview of our Investigation.

Figure 6: AnOverview of Apache Drill PR #1807, Illustrating
Squashed Commits (𝑐1 − 𝑐12).

Figure 7: Illustrating a Pull Request’s Commit Presenting
Two Parents (Apache avro PR #537)

4.2 Refactoring Detection
RefactoringMiner detects refactorings in Java projects, present-
ing better results when compared to its competitors (precision of
99.6% and recall of 94%) [77, 78]. We considered version 2.0, which
supports over 40 different refactoring types, including low-level
refactorings, such as variable renames and extractions, allowing
us to work with a more comprehensive list of refactoring edits.
For these reasons, we selected it for refactoring detection (Step
2). In essence, it identifies the refactorings performed in a commit
in relation to its parent commit, displaying a description of the
applied refactorings (type and associated targets, e.g., the methods
and classes involved in an Extract and Move Method refactoring).
In this step, we considered only merged PRs containing two or
more commits (sample 1, Figure 5) intending to conform with our

refactoring-inducing PR definition. After three weeks of Refactor-
ingMiner running, we obtained a random sample of 225,127 de-
tected refactorings in 8,761 merged PRs (13.5% of the total number
of Apache’s merged PRs) from 209 distinct repositories, embrac-
ing 68,209 commits. The source of randomness lies in the order in
which the repositories were processed.

At that point, we checked the commits’ authored date against
the PRs’ opening date in order to identify initial and subsequent
commits for the sample’s PRs. Therefore, the number of refactorings
of a PR takes into account only subsequent commits.

4.3 Mining Code Review Data
Empirical studies have investigated code review efficiency and
effectiveness to understand the practice, elaborate recommenda-
tions, and develop improvements. Together, these studies share a
set of useful code review aspects for further investigation, such as
change description [25, 75], code churn [76], length of discussion
[45, 54, 66, 76], number of changed files [25, 45], number of commits
[54, 67], number of people in the discussion [45], number of resub-
missions [45, 66], number of review comments, [21, 54, 66], number
of reviewers [66, 72], size of change [20, 45, 66], and time to merge
[37, 41]. Therefore, the mining of raw code review data (Step 3)
consisted of collecting the code reviewing-related attributes listed
in Table 1, considering 8,761 PRs from Step 2 (sample 2, Figure 5).
Attributes number, title, labels, and repository’s name are useful to
uniquely identify a PR. We clarify that we do not count the distinct
files changed (i.e., the set of the changed files), but the number of
times the files changed (i.e., the list of file changes) over subsequent
PR commits. Hence, the number of added lines and deleted lines
denote the number of lines modified across file changes.

For mining, we imposed one precondition: only merged PRs,
comprising at least one review comment, should be mined aiming to
explore refactoring-inducement and to collect review comments for
further investigation. Thus, the mining generated two datasets, code
review dataset and review comments dataset, refined according to the

ESEM ’21, October 11–15, 2021, Bari, Italy Coelho, Tsantalis, Massoni, and Alves

Table 1: Selected Pull Request Attributes for Mining
Attribute Description

number Numerical identifier of a PR
title Title of a PR

repository Repository’s name of a PR
labels Labels associated with a PR

commits No. of subsequent commits in a PR
additions No. of added lines in a PR
deletions No. of deleted lines in a PR

file changes No. of file changes in a PR
creation date Date and time of a PR creation
merge date Date and time of a PR merge

review comments No. of review comments in a PR
non-review comments No. of non-review comments in a PR

following procedures: dropping merged PRs with inconsistencies,
such as zero file changes and zero reviewers; checking for duplicates;
and mining from non-mirrored repositories. As a result, our final
sample consists of code review data from 1,845 merged PRs (2.8% of
the total number of Apache’s merged PRs from Step 1 and 21.1% of
the number of sample’s PRs obtained from Step 2), encompassing
4,702 subsequent commits, 6,556 detected refactorings, and 12,547
review comments, mined from 84 distinct Apache’s repositories.

4.4 Association Rule Learning
Aiming to explore what differentiates refactoring-inducing PRs
from non-refactoring-inducing ones, we executed ARL (Step 4).
Such strategy assists exploratory analysis by identifying natural
structures derived from the relationships between the characteris-
tics of data [28]. Accordingly, by considering ARL on refactoring-
inducing and non-refactoring-inducing PRs, we can identify ARs
that likely support us in the formulation of more accurate hypothe-
ses concerning differences/similarities between those two groups.
One may argue that clustering is a better alternative than ARL to
find groups of PRs with distinct characteristics. Nonetheless, we
experimentally performed clustering in our sample of PRs, after
conducting a rigorous selection of clustering algorithm and input
parameters2, but we found a great noise ratio (76.3%).

4.4.1 Selection of features. We selected all features that can be
represented as a number regarding changes, code review, and refac-
torings, from the code review dataset (Step 3). We considered a
three-context perspective (changes, code review, and refactorings)
because they together might potentially support the identification
of differences between refactoring-inducing and non-refactoring-
inducing PRs. These are the selected features: number of subsequent
commits, number of file changes, number of added lines, number
of deleted lines, number of reviewers, number of review comments,
length of discussion, time to merge, and number of detected refac-
torings. Note that the length of discussion and time to merge are
derived from review comments + non-review comments, and merge
date − creation date (in number of days), respectively.

One may argue that other features could also be considered; how-
ever, (i) the PR title is written using natural language, so it is subject
2We used the Ordering Points To Identify the Clustering Structure (OPTICS) algorithm
[15] and Euclidean distance [16] as similarity metric.

Table 2: One-Hot Encoding for Binning of Features
Category Range

None 0
Low 0 < 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 ≤ 0.25

Medium 0.25 < 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 ≤ 0.50
High 0.50 < 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 ≤ 0.75

Very high 0.75 < 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 ≤ 1.0

Table 3: ARL Output by Experimenting Minimum Support
from 0.01 to 0.1 by Steps of 0.01, and Confidence of 0.5

Support ≥ Number of association rules

0.01 52,944
0.02 19,239
0.03 10,354
0.04 5,567
0.05 3,572
0.06 2,264
0.07 1,640
0.08 1,004
0.09 712
0.10 562

to ambiguities; (ii) PR labels are not mandatory, only 349 PRs from
our sample have labels; (iii) date and time of creation/merge are spe-
cific values, so we used the difference between them (time to merge)
for exploration; and (iv) the number of non-review comments of a
PR is part of its length of discussion.

4.4.2 Feature engineering. We applied one-hot encoding based on
the quartiles of the features, resulting in the binning presented in
Table 2. We chose such technique due to its simplicity and linear
time and space complexities [80]. We did not discard the outliers
because, in the context of this study, they do not represent experi-
mental errors; thus, they can potentially indicate circumstances for
further examination. Consequently, the very high category (fourth
quartile) includes the outliers.

4.4.3 Selection and execution of an algorithm. We selected the
FP-Growth algorithm due to its performance [39]. Then, we devel-
oped a script for the ARL by using the FP-growth implementation
available in the mlxtend.frequent_patterns module [64]. We set the
minimum support threshold to 0.1 to avoid discarding likely ARs for
further analysis [30]. Aiming to get meaningful ARs, we considered
minimum thresholds for confidence ≥ 0.5, lift > 1, and conviction >

1. We performed a prior experiment concerning values of minimum
support and minimum confidence by taking the thresholds consid-
ered in [12] as a reference (support of 0.01, confidence of 0.5). We
ran FP-growth considering support values ranging from 0.01 to 0.1
by steps of 0.01, and confidence 0.5 (Table 3). In all these settings,
we found ARs that cover all input features. Since support is a statis-
tical significance measure, we consider the last setting (minimum
support of 0.1, confidence of 0.5) for purposes of FP-growth execu-
tion. A lift threshold > 1 reveals useful ARs [22], while a conviction
threshold > 1 denotes ARs with logical implications [26].

4.4.4 Interpretation of results. We considered the feature levels
(none, low, medium, high, and very high), instead of absolute values,

An Empirical Study on Refactoring-Inducing Pull Requests ESEM ’21, October 11–15, 2021, Bari, Italy

as items for composing ARs aiming to identify relative associations
among two groups for investigation, e.g., {high number of added
lines} → {high number of reviewers}. The ARs work as basis for the
formulation of hypotheses regarding the characterization of our
sample’s PRs. In this sense, we carried out the following procedure:
(1) manual examination of the ARs to recognize potential differ-

ences/similarities that support the formulation of hypotheses;
(2) analysis of the pairwise ARs, ARs containing the number of

refactorings as an item, and ARs whose conviction is infinite to
assist the rationale for the formulation of hypotheses; and

(3) formulation of hypotheses to quantitatively investigate the dif-
ferences between refactoring-inducing and non-refactoring-
inducing PRs.

4.5 Data Analysis
4.5.1 Quantitative data analysis. We analyzed the output of Step 3
by exploring the detected refactorings by PR to answer RQ1. The
number of refactorings was computed by considering the edits de-
tected as in the PR subsequent commit(s). As a complement, we
computed a 95% confidence interval for the percentual (proportion)
of refactoring-inducing PRs in Apache’s merged PRs, by performing
bootstrap resampling [31]. We applied statistical testing of hypothe-
ses intending to answer RQ2. That analysis encompassed the testing
of eight hypotheses formulated from the analysis of the ARL output
(Step 4), driven by a comparison between refactoring-inducing and
non-refactoring-inducing PRs. We executed each hypothesis testing
in line with this workflow, guided by [27]:
(1) Definition of null and alternative hypotheses.
(2) Performing of statistical test. We considered a significance level

of 5%, and a substantive significance (effect size) for denoting the
magnitude of the differences between refactoring-inducing and
non-refactoring-inducing PRs at the population level. First, we
checked the assumptions for parametric statistical tests (steps a
and b), since the independence assumption is already met (i.e.,
a PR is either a refactoring-inducing or not). For exploring the
difference between refactoring-inducing and non-refactoring-
inducing PRs, we computed a 95% confidence interval by boot-
strapping resample according to the output from steps a and
b, in mean or median (step c). Then, we conducted a proper
statistical test and calculated the effect size (step d).
(a) checking for data normality by using the Shapiro-Wilk test;
(b) checking for homogeneity of variances via Levene’s test;
(c) computation of confidence interval for the difference in

mean or median aligned to output from steps a and b;
(d) performing of either parametric independent t-test and

Cohen’s d, or non-parametric Mann Whitney U test and
Common-Language Effect Size (CLES) in line with the out-
put from steps a and b. CLES is the probability, at the pop-
ulation level, that a randomly selected observation from
a sample will be higher/greater than a randomly selected
observation from another sample [53].

(3) Deciding if the null hypothesis is supported or refused.

4.5.2 Qualitative data analysis. In order to answer RQ3, three de-
velopers (intending to mitigate researcher bias) manually examined
review discussions and validated the detected refactorings from
a subset of refactoring-inducing PRs of our sample. We adopted

a stratified random sampling to select refactoring-inducing PRs
for an in-depth investigation of their review comments and dis-
cussion while cross-referencing their detected refactoring edits.
Moreover, we validated these refactorings by checking for false
positives. As a whole, the qualitative analysis lasted 30 days. We
chose that sampling strategy because it provides a means to sample
non-overlapping subgroups based on specific characteristics [52],
(e.g. number of refactorings), where each subgroup (stratum) can be
sampled using another sampling method – a setting that quite fits
to further investigation of categories of refactoring-inducing PRs
containing a low, medium, high, and very high number of refactor-
ings (Table 2). To define the sample size, we considered a confidence
level of 95% and a margin of error of 5%, so obtaining 228, thus con-
sidering 57 refactoring-inducing PRs randomly selected from each
category. We split the samples into four categories based on the
numbers of refactorings in order to check if there is a difference in
the effect of code review refactoring requests/inducement between
PRs with massive refactoring efforts versus PRs with small/focused
refactoring efforts.

In the analysis, firstly, we conducted a calibration in which one of
the analysts followed up ten analyses performed by the others. Next,
each analyst apart examined 40.3%, 38.2%, and 21.5% of the data.
In such subjective decision-making, we considered the refactoring-
inducement in settings where review comments either explicitly
suggested refactoring edits (e.g., “How about renaming to ...?”3) or
left any actionable recommendation that induced refactoring (e.g.,
“avoid multiple booleans” induced a Merge Parameter instance4).

5 RESULTS AND DISCUSSION
5.1 How Common are Refactoring-Inducing

Pull Requests?
We found 557 refactoring-inducing PRs (30.2% of our sample’s PRs),
equaling 12,547 detected refactoring edits. As shown in Figure 8a,
the histogram of refactoring edits is positively skewed, presenting
outliers. Thus, a low number of refactoring edits is quite frequent.
The number of refactorings by PR is 11.8 on average (SD = 32.3)
and 3 as median (IQR = 6), according to Figure 8b.

(a) Histogram (b) Boxplot

Figure 8: Refactorings in the Refactoring-Inducing PRs

Using bootstrapping resampling and a 95% confidence level, we
obtained a confidence interval ranging from 28.1% to 32.3% for the
proportion of refactoring-inducing PRs in Apache’s merged PRs.
These results reveal significant refactoring activity induced in PRs.
This is a motivating result, while outliers’ presence can indicate
scenarios scientifically relevant for further exploration.
3Apache samza PR #1051, available in https://git.io/J3z9H.
4Apache fluo PR #1032, available in https://git.io/J3mxZ.

https://git.io/J3z9H
https://git.io/J3mxZ

ESEM ’21, October 11–15, 2021, Bari, Italy Coelho, Tsantalis, Massoni, and Alves

Finding 1: We found 30.2% of refactoring-inducing PRs, which
percentage (proportion) in Apache’s merged PRs is in [28.1%,
32.3%], for a 95% confidence level.

5.2 How Do Refactoring-Inducing Pull
Requests Compare to
non-Refactoring-Inducing Ones?

FromARL, we obtained 562 ARs (146 from refactoring-inducing PRs
and 416 from non-refactoring-inducing PRs). Then, we manually
inspected them, by searching for pairwise ARs (AR1–AR7), ARs
whose conviction is infinite (AR5, AR6), and the remaining ARs
(AR2, AR3, AR4). Accordingly, we selected four ARs (AR1–AR4)
obtained from refactoring-inducing PRs and three ARs (AR5–AR7)
from non-refactoring-inducing PRs, all catalogued in Table 4, in
decreasing order of conviction. Since we did not identify the same
pairs of ARs in both groups, we needed to consider a distinct number
of ARs (hence, itemsets) for the comparison purpose when address-
ing all features. Afterwards, we carried out an analysis of those
ARs. We formulated eight hypotheses on the differences/similarities
between refactoring-inducing and non-refactoring-inducing PRs,
discussed as follows. Table 5 shows the average, Standard Deviation
(SD),median, and Interquartile Range (IQR) of the examined features
from refactoring-inducing and non-refactoring-inducing PRs.

H1. Refactoring-inducing PRs are more likely to have more
added lines than non-refactoring-inducing PRs (AR2/AR3,AR5).

H2. Refactoring-inducing PRs are more likely to have more
deleted lines thannon-refactoring-inducingPRs (AR2/AR3,AR5).

Finding 2: Refactoring-inducing PRs comprise significantly
more code churn than non-refactoring-inducing ones, since
refactoring-inducing PRs are significantly more likely to have a
higher number of added lines (U = 0.58 × 𝑒+06, p < .05), CLES =
81.2% and deleted lines (U = 0.57 × 𝑒+06, p < .05), CLES = 80.5%
than non-refactoring-inducing PRs.

This is an expected result in light of the findings from Hegedüs
et al., since refactored code has significantly higher size-related
metrics [40]. We speculate that reviewing larger code churn may
potentially promote refactorings. This understanding is supported
by Rigby et al., who observed that the code churn’s magnitude
influences code reviewing [67, 68], and Beller et al. who discovered
that the larger the churn, the more changes could follow [21].

H3. Refactoring-inducing PRs are more likely to have more
file changes thannon-refactoring-inducingPRs (AR2/AR3,AR5).

Finding 3: Refactoring-inducing PRs encompass significantly
more file changes than non-refactoring-inducing ones (U = 0.56×
𝑒+06, p < .05), CLES = 79.1%.

We conjecture that reviewing code arranged across files may
motivate refactorings, an argument supported by Beller et al. re-
garding more file changes comprise more changes during code
review [21]. By observing change-related aspects (churn and file
changes), our findings confirm previous conclusions on the influ-
ence of the amount and magnitude of changes on code review
[20, 45, 67, 68]. When analyzing the changes and refactorings, our

findings reinforce prior conclusions on refactored code significantly
present higher size-related metrics (e.g., number of code lines and
file changes) [40], and larger changes promote refactorings [58].

H4. Refactoring-inducing PRs are more likely to have more
subsequent commits than non-refactoring-inducing PRs
(AR2/AR3, AR5).

Finding 4: Refactoring-inducing PRs comprise significantly
more subsequent commits than non-refactoring-inducing PRs (U
= 0.51 × 𝑒+06, p < .05), CLES = 70.6%.

Based on our previous findings on the magnitude of code churn
and file changes, that result is expected and aligned to Beller et
al. concerning the impacts of larger code churn and wide-spread
changes across files on consequent changes [21]. Accordingly, we
speculate that reviewing refactoring-inducing PRs might require
more subsequent changes, in turn, denoted by more subsequent
commits in comparison with non-refactoring-inducing PRs.

H5. Refactoring-inducing PRs are more likely to have more
review comments than non-refactoring-inducing PRs (AR1,
AR7).

Finding 5: Refactoring-inducing PRs embrace significantly more
review comments than non-refactoring-inducing PRs (U = 0.47×
𝑒+06, p < .05), CLES = 65.1%.

Beller et al. found that the most changes during code review are
driven by review comments [21], and Pantiuchina et al. discovered
that almost 35% of refactoring edits are motivated by discussion
among developers in OSS projects at GitHub [61]. Thus, we conjec-
ture that, besides change-related aspects, GitHub’s PR model can
constitute a peculiar structure for code review, in which review com-
ments influence the occurrence of refactorings, therefore explaining
our result. This argument originates from the fact that a pull-based
collaboration workflow provides reviewing resources [9] (e.g., a
proper code reviewing UI) for developers to improve/fix the code
while having access to the history of commits and discussion. Our
finding also provides insight for examination of review comments
to get an in-depth understanding of refactoring-inducement.

H6. Refactoring-inducing PRs are more likely to present a
lengthier discussion than non-refactoring-inducing PRs
(AR1, AR7).

Finding 6: Refactoring-inducing PRs enclose significantly more
discussion than non-refactoring-inducing PRs (U = 0.46 × 𝑒+06, p
< .05), CLES = 64.7%.

Amore in-depth analysis could tell how profound these lengthier
discussions are, although a higher number of comments might rep-
resent developers concerned with the code, willing then to extend
their collaboration to the suggestion of refactorings. Previous find-
ings may support those claims; Lee and Cole, when studying the
Linux kernel development, acknowledged that the amount of dis-
cussion is a quality indicator [48]. Also, empirical evidence reports
on the impact of the number of comments on changes [21, 61].

An Empirical Study on Refactoring-Inducing Pull Requests ESEM ’21, October 11–15, 2021, Bari, Italy

Table 4: Association Rules Selected by Manual Inspection (AR1–AR4 for Refactoring-Inducing PRs, AR5–AR7 for non-
Refactoring-Inducing PRs)

Id Association rule Supp Conf Lift Conv

AR1 {very high length of discussion, very no. of reviewers}→ {very high no. of review comments} 0.13 0.85 3.08 4.89
AR2 {very high no. of added lines, very high no. of subsequent commits} → {very high no. of file changes} 0.11 0.83 3.23 4.51
AR3 {very high no. of deleted lines, very high no. of subsequent commits} → {very high no. of file changes} 0.10 0.81 3.12 3.81
AR4 {medium time to merge}→ {very high no. of reviewers} 0.16 0.51 1.06 1.06

AR5
{high no. of subsequent commits, low no. of added lines, low no. of deleted lines} → {medium no. of file
changes} 0.12 1.00 2.63 ∞

AR6
{medium no. of file changes, very high no. of reviewers, medium time to merge}→ {high no. of
subsequent commits} 0.13 1.00 1.83 ∞

AR7 {very high no. of reviewers, medium length of discussion}→ {medium no. of review comments} 0.13 0.61 1.71 1.63

Table 5: Statistics of the Pull Requests Attributes

Pull Request Attribute
Refactoring-Inducing Pull Requests non-Refactoring-Inducing Pull Requests
Average SD Median IQR Average SD Median IQR

Number of added lines 945.9 4,744.3 72 250 57.5 517.8 8 28
Number of deleted lines 377.4 1,859.7 41 139 41.2 303.8 6 16.2
Number of file changes 32.1 119.7 7 15 6.1 60.2 2 3
Number of subsequent commits 3.7 3.4 3 2 2.1 1.9 1 1
Number of review comments 9.8 11.1 6 9 5.5 8.2 3.5 4
Length of discussion 15.2 13.8 11 14 10.1 12.1 7 8
Number of reviewers 2.3 0.9 2 1 2.1 0.9 2 0
Time to merge (days) 14.3 45.6 5 11 9.3 33.1 2 7

H7. Refactoring-inducing andnon-refactoring-inducingPRs
are equally likely to have a higher number of reviewers (AR1,
AR7).

Finding 7: We found no statistical evidence that the number of
reviewers is related to refactoring-inducement (U = 0.40 × 𝑒+06,
p < .05), CLES = 55.9%.

Refactoring-inducing and non-refactoring-inducing PRs present
two reviewers as median – the same result found by Rigby et al.
[65] in the OSS scenario. There are outliers that, in turn, could be
justified by other technical factors, such as complexity of changes,
as argued in [66]. However, our study does not address that scope.

H8. Refactoring-inducingPRs aremore likely to take a longer
time to merge than non-refactoring-inducing PRs (AR4, AR6).

Finding 8: Refactoring-inducing PRs take significantly more
time to merge than non-refactoring-inducing PRs (U = 0.42×𝑒+06,
p < .05), CLES = 59.3%.

We realize the influence of refactorings on time to merge, con-
cluding that time for reviewing and performing refactoring edits
both impact the time to merge. In special, this conclusion is aligned
to Szoke et al., who observed a correlation between implementing
refactorings and time [74], and from Gousios et al., who found that
review comments and discussion affect time to merge a PR [37].
5.3 Is Refactoring Induced by Code Reviews?
To study this research question, we sampled 228 refactoring-inducing
PRs, 57 PRs from each of the Low,Medium, High, and Very High cat-
egories encompassing one, two to three, four to seven, and eight to

321 refactoring edits, respectively. By examining 2,096 review com-
ments and 1,207 discussion comments in the sampled PRs, we found
133 (58.3%) in which at least one refactoring edit was induced by
review comments. Such PRs comprise 815 subsequent commits, and
1,891 detected refactorings, 545 of which were induced by review
comments. Finally, we found that Rename (35.8%) (being readability
a common motivation cited by reviewers) and Change Type (30.3%)
operations are the most induced by review in our stratified sample.

Finding 9: In a stratified sample of 228 refactoring-inducing PRs,
133 ones (58.3%) presented at least one refactoring edit induced
by code review.

5.4 Implications
Researchers: All our findings, except for Finding 7, indicate that
refactoring-inducing and non-refactoring-inducing PRs have dif-
ferent characteristics. Therefore, we recommend that future ex-
periment designs on MCR with PRs to make a distinction between
refactoring-inducing and non-refactoring-inducing PRs, or consider
their different characteristics when sampling PRs. Researchers can
also use our mined data, developed tools, and research methods to
investigate code reviewing in pull-based development.

Practitioners: Our findings indicate that there is no statistical
difference in the number of reviewers between refactoring-inducing
and non-refactoring-inducing PRs (Finding 7). But, all other find-
ings show that refactoring-inducing PRs are associated with more
churn (Finding 2), more file changes (Finding 3), more subsequent
commits (Finding 4), more review comments (Finding 5), lengthier
discussions (Finding 6), and more time to merge (Finding 8) than
non-refactoring-inducing PRs. Thus, we suggest to PR managers to
invite more reviewers when a PR becomes refactoring-inducing, to

ESEM ’21, October 11–15, 2021, Bari, Italy Coelho, Tsantalis, Massoni, and Alves

share the expected increase in review workload, and, perhaps more
importantly, to share the knowledge of design changes caused by
subsequent refactorings to more team members.

Tool builders: In connection to our implication for practition-
ers, tool builders can develop bots [47, 73] that recommend reviewers
based on some criteria [55] when a PR becomes refactoring-inducing,
to assist the PR managers in inviting additional reviewers. Our find-
ings indicate that refactoring-inducing PRs have higher complexity
in churn (Finding 2) and file changes (Finding 3). Therefore, it is
necessary to help the developers distinguish refactoring edits from
non-refactoring edits directly in the GitHub or Gerrit review board,
where the reviews are actually taking place. In the past, researchers
implemented refactoring-awareness in the code diff mechanism of
IDEs [13, 34, 35]. Even though not directly related to our results, we
believe that adding refactoring-awareness directly in the GitHub or
Gerrit review board – such as the refactoring-aware commit review
Chrome browser extension [51] – would allow reviewers to trace
the refactorings performed throughout the commits of a PR, pro-
vide prompt feedback, and concentrate efforts on other aspects of
the changes, such as collateral effects of refactorings and proposing
specific tests. This recommendation is in agreement with Gousios
et al. [38], who emphasized the need for untangling code changes
and supporting change impact analysis directly in the PR interface.

6 THREATS TO VALIDITY
We elaborated our study design after conducting two case studies
to better understand GitHub’s PRs and procedures of data mining
and refactoring detection. We carefully defined workflows for our
research design procedures to explain all decisions taken, and we
systematically structured all procedures aiming at replicability. We
performed a rigorous selection of the ARL algorithm and input
parameters. To mitigate researcher bias, our qualitative analysis
was performed by three analysts. Despite our efforts to perform an
initial calibration, there may be limitations concerning conclusions,
since we carried out apart analyses.

Nevertheless the establishment of a chain of evidence for the
data interpretation and description of taken decisions in the study
design, we did not validate the detected refactorings before data
analysis, so expressing a potential threat to construct validity (RQ1
and RQ2). To overcome this issue, we selected RefactoringMiner, a
state-of-the-art refactoring detection tool [78]. When addressing
RQ3, we validated all detected refactorings in our stratified sample.

Aiming to mitigate the risk related to rebasing constraints in
our sample, we excluded the PRs merged with the rebase and merge
option and the PRs including intermediate merge commits. Even
so, there are still threats due to other non-previously identified
manners to search for rebasing operations.

Furthermore, as already admitted in the refactoring-inducing PR
definition, we cannot claim that all refactoring edits were caused
by reviewing. To deal with such limitation, we carried out a qual-
itative analysis of review comments from 228 randomly selected
refactoring-inducing PRs, considering a sample size meeting a con-
fidence level of 95% and a margin of error of 5%. Thus, this empirical
study provides a particular motivation for further qualitative inves-
tigation of review comments to acquire in-depth knowledge on the
influence of reviewing on refactoring-inducing PRs.

It is not suitable to generalize the conclusions, except when con-
sidering other OSS projects that follow a geographically distributed
development and are aligned to “the Apache way” principles [3].
Thus, our findings are exclusively extended to cases that have com-
mon characteristics with Apache’s projects.

7 RELATEDWORK
By exploring the motivations and challenges of MCR, Bacchelli and
Bird identified the code improvements as one of the objectives of
reviewing [18]. A finding confirmed by subsequent study on con-
vergent practices of code review by Rigby and Bird [66], Beller et al.
[21], andMacLeod et al. [50]. Those findings support us in exploring
refactorings as a relevant contribution from code reviewing.

The analysis of the technical aspects of code reviewing has been
the focus of several empirical studies, in which a few measures
have been considered: the number of reviewers by Jiang et al. [43],
the review comments by Rigby and Bird [66] and by Beller et al.
[21], the time to merge by Izquierdo-Cortazar [41], and the size of
change by Baysal et al. [20]. They provided the first insights on code
reviewing aspects investigated in our study. Also, studies explored
the factors influencing code review quality. Bosu et al. discovered
that changes’ properties affect the review comments usefulness [25].
Nevertheless, Kononenko et al. carried out an analysis concerning
how developers perceive code review quality [45], and figured out
that the thoroughness of feedback is the main influencing factor
to code review quality. Those results corroborate with the findings
on the technical aspects empirically studied in [20, 21, 43, 66], thus
constituting an enriched set of technical aspects for investigation.

Paixão et al. found that refactorings’ motivations may emerge
from code review and influence the composition of edits and num-
ber of reviews by analyzing Gerrit reviews [17]. These findings
inspired us towards expanding the knowledge regarding code re-
view aspects in GitHub refactoring-inducing PRs. Pantiuchina et
al. analyzed discussion and commits of merged PRs, containing at
least one refactoring in one of their commits, and found that most
refactorings are triggered from either the original intents of PRs or
discussion [61]. Those findings are motivating since they indicate
the influence that review, at the PR level, has on refactorings. Our
study differs from those previous ones because we distinguished
refactoring-inducing PRs from non-refactoring-inducing PRs by ex-
ploring both reviewing-related aspects and refactoring-inducement.

8 CONCLUDING REMARKS
We investigated technical aspects characterizing refactoring-inducing
PRs based on data mined from GitHub and refactorings detected
by RefactoringMiner. Our results reveal significant differences be-
tween refactoring-inducing and non-refactoring-inducing PRs, and
a substantial number refactoring edits induced by code reviewing.
As future work, we suggest (i) a further investigation of review
comments aiming to identify patterns/practices that could indicate
the refactoring-inducement as a contribution of the code review
process to the code submitted within PRs; and (ii) exploration of
human aspects of reviewers, aiming to enhance the understanding
of refactoring-inducement at the PR level. Replications also are
highly welcome, since they can support the elaboration of a theory
on refactoring-inducing PRs.

An Empirical Study on Refactoring-Inducing Pull Requests ESEM ’21, October 11–15, 2021, Bari, Italy

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their suggestions to improve
this manuscript; and Hugo Addobbati and Ramon Fragoso for their
valuable contributions to the qualitative data analysis. This research
was partially supported by the National Council for Scientific and
Technological Development (CNPq)/Brazil (process 429250/2018-5).

REFERENCES
[1] 2001. Manifesto for Agile Software Development. https://agilemanifesto.org/.

Accessed on: August 2020.
[2] 2019. The Apache Software Foundation Expands Infrastructure with GitHub

Integration. https://t.ly/amPK. Accessed on: June 2020.
[3] 2019. Briefing: The Apache Way. https://www.apache.org/theapacheway/. Ac-

cessed on: June 2020.
[4] 2020. The 2020 State of the Octoverse – GitHub Report. https://octoverse.github.

com/. Accessed on: May 2021.
[5] 2020. The Apache Software Foundation Projects Statistics. https://t.ly/DpAU.

Accessed on: November 2020.
[6] 2020. GitHubDeveloper Guide GraphQLAPI v4. https://developer.github.com/v4/.

Accessed on: June 2020.
[7] 2020. GitHub Developer Guide REST API v3. https://developer.github.com/v3/.

Accessed on: June 2020.
[8] 2020. GitHub Platform. https://github.com. Accessed on: November 2020.
[9] 2020. GitHub Pull Requests. https://git.io/JILTS. Accessed on: June 2020.
[10] 2021. An Exploratory Study on Refactoring-Inducing Pull Requests – Reproduc-

tion Kit. https://doi.org/10.5281/zenodo.5106106.
[11] 2021. RefactoringMiner – A Refactoring Detection Tool. https://github.com/

tsantalis/RefactoringMiner. Accessed on: September 2019.
[12] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining Association

Rules between Sets of Items in Large Databases. ACM SIGMOD Record 22, 2 (June
1993), 207–216. https://doi.org/10.1145/170036.170072

[13] Everton L. G. Alves, Myoungkyu Song, and Miryung Kim. 2014. RefDistiller: A
Refactoring Aware Code Review Tool for Inspecting Manual Refactoring Edits.
In 22nd ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (Hong Kong, China). 751–754. https://doi.org/10.1145/2635868.2661674

[14] Everton L. G. Alves, Myoungkyu Song, Tiago Massoni, Patricia D. L. Machado,
and Miryung Kim. 2018. Refactoring Inspection Support for Manual Refactoring
Edits. IEEE Transactions on Software Engineering 44, 4 (2018), 365–383. https:
//doi.org/10.1109/TSE.2017.2679742

[15] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999.
OPTICS: Ordering Points to Identify the Clustering Structure. In 1999 ACM
SIGMOD International Conference on Management of Data. Philadelphia, USA,
49–60. https://doi.org/10.1145/304182.304187

[16] Howard Anton and Chris Rorres. 2014. Elementary Linear Algebra: Applications
Version (eleventh ed.). Wiley.

[17] M. Paix ao, A. Uchôa, A. C. Bibiano, D. Oliveira, A. Garcia, J. Krinke, and E.
Arvonio. 2020. Behind the Intents: An In-Depth Empirical Study on Software
Refactoring in Modern Code Review. ACM, New York, NY, USA, 125–136.

[18] Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Chal-
lenges of Modern Code Review. In 35th International Conference on Software Engi-
neering. San Francisco, USA, 712–721. https://doi.org/10.1109/ICSE.2013.6606617

[19] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. 2015. Help-
ing Developers Help Themselves: Automatic Decomposition of Code Review
Changesets. In 37th International Conference on Software Engineering. Florence,
Italy, 134–144. https://doi.org/10.1109/ICSE.2015.35

[20] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. 2016.
Investigating Technical and Non-Technical Factors Influencing Modern Code
Review. Empirical Software Engineering 21, 3 (June 2016), 932–959. https://doi.
org/10.1007/s10664-015-9366-8

[21] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-
ern Code Reviews in Open-Source Projects:Which Problems Do They Fix?. In 11th
Working Conference on Mining Software Repositories. Hyderabad, India, 202–211.
https://doi.org/10.1145/2597073.2597082

[22] Fernando Berzal, Ignacio Blanco, Daniel Sánchez, and María-Amparo Vila. 2002.
Measuring the Accuracy and Interest of Association rRules: A New Framework.
Intelligent Data Analysis 6, 3 (Aug. 2002), 221–235. https://doi.org/10.3233/IDA-
2002-6303

[23] Giuseppe Bonaccorso. 2017. Machine Learning Algorithms (1 ed.). Packt Publish-
ing.

[24] Amiangshu Bosu, Jeffrey C. Carver, Christian Bird, Jonathan Orbeck, and Christo-
pher Chockley. 2017. Process Aspects and Social Dynamics of Contemporary
Code Review: Insights from Open Source Development and Industrial Practice
at Microsoft. IEEE Transactions on Software Engineering 43, 1 (Jan. 2017), 56–75.
https://doi.org/10.1109/TSE.2016.2576451

[25] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics
of Useful Code Reviews: An Empirical Study at Microsoft. In 12th Working
Conference on Mining Software Repositories. Florence, Italy, 146–156. https:
//doi.org/10.1109/MSR.2015.21

[26] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. 1997. Dynamic
Itemset Counting and Implication Rules for Market Basket Data. In 1997 ACM
SIGMOD International Conference on Management of Data (Tucson, USA). New
York, NY, USA, 255–264. https://doi.org/10.1145/253260.253325

[27] Neil Burdess. 2010. Starting Statistics: a Short, Clear Guide. SAGE Los Angeles.
187 pages.

[28] M. Emre Celebi and Kemal Aydin. 2016. Unsupervised Learning Algorithms (1st
ed.). Springer Publishing Company, Incorporated.

[29] Scott Chacon and Ben Straub. 2014. Pro Git (2nd ed.). Apress, USA.
[30] Frans Coenen, Graham Goulbourne, and Paul Leng. 2004. Tree Structures for

Mining Association Rules. Data Mining and Knowledge Discovery 8, 1 (Jan. 2004),
25–51. https://doi.org/10.1023/B:DAMI.0000005257.93780.3b

[31] Bradley Efron and Robert J Tibshirani. 1993. An Introduction to the Bootstrap.
Chapman and Hall, London, England.

[32] Michael E. Fagan. 1976. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal 15, 3 (1976), 182–211. https://doi.org/10.
1147/sj.153.0182

[33] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., USA.

[34] Xi Ge, Saurabh Sarkar, and Emerson Murphy-Hill. 2014. Towards Refactoring-
aware Code Review. In 7th International Workshop on Cooperative and Human
Aspects of Software Engineering (Hyderabad, India). 99–102. https://doi.org/10.
1145/2593702.2593706

[35] Xi Ge, Saurabh Sarkar, Jim Witschey, and Emerson Murphy-Hill. 2017.
Refactoring-Aware Code Review. In 2017 Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’17). Raleigh, USA, 71–79. https://doi.org/10.
1109/VLHCC.2017.8103453

[36] Liqiang Geng and Howard J. Hamilton. 2006. Interestingness Measures for Data
Mining: A Survey. Comput. Surveys 38, 3 (Sept. 2006), 9–es. https://doi.org/10.
1145/1132960.1132963

[37] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory
Study of the Pull-Based Software Development Model. In 36th International
Conference on Software Engineering. Hyderabad, India, 345–355. https://doi.org/
10.1145/2568225.2568260

[38] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work
Practices and Challenges in Pull-Based Development: The Contributor’s Per-
spective. In 38th International Conference on Software Engineering. Austin, USA,
285–296. https://doi.org/10.1145/2884781.2884826

[39] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without
Candidate Generation. SIGMOD Record 29, 2 (May 2000), 1–12. https://doi.org/
10.1145/335191.335372

[40] Péter Hegedüs, István Kádár, Rudolf Ferenc, and Tibor Gyimóthy. 2018. Em-
pirical Evaluation of Software Maintainability Based on a Manually Validated
Refactoring Dataset. Information and Software Technology 95 (2018), 313–327.
https://doi.org/10.1016/j.infsof.2017.11.012

[41] Daniel Izquierdo-Cortazar, Lars Kurth, Jesus M. Gonzalez-Barahona, Santiago
Dueñas, and Nelson Sekitoleko. 2016. Characterization of the Xen Project Code
Review Process: An Experience Report. In 13th International Conference on Mining
Software Repositories. Austin, USA, 386–390. https://doi.org/10.1145/2901739.
2901778

[42] Tao Ji, Liqian Chen, Xin Yi, and Xiaoguang Mao. 2020. Understanding Merge
Conflicts and Resolutions in Git Rebases. In 2020 IEEE 31st International Sympo-
sium on Software Reliability Engineering (ISSRE). 70–80. https://doi.org/10.1109/
ISSRE5003.2020.00016

[43] Yujuan Jiang, Bram Adams, and Daniel M. German. 2013. Will My Patch Make
It? And How Fast?: Case Study on the Linux Kernel. In 10th Working Conference
on Mining Software Repositories (San Francisco, USA). 101–110.

[44] Yoshio Kataoka, Takeo Imai, Hiroki Andou, and Tetsuji Fukaya. 2002. A
Quantitative Evaluation of Maintainability Enhancement by Refactoring. In
2002 International Conference on Software Maintenance. USA, 576–585. https:
//doi.org/10.1109/ICSM.2002.1167822

[45] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. 2016. Code Review
Quality: How Developers See It. In 38th International Conference on Software
Engineering. Austin, EUA, 1028–1038. https://doi.org/10.1145/2884781.2884840

[46] Oleksii Kononenko, Tresa Rose, Olga Baysal, Michael Godfrey, Dennis Theisen,
and Bart de Water. 2018. Studying Pull Request Merges: A Case Study of
Shopify’s Active Merchant. In 40th International Conference on Software En-
gineering: Software Engineering in Practice. Gothenburg, Sweden, 124–133. https:
//doi.org/10.1145/3183519.3183542

[47] C. Lebeuf, M. Storey, and A. Zagalsky. 2018. Software Bots. IEEE Software 35, 01
(Jan. 2018), 18–23. https://doi.org/10.1109/MS.2017.4541027

[48] Gwendolyn K. Lee and Robert E. Cole. 2003. From a Firm-Based to a Community-
Based Model of Knowledge Creation: The Case of the Linux Kernel Development.
Organization Science 14, 6 (2003), 633–649. https://doi.org/10.1287/orsc.14.6.633.

https://agilemanifesto.org/
https://t.ly/amPK
https://www.apache.org/theapacheway/
https://octoverse.github.com/
https://octoverse.github.com/
https://t.ly/DpAU
https://developer.github.com/v4/
https://developer.github.com/v3/
https://github.com
https://git.io/JILTS
https://doi.org/10.5281/zenodo.5106106
https://github.com/tsantalis/RefactoringMiner
https://github.com/tsantalis/RefactoringMiner
https://doi.org/10.1145/170036.170072
https://doi.org/10.1145/2635868.2661674
https://doi.org/10.1109/TSE.2017.2679742
https://doi.org/10.1109/TSE.2017.2679742
https://doi.org/10.1145/304182.304187
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2015.35
https://doi.org/10.1007/s10664-015-9366-8
https://doi.org/10.1007/s10664-015-9366-8
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.3233/IDA-2002-6303
https://doi.org/10.3233/IDA-2002-6303
https://doi.org/10.1109/TSE.2016.2576451
https://doi.org/10.1109/MSR.2015.21
https://doi.org/10.1109/MSR.2015.21
https://doi.org/10.1145/253260.253325
https://doi.org/10.1023/B:DAMI.0000005257.93780.3b
https://doi.org/10.1147/sj.153.0182
https://doi.org/10.1147/sj.153.0182
https://doi.org/10.1145/2593702.2593706
https://doi.org/10.1145/2593702.2593706
https://doi.org/10.1109/VLHCC.2017.8103453
https://doi.org/10.1109/VLHCC.2017.8103453
https://doi.org/10.1145/1132960.1132963
https://doi.org/10.1145/1132960.1132963
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/335191.335372
https://doi.org/10.1145/335191.335372
https://doi.org/10.1016/j.infsof.2017.11.012
https://doi.org/10.1145/2901739.2901778
https://doi.org/10.1145/2901739.2901778
https://doi.org/10.1109/ISSRE5003.2020.00016
https://doi.org/10.1109/ISSRE5003.2020.00016
https://doi.org/10.1109/ICSM.2002.1167822
https://doi.org/10.1109/ICSM.2002.1167822
https://doi.org/10.1145/2884781.2884840
https://doi.org/10.1145/3183519.3183542
https://doi.org/10.1145/3183519.3183542
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1287/orsc.14.6.633.24866
https://doi.org/10.1287/orsc.14.6.633.24866

ESEM ’21, October 11–15, 2021, Bari, Italy Coelho, Tsantalis, Massoni, and Alves

24866
[49] Zhi-Xing Li, Yue Yu, Gang Yin, Tao Wang, and Huai-Min Wang. 2017. What

are They Talking about? Analyzing Code Reviews in Pull-Based Development
Model. Journal of Computer Science and Technology 32, 6 (Nov. 2017), 1060–1075.
https://doi.org/10.1007/s11390-017-1783-2

[50] Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian Bird, and
Jacek Czerwonka. 2018. Code Reviewing in the Trenches: Challenges and Best
Practices. IEEE Software 35, 04 (Jul. 2018), 34–42. https://doi.org/10.1109/MS.
2017.265100500

[51] Hassan Mansour and Nikolaos Tsantalis. 2020. Refactoring Aware Commit
Review Chrome Extension. https://t.ly/J3Wr. Accessed on: November, 2020.

[52] Martin N Marshall. 1996. Sampling for Qualitative Research. Family Practice 13,
6 (Dec. 1996), 522–526. https://doi.org/10.1093/fampra/13.6.522

[53] Kenneth O. McGraw and Seok P. Wong. 1992. A Common Language Effect Size
Statistic. Psychological Bulletin 111, 2 (1992), 361–365. https://doi.org/10.1037/
0033-2909.111.2.361

[54] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2014.
The Impact of Code Review Coverage and Code Review Participation on Soft-
ware Quality: A Case Study of the Qt, VTK, and ITK Projects. In 11th Working
Conference on Mining Software Repositories. ACM, Hyderabad, India, 192–201.
https://doi.org/10.1145/2597073.2597076

[55] Ehsan Mirsaeedi and Peter C. Rigby. 2020. Mitigating Turnover with Code Review
Recommendation: Balancing Expertise, Workload, and Knowledge Distribution.
In ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE’20). ACM, 1183–1195. https://doi.org/10.1145/3377811.3380335

[56] William F. Opdyke. 1992. Refactoring Object-Oriented Frameworks. Ph.D. Dis-
sertation. Department of Computer Science, University of Illinois at Urbana-
Champaign. UMI Order No. GAX93-05645.

[57] William F. Opdyke and Ralph E. Johnson. 1990. Refactoring: An Aid in Designing
Application Frameworks and Evolving Object-Oriented Systems. In Proceed-
ings of the Symposium on Object Oriented Programming Emphasizing Practical
Applications. New York, USA.

[58] Matheus Paixão, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and
Mark Harman. 2019. The Impact of Code Review on Architectural Changes. IEEE
Transactions on Software Engineering (2019), 1–1. https://doi.org/10.1109/TSE.
2019.2912113

[59] Matheus Paixão and Paulo H. Maia. 2019. Rebasing in Code Review Con-
sidered Harmful: A Large-Scale Empirical Investigation. In 2019 19th Interna-
tional Working Conference on Source Code Analysis and Manipulation. 45–55.
https://doi.org/10.1109/SCAM.2019.00014

[60] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An
Exploratory Study on the Relationship between Changes and Refactoring. In 25th
International Conference on Program Comprehension. Buenos Aires, Argentina,
176–185. https://doi.org/10.1109/ICPC.2017.38

[61] Jevgenija Pantiuchina, Fiorella Zampetti, Simone Scalabrino, Valentina Pianta-
dosi, Rocco Oliveto, Gabriele Bavota, and Massimiliano Di Penta. 2020. Why
Developers Refactor Source Code: A Mining-Based Study. ACM Transactions
on Software Engineering Methodology 29, 4, Article 29 (Sept. 2020), 30 pages.
https://doi.org/10.1145/3408302

[62] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto
Bacchelli. 2018. Information Needs in Contemporary Code Review. Proceedings
of the ACM on Human-Computer Interaction 2, CSCW, Article 135 (Nov. 2018),
27 pages. https://doi.org/10.1145/3274404

[63] Achyudh Ram, Anand Ashok Sawant, Marco Castelluccio, and Alberto Bacchelli.
2018. What Makes a Code Change Easier to Review: An Empirical Investigation
on Code Change Reviewability. In 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
Lake Buena Vista, USA, 201–212. https://doi.org/10.1145/3236024.3236080

[64] Sebastian Raschka. 2018. MLxtend: ProvidingMachine Learning and Data Science
Utilities and Extensions to Python’s Scientific Computing Stack. Journal of Open
Source Software 3, 24 (2018), 638. https://doi.org/10.21105/joss.00638

[65] Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and
Daniel German. 2012. Contemporary Peer Review in Action: Lessons from
Open Source Development. IEEE Software 29, 6 (Nov. 2012), 56–61. https:
//doi.org/10.1109/MS.2012.24

[66] Peter C. Rigby and Christian Bird. 2013. Convergent Contemporary Software
Peer Review Practices. In 9th Joint Meeting on Foundations of Software Engineering.
Saint Petersburg, Russia, 202–212. https://doi.org/10.1145/2491411.2491444

[67] Peter C. Rigby, Daniel M. German, Laura Cowen, and Margaret-Anne Storey.
2014. Peer Review on Open-Source Software Projects: Parameters, Statistical
Models, and Theory. ACM Transactions on Software Engineering Methodology 23,
4, Article 35 (Sept. 2014), 33 pages. https://doi.org/10.1145/2594458

[68] Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. 2008. Open
Source Software Peer Review Practices: A Case Study of the Apache Server. In
30th International Conference on Software Engineering. ACM, Leipzig, Germany,
541–550. https://doi.org/10.1145/1368088.1368162

[69] Romain Robbes and Michele Lanza. 2007. Characterizing and Understanding
Development Sessions. In 15th IEEE International Conference on Program Compre-
hension. USA, 155–166. https://doi.org/10.1109/ICPC.2007.12

[70] Per Runeson and Martin Höst. 2009. Guidelines for Conducting and Reporting
Case Study Research in Software Engineering. Empirical Software Engineering
14, 2 (April 2009), 131–164. https://doi.org/10.1007/s10664-008-9102-8

[71] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bac-
chelli. 2018. Modern Code Review: A Case Study at Google. In 40th International
Conference on Software Engineering: Software Engineering in Practice. Gothenburg,
Sweden, 181–190. https://doi.org/10.1145/3183519.3183525

[72] Chris Sauer, D. Ross Jeffery, Lesley Land, and Philip Yetton. 2000. The Effective-
ness of Software Development Technical Reviews: A Behaviorally Motivated
Program of Research. IEEE Transactions on Software Engineering 26, 1 (Jan. 2000),
1–14. https://doi.org/10.1109/32.825763

[73] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Pro-
ductivity One Bot at a Time. In 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Seattle, WA, USA). New York, NY, USA,
928–931. https://doi.org/10.1145/2950290.2983989

[74] Gábor Szőke, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. 2014. A Case
Study of Refactoring Large-Scale Industrial Systems to Efficiently Improve Source
Code Quality. In 2014 International Conference on Computational Science and its
Applications (ICCSA’14). Springer International Publishing, Guimarães, Portugal,
524–540. https://doi.org/10.1007/978-3-319-09156-3_37

[75] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012.
How Do Software Engineers Understand Code Changes? An Exploratory Study
in Industry. In 20th ACM SIGSOFT International Symposium on the Foundations of
Software Engineering. Cary, USA, Article 51, 11 pages. https://doi.org/10.1145/
2393596.2393656

[76] Patanamon Thongtanunam, Shane Mcintosh, Ahmed E. Hassan, and Hajimu
Iida. 2017. Review Participation in Modern Code Review. Empirical Software
Engineering 22, 2 (April 2017), 768–817. https://doi.org/10.1007/s10664-016-9452-
6

[77] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2020. RefactoringMiner 2.0.
IEEE Transactions on Software Engineering (2020), 21 pages. https://doi.org/10.
1109/TSE.2020.3007722

[78] Nikolaos Tsantalis, MatinMansouri, LalehM. Eshkevari, DavoodMazinanian, and
DannyDig. 2018. Accurate and Efficient Refactoring Detection in Commit History.
In 40th International Conference on Software Engineering. ACM, Gothenburg,
Sweden, 483–494. https://doi.org/10.1145/3180155.3180206

[79] Dongkuan Xu and Yingjie Tian. 2015. A Comprehensive Survey of Clustering
Algorithms. Annals of Data Science 2 (08 2015), 165–193. https://doi.org/10.1007/
s40745-015-0040-1

[80] Alice Zheng and Amanda Casari. 2018. Feature Engineering for Machine Learning:
Principles and Techniques for Data Scientists (1st ed.). O’Reilly Media, Inc.

[81] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. 2016. Effectiveness of Code Con-
tribution: From Patch-Based to Pull-Request-Based Tools. In 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. Seattle, USA,
871–882. https://doi.org/10.1145/2950290.2950364

https://doi.org/10.1287/orsc.14.6.633.24866
https://doi.org/10.1007/s11390-017-1783-2
https://doi.org/10.1109/MS.2017.265100500
https://doi.org/10.1109/MS.2017.265100500
https://t.ly/J3Wr
https://doi.org/10.1093/fampra/13.6.522
https://doi.org/10.1037/0033-2909.111.2.361
https://doi.org/10.1037/0033-2909.111.2.361
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1145/3377811.3380335
https://doi.org/10.1109/TSE.2019.2912113
https://doi.org/10.1109/TSE.2019.2912113
https://doi.org/10.1109/SCAM.2019.00014
https://doi.org/10.1109/ICPC.2017.38
https://doi.org/10.1145/3408302
https://doi.org/10.1145/3274404
https://doi.org/10.1145/3236024.3236080
https://doi.org/10.21105/joss.00638
https://doi.org/10.1109/MS.2012.24
https://doi.org/10.1109/MS.2012.24
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1145/2594458
https://doi.org/10.1145/1368088.1368162
https://doi.org/10.1109/ICPC.2007.12
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/32.825763
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1007/978-3-319-09156-3_37
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1007/s10664-016-9452-6
https://doi.org/10.1007/s10664-016-9452-6
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1145/2950290.2950364

	Abstract
	1 Introduction
	2 Background
	2.1 Refactoring and Modern Code Review
	2.2 Git-Based Development and Pull Requests
	2.3 Association Rule Learning

	3 Motivating Example
	4 Study Design
	4.1 Mining Merged Pull Requests
	4.2 Refactoring Detection
	4.3 Mining Code Review Data
	4.4 Association Rule Learning
	4.5 Data Analysis

	5 Results and Discussion
	5.1 How Common are Refactoring-Inducing Pull Requests?
	5.2 How Do Refactoring-Inducing Pull Requests Compare to non-Refactoring-Inducing Ones?
	5.3 Is Refactoring Induced by Code Reviews?
	5.4 Implications

	6 Threats to Validity
	7 Related Work
	8 Concluding Remarks
	Acknowledgments
	References

