
Discovering Refactoring Opportunities in

Cascading Style Sheets

Artifact Submission

Davood Mazinanian, Nikolaos Tsantalis, and Ali Mesbah

July 11, 2014

1 Information about the Virtual Machine

We have installed Ubuntu 14.04 LTS (x64) on the Virtual Machine, and every
software that is necessary for running and evaluating our tool, and the R scripts
producing the plots shown in the paper. The VM has been compressed in
a tar.gz file (it can be decompressed using 7-Zip in Windows, or the regular
archive tools in Linux and Mac). The VM is setup to use 4 GB of memory.

The VM can be downloaded from this link and the download size is 1.9 GB.
The user name with admin privileges is fse14 and the password has also been
set to fse14 (the operating system is set to log-in automatically to this account
when you turn it on).

2 Tool overview and configuration

We have developed a tool that analyzes CSS files, finds potential refactoring
opportunities, and applies those refactorings that preserve the presentation of
the web documents. The tool has been developed in Java, and its source code
is publicly available on GitHub1. Additionally, we made a runnable JAR from
the source code, named as css-analyser.jar. In the following subsections we
provide all necessary information for running the tool.

2.1 Modes of operation

Our tool runs in three different modes:

1. Crawl Mode: The most common scenario is to analyze a web applica-
tion that is currently running online. Given the main URL of a website,
our tool opens that webpage in a web browser, downloads the HTML
code and corresponding external CSS files using Crawljax2, analyzes the

1https://github.com/dmazinanian/css-analyser
2http://crawljax.com/

1

https://drive.google.com/folderview?id=0B7ACA9dBjB6jV0NZN1hzQ0t3OEE&usp=drive_web
https://github.com/dmazinanian/css-analyser
http://crawljax.com/

downloaded CSS files, and applies the detected presentation-preserving
refactoring opportunities in the CSS files. As we have described in the pa-
per, the refactoring application is done in a multi-step process. In every
step, the refactoring causing the maximum size reduction is applied and
the resulting CSS file is saved on the hard disk.

2. Folder Mode: This scenario is suitable when we have already used our
tool to crawl a web application in the past and saved the crawled data on
the hard disk (our tool creates a folder hierarchy with the HTML code
and the linked external CSS files for every analyzed DOM state). This
mode essentially skips the crawling phase, and operates directly on a file
path specified by the user that contains the crawled data.

3. No DOM Mode: In this mode, the tool analyzes only the CSS files
in a given folder without taking into account the HTML code making
use of the styles defined in them. This mode is useful when we have
CSS files that we just created and we want to find potential refactoring
opportunities. However, if the CSS files given as input are already used
in some web applications this mode may find refactorings that are
not presentation preserving.

2.2 Running the tool with sample data

The dataset of the websites that have been analyzed in the evaluation section of
the paper are provided on the Desktop inside folder FSE’14-crawled. To run
the tool on this dataset (in the Folder Mode), double click on the script named
run-precrawled, and then click on Run in Terminal. Alternatively, you can
open a Terminal window, and run the command cd Desktop followed by the
command ./run-precrawled. For the sake of demonstration, we included only
10 out of the 38 in total examined web applications. The total execution time
for this script is 8 minutes (the host system we used has an Intel Core i7 CPU
@ 2.70 GHz, and 8 GB of RAM).

When the processing is finished, you can explore the results in the dataset
directory FSE’14-crawled. There is a separate folder for each analyzed web
application (named after the web application) that further contains a sub-folder
named as css.

The css sub-folder contains a folder named as CSS-FILE-NAME.analyse for
each analyzed CSS file of the web application, which includes all refactored CSS
file versions generated in every step of our approach.

We have also created a bash script that can be used to run the tool in
the Crawl Mode, named as run-crawl. By default, it is configured to crawl
http://en.wikipedia.org and store the results of the analysis inside folder
output on the Desktop. The total execution time for this script is 3 minutes
including the crawling phase.

2

http://en.wikipedia.org

2.3 Detailed Tool Guide

The css-analyser.jar file can be used with proper arguments for custom data.
From a terminal window, run this command:

java -Xmx4g -jar PATH/TO/css-analyser.jar ARGUMENTS (1)

As we have set the VM’s memory to be 4GB, we use -Xmx4g. You can increase
this value and also VM’s memory accordingly. ARGUMENTS define the mode of
operation for the tool, as well as additional arguments required to run the tool,
which will be described in the following subsections.

2.3.1 Crawl Mode

This is probably the most popular feature of the tool. You can analyze a single
website by crawling it, or you can provide a list of websites to be analyzed by
the tool.

Single Mode In this mode a single website URL is provided to the tool for
the analysis. For running the tool in this mode, replace ARGUMENTS in
Command 1 with:

--mode:crawl --url:WEBSITE_URL

--outfolder:"PATH/TO/OUTPUT/FOLDER"

Batch Mode In the batch mode, you have to provide a path to a text file
which contains a list of webpage URLs to be analyzed. Every URL must
be written in a separate line. For every URL, a separate folder is created
in the specified output folder. For using the tool in this mode, replace
ARGUMENTS in Command 1 with:

--mode:crawl --urlsfile:"PATH/TO/URLs/FILE"

--outfolder:"PATH/TO/OUTPUT/FOLDER"

An example of such a file exists on the given VM’s Desktop, named sites.

Please note that, existing data in the specified output folder will be overwritten.

2.3.2 Folder Mode

As we explained in Section 2.1, the crawled data that was created using the
Crawl Mode can be used later on by the tool for re-analysis. Again, the tool
can operate in the single or batch mode.

Single Mode A folder path must be provided to the tool. The results will be
written to the same folder and any existing results will be overwritten. In
Command 1, replace ARGUMENTS with:

--mode:folder --infolder:"PATH/TO/INPUT/FOLDER"

3

Batch Mode It is possible to define a text file containing a list of paths to
previously crawled data. In this file, every line is a relative or absolute
path to the crawled data of a web application. For running the tool in
this mode, replace ARGUMENTS in Command 1 with:

--mode:folder --foldersfile:"PATH/TO/FOLDER/FILE"

AN example of such a text file can be found at
∼/Desktop/FSE’14-crawled/FSE’14/folders.

2.3.3 No-DOM Mode

As we mentioned, this mode could be used to analyze CSS files without consid-
ering the HTML code making use of the styles defined in them. However,
this mode may apply refactoring opportunities which are not presentation-
preserving.

You can run this mode by replacing ARGUMENTS in Command 1 with:

--mode:nodom --infolder:"PATH/TO/FOLDER/CONTAINING/CSS/FILES"

Note that you have to provide a folder containing CSS files to the tool. All files
in this folder having a ".css" extension will be analyzed.

2.4 Using tool results

In every mode of operation, when the tool analyzes each CSS file, it creates a
folder named CSS-FILE.analyse in which all intermediate results are stored.
These folders contain the following files:

• formatted.css: This is the formatted version of the CSS file. This file is
useful for achieving readability when we are dealing with real-world CSS
code which might be compressed and thus not human-readable.

• orderDepenedncies.txt All the order dependencies between the selectors
of the original CSS file being analyzed are listed in this file.

• fpgrowth.txt: The results of the FP-Growth algorithm on the CSS files,
as described in the paper.

• fpgrowth-subsumed.txt: A filtered version of the previous file, in a way
that subsets have been removed (please refer to the paper for more infor-
mation).

• typeI, typeII, and typeIII.txt: Each of these files contains the corre-
sponding duplication type instances in the analyzed CSS file. These types
are defined in the paper.

• refactored[k].css: These files (where k is an integer greater than 0) are
the refactored versions of the original analyzed CSS file. Each of them is
created by applying exactly one refactoring opportunity.

4

• dependency-differences[k].txt: These files are created if, after apply-
ing a refactoring at step k, there exist differences between the dependencies
in the oiginal CSS file and refactored[k].css. They contain the type of
dependency violations.

• refactored-reordered[k].css: If, at any step, a reordering of selectors
is needed (because a dependency is violated), the tool will create a file with
this name, which contains the same CSS file as in refactored[k].css,
but the selectors are re-ordered to satisfy all dependencies. All these files
make the tracing of changes in the original CSS file simpler.

• clone types.txt: This file contains the statistics about the clone types
and the clone sets, which are used in the evaluation section of the paper.

When the analysis process is finished, one may obtain the final refactored CSS
files by getting the file refactored[k].css with the highest k. If there exist
some refactored-differences[m].css files, select either the refactored.css
or the refactored-differences.css that has the highest index.

Also, in the folder that contains multiple CSS files, a file named analytics.txt

is created. This is a pipe-separated (“|”) file which contains the global statistics
about all the analyzed CSS files. This file can be fed into any statistical soft-
ware, like R. The columns in this file and their descriptions are shown in Table
1.

Table 1: Columns in the analytics.txt.

Column Description

file name Name of the analyzed CSS file
size Size of the analyzed CSS file (KB)
sloc Source lines of the code, after formatting CSS file
num selectors # selectors in the original CSS file
num base sel # base selectors in the original CSS file
num grouped sel # groped selectors in the original CSS file
num decs Total # declarations in the original CSS file
IOnly, IIOnly and IIIOnly # clone sets containing only a specific clone type in-

stances
I II, II III, I III, I II III # clone sets containing all the specified clone type

instances
number of duplicated declarations # duplicated declarations (of any type)
selectors with duplicated declaration # selectors containing at least one duplicated decla-

ration
longest dup Size of the largest set of duplicated declarations (clone

set)
max sup longest dup # selectors which share the previous clone set
clone sets # distinct clone sets
refactoring opportunities # all possible refactoring opportunities
applied refactorings count # applied refactoring opportunities
number of positive refactorings # applicable refactoring opportunities with positive

effect
size after Size of the final CSS file (KB)
number of order dependencies # order dependencies in the original CSS file
refactoring opportunities
excluded subsumed

refactoring opportunities excluding subsumed ones

positive excluded subsumed # refactoring opportunities excluding subsumed ones
which have positive effect

5

3 Using R scripts

We have also provided some R scripts that were used in the evaluation section
of the paper. They are located on the Desktop of VM, in R-scripts folder.

To run these scripts, you can use R Studio3, an IDE for R, which has already
been installed on the VM. You can open it by clicking on its icon in the Ubuntu
Launcher, or running rstudio in the Terminal. For executing the provided
scripts, from R Studio’s File menu, select open (alternatively press CTRL + O).
Point to the scripts folder, and open the file named load.R. It is crucial to run
this script before running other ones, as it loads the data and necessary packages
to the R environment.

For your convenience, we have created a pipe-separated file by appending
all the analytics.txt files for the analyzed websites (located on the Desktop
and named FSE’14.csv). After opening load.R, press CTRL + ALT + R to run
it. From now on, you can open and run any of the scripts in the R-scripts

folders similarly. Scripts whose name starts with plot are the ones we used
for creating the plots in the evaluation section of the paper. The R script
statistical-model.R makes the statistical model, as described in the paper,
gives a summary of it, and displays its associated plots.

3http://www.rstudio.com/

6

http://www.rstudio.com/

	Information about the Virtual Machine
	Tool overview and configuration
	Modes of operation
	Running the tool with sample data
	Detailed Tool Guide
	Crawl Mode
	Folder Mode
	No-DOM Mode

	Using tool results

	Using R scripts

