
Accurate Method and Variable Tracking in Commit History
Mehran Jodavi

Concordia University
Canada

m_jodavi@encs.concordia.ca

Nikolaos Tsantalis
Concordia University

Canada
nikolaos.tsantalis@concordia.ca

ABSTRACT
Tracking program elements in the commit history of a project is
essential for supporting various software maintenance, comprehen-
sion and evolution tasks. Accuracy is of paramount importance for
the adoption of program element tracking tools by developers and
researchers. To this end, we propose CodeTracker, a refactoring-
aware tool that can generate the commit change history for method
and variable declarations with a very high accuracy. More specifi-
cally, CodeTracker has 99.9% precision and recall in method track-
ing, surpassing the previous state-of-the-art tool, CodeShovel, with
a comparable execution time. CodeTracker is the first tool of its
kind that can track the change history of variables with 99.7% preci-
sion and 99.8% recall. To evaluate its accuracy in variable tracking,
we extended the oracle created by Grund et al. for the evaluation
of CodeShovel, with the complete change history of all 1345 vari-
ables and parameters declared in the 200 methods comprising the
Grund et al. oracle. We make our tool and extended oracle publicly
available to enable the replication of our experiments and facilitate
future research on program element tracking techniques.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Software configuration management and version control systems.

KEYWORDS
commit change history, refactoring-aware source code tracking
ACM Reference Format:
Mehran Jodavi and Nikolaos Tsantalis. 2022. Accurate Method and Variable
Tracking in Commit History. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3540250.3549079

1 INTRODUCTION
Developers routinely track code snippets in the commit history
to facilitate various software engineering tasks. Codoban et al. [6]
surveyed 217 developers to find the motivations behind examining
software history. The most common reasons are to a) recover the
rationale behind a snippet of code, b) find the commits that intro-
duced a bug, c) find who are the knowledgeable peers on certain

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549079

modules and patterns, d) reverse engineer requirements from code,
e) keep up with how the code state evolves, f) apply changes from
other branches into the main branch. The surveyed developers also
expressed some challenges with the usability of existing tools, such
as their inability to detect file moves and renames, and their difficult
configuration (e.g., setting up git bisect to find the commit that
introduced a bug).

1.1 Motivation
Grund et al. [14] conducted a survey with 42 professional software
developers and found that they prefer source code history informa-
tion at the method/function and class level rather than the file level.
Moreover, the tools used by the developers to inspect code history,
such as git log and IntelliJ’s history feature, are unable to find the
commit that actually introduced a method and deal with complex
structural changes (e.g., method moves). LaToza and Myers [26]
surveyed 179 professional software developers at Microsoft and
asked them to list hard-to-answer questions that they had recently
asked about code. Among the collected responses, developers asked
about “Where was this variable last changed?” when debugging,
“When, how, by whom, and why was this code changed or inserted?”
when they want to find the code’s creation in history to understand
its context and motivation, and finally “How has it changed over
time?” when they want to know the entire history of a block of
code, rather than its most recent change. These findings motivate
the need for developing tools that can track change history at a
more fined-grained level, focusing on specific program elements,
such as methods/functions and variables.

Accurate code snippet tracking is also essential in many areas of
software engineering research. Alencar da Costa et al. [9] pointed
out that bug-inducing analysis algorithms (e.g., SZZ [23, 40, 48]) suf-
fer from broken historical links due to file moves and renames. This
further affects the results of defect prediction techniques and em-
pirical studies investigating the characteristics of bug-introducing
changes, which rely on the original SZZ algorithm or its vari-
ants [36]. Shen et al. [37] showed that automatic source code merg-
ing tools often fail to track the changed program elements correctly
due to overlapping refactoring operations, and thus are unable to
perform the auto-merging. The automatic migration of client soft-
ware to newer library and framework versions, requires to track the
updated API program elements (i.e., methods and fields) from the
source to the target version, extract changes in the API signatures,
and adapt accordingly the API references in client’s code [8, 10, 20].
API program element tracking has been performed both at com-
mit level [4, 5] and release level [28, 29]. However, fine-grained
program element tracking at commit level may be more accurate
than release level [3], as comparing directly two releases involves
significantly more noise from overlapping changes performed in
all commits between the two releases.

https://doi.org/10.1145/3540250.3549079
https://doi.org/10.1145/3540250.3549079

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Mehran Jodavi and Nikolaos Tsantalis

The inherent limitations of the line-based text diff and blame
tools, which are predominantly used in the aforementioned soft-
ware engineering tasks, motivated researchers to develop tech-
niques for tracking more accurately program elements, such as
methods/functions and classes, in the commit history of software
projects [12, 14–17, 27, 41, 42]. These techniques deal with changes
that modify the name/signature or location of a program element
and can cause a split in its history. Hora et al. [17] found that 25% of
classes and methods have at least one untracked change (i.e., move,
rename, extract, inline refactoring) in their histories. Despite the
significant accuracy improvements brought by program element
tracking tools, they still have some limitations, which we discuss
in the next subsection.

1.2 Limitations of Current Tracking Tools
CodeShovel [14], is the most accurate tool for uncovering Java
method histories to-date, as it produces complete and accurate
commit change histories for 90% of methods, including 97% of all
method changes. CodeShovel is partially refactoring-aware. It sup-
ports the tracking of methods with changes in their signature (e.g.,
method rename, parameter addition/deletion), methods whose par-
ent file has been moved/renamed, and methods moved to another
file. However, our experiments have shown that it fails to track prop-
erly methods from which a significant part of their body has been
extracted to new methods, as it uses a 75% body similarity thresh-
old to match modified methods, and thus erroneously matches
the original method with the extracted one. The same limitation
holds when methods with a relatively large body are inlined to the
tracked methods. Our approach overcomes this limitation by being
fully refactoring-aware and detecting method extractions/inlines
from/to the tracked methods.

FinerGit [16] and Historage [15] create a finer-grained Git repos-
itory, in which each Java method exists in its own file, and take
advantage of Git mechanisms to track changes on each individual
method’s corresponding file. FinerGit improves on the limited capa-
bility of Historage to track renamed or moved methods, especially
for small methods, by formatting each file to include a single token
from the corresponding method in each line. This formatting makes
Git’s line-based similarity computation mechanism more robust
in matching small methods, which have been renamed or moved.
Pre-processing an entire repository to place each method in its own
file, is computationally expensive and requires additional hard disk
space, which can be prohibitive, especially for large repositories
with many files and a long commit history. As a matter of fact,
Grund et al. [14] found that FinerGit ran out of memory or did not
finish pre-processing within 15 minutes for the four largest repos-
itories in their validation data set. Moreover, this pre-processing
cost did not contribute an accuracy improvement, as the recall of
FinerGit was 65% compared to 90% of CodeShovel [14].

Kim et al. [42] proposed an approach to identify function map-
pings across revisions even when a function’s name changes. Their
approach considers the similarity of the following factors: function
name, incoming and outgoing calls, signature, function body text
diff, complexity metrics and the results of two clone detection tools
(CCFinder and MOSS). The computation of text diff and the execu-
tion of multiple clone detection tools may have a considerable cost,

especially when there are many combinations of deleted and newly
added functions to be compared.

A common limitation of all aforementioned tools is that they
are designed to support only the tracking of methods, and cannot
be extended to support the tracking of other program elements,
such as variables and attributes, whose evolution is also interesting
for the developers. Several studies have shown that developers
frequently refactor variables and attributes, which makes their
tracking in the commit history challenging. Negara et al. [33] found
that Rename Local Variable and Rename Field are among the
most popular refactorings applied by developers. Negara et al. [34]
surveyed 420 developers, who ranked Change Field Type as the
most relevant and applicable transformation that they perform.
Ketkar et al. [22] found that developers who changed the type of a
variable or attribute, they also renamed it in 55% of the examined
instances.

Godfrey and Zou [12] implemented a tool, named Beagle, that
can detect structural changes like rename, move, split, and merge at
function, file, and subsystem level. They rely on origin analysis to
decide if a program entity is renamed or moved and a function call
analysis to discover merges and splits of program entities. Although
Beagle supports the tracking of program elements at different levels
of granularity (i.e., function, file, subsystem), it requires as input
two complete versions of a software system in order to extract static
relations between program entities (e.g., function calls), and calcu-
late various metrics. This makes Beagle impractical for program
element tracking at commit level.

Steidl et al. [41] proposed an incremental origin analysis that
applies some heuristics to find moved, renamed, split, and merged
source code files. In contrast to Beagle, their approach is commit-
based and incrementally reconstructs the history based on clone
information and file name similarity. However, the proposed origin
analysis is limited to files and thus does not support the tracking
of program elements, such as methods, variables and attributes.

Lee et al. [27] implemented a tool named Tempura, enabling code
completion and navigation to operate on multiple revisions of code
at a time. To support these features, Tempura pre-processes the
commit history of a Git repository, and for each added, modified,
renamed, or deleted Java file extracts and records its API informa-
tion (i.e., type, method, field declarations) indexed by the enclosing
type’s fully qualified name. Temporal navigation is performed by
a simple index lookup to list the revisions in which the selected
program element changed. A major limitation of Tempura is that
it requires to pre-process and index the repository under analysis,
which can take several minutes, especially for large repositories.
Moreover, Tempura is not fully refactoring-aware, as it infers only
Class Rename and Move refactorings by leveraging Git’s file re-
name/move detection capability.

Hora et al. [17] introduced the concept of change graph to model
the evolution of classes, methods, and their related changes in the
commit history of a project, and study the phenomenon of untracked
changes. In this graph, each class or method is represented as a
node, while each tracked or untracked change is represented as
an edge between two nodes. However, Hora et al.’s change graph
is limited in modelling only the evolution of classes and methods,
supports a limited number of refactoring types (5 class-level and 6
method-level refactorings), and uses RefDiff [39] for the detection

Accurate Method and Variable Tracking in Commit History ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

of refactoring operations, which has inferior precision, recall and
performance than RefactoringMiner [45, 46]. Finally, the graph
edges model only a small subset of refactoring operations, while
other kinds of changes, such as method body and signature changes
are omitted. Thus, Hora et al.’s change graph cannot be used to find
all commits where a program element changed, i.e., the graph can
provide only the commits in which a program element is involved
in refactorings.

Summary: None of the currently available tools can track the
evolution of fields and local variables. Moreover, the evolution
tracking of methods is limited, as commonly applied refactoring
types, such as Extract Method, are not supported by the
currently available tools. According to Negara et al. [33] and
Tsantalis et al. [45], Extract Method is the most commonly
applied refactoring on methods.

1.3 Contributions
Our solution offers some significant improvements over the previ-
ous state-of-the-art and novel contributions:
(1) We fix all inaccuracies that we found in the oracle provided by

Grund et al. [14] including the evolution history of 200 methods.
Moreover, we extend this oracle by adding the evolution history
of 1345 variables declared in these methods.

(2) We support new kinds of program element changes, such as doc-
umentation and annotation changes, which are not supported
by CodeShovel [14] and other tools.

(3) We improve both precision and recall in method evolution track-
ing over the previous state-of-the-art, CodeShovel [14].

(4) We extend RefactoringMiner [45, 46] with heuristics for per-
forming partial and incremental commit analysis in order to
reduce the execution time. We show that the applied heuristics
achieve an execution time comparable to that of CodeShovel [14]
without jeopardizing precision or recall.

(5) We propose the concept of evolution hooks as a way to model
the change history of methods extracted/inlined from/to the
tracked method of interest, and link the change histories of
relevant program elements.

(6) We are the first to support the evolution tracking of variable
declarations with 99.7% precision and 99.8% recall.

2 APPROACH
This section presents our approach for modelling and reconstruct-
ing the changes applied on program elements, such as method and
variable declarations, in the commit history of a project.

2.1 Program Element Identifier
Each program element 𝑒 is uniquely identified in the commit history
of a software repository with the following tuple:

𝐼𝑒 = (𝑉𝑒 ,𝐶𝑂𝑁𝑒 , 𝑆𝐼𝐺𝑒) (1)
where𝑉𝑒 is the version of 𝑒 corresponding to the SHA-1 Git commit
ID in which a change took place on 𝑒 , 𝐶𝑂𝑁𝑒 is the signature of the
container in which 𝑒 belongs to, and 𝑆𝐼𝐺𝑒 is the signature of 𝑒 .

The typical container structure in Java programs is shown in
the example of Figure 1. The container of a type declaration 𝑐 is

Zull-core/src/main/java
 package com.netflix.zull;
 public class FilterProcessorImpl {
 protected final FilterLoader filterLoader;
 protected ZuulFilter getErrorEndpoint(ZuulMessage msg) {
 SessionContext context = msg.getContext();
 String endpointName = context.getErrorEndpoint();
 ...
 ZuulFilter errorEndpoint = getFilterByNameAndTyper(
 endpointName, FilterType.ENDPOINT);
 if(errorEndpoint == null) {
 String errorStr = "..." + endpointName;
 LOG.error("..." + errorStr, context.getError());
 }
 return errorEndpoint;
 }
 }

Figure 1: Typical container structure in Java programs

the tuple 𝐶𝑂𝑁𝑐 = (𝑆𝑅𝐶𝑐 , 𝑃𝐾𝐺𝑐), where 𝑆𝑅𝐶𝑐 is the source folder
path and 𝑃𝐾𝐺𝑐 is the package name in which 𝑐 belong to. It is
very important to include the source folder path in the container
tuple, as it is possible to have a type declaration with the same
name and package in two different source folders. The container
of a method declaration𝑚 is the tuple 𝐶𝑂𝑁𝑚 = (𝐶𝑂𝑁𝐶𝑚

, 𝑆𝐼𝐺𝐶𝑚
),

where𝐶𝑚 is the type declaration in which𝑚 belong to,𝐶𝑂𝑁𝐶𝑚
and

𝑆𝐼𝐺𝐶𝑚
are the container and signature of 𝐶𝑚 , respectively. Finally,

the container of a variable/parameter declaration 𝑣 is the tuple
𝐶𝑂𝑁𝑣 = (𝐶𝑂𝑁𝑀𝑣

, 𝑆𝐼𝐺𝑀𝑣
), where 𝑀𝑣 is the method declaration

in which 𝑣 is declared, 𝐶𝑂𝑁𝑀𝑣
and 𝑆𝐼𝐺𝑀𝑣

are the container and
signature of𝑀𝑣 , respectively.

The signature of a type/enum/annotation declaration 𝑐 is the
tuple 𝑆𝐼𝐺𝑐 = (𝑁𝑐 , 𝐾𝑐 , 𝑆𝑐 , 𝐼𝑐 ,𝑇𝑐 , 𝐴𝑐 ,𝑉𝑐 , 𝑀𝑐), where 𝑁𝑐 is the name of
𝑐 , 𝐾𝑐 is the kind of 𝑐 , which is a categorical variable taking four
possible values, namely class, interface, enum and@interface (for
annotation type declarations), 𝑆𝑐 is the super-class type of 𝑐 , 𝐼𝑐 is the
list of super-interfaces of 𝑐 , 𝑇𝑐 is the list of type parameters of 𝑐 in
the case that 𝑐 is a parameterized type, 𝐴𝑐 is the list of annotations
of 𝑐 , 𝑉𝑐 is the visibility of 𝑐 , which is a categorical variable taking
four possible values (public, protected, private, or package-private),
and finally 𝑀𝑐 is the list of modifiers of 𝑐 (final, static, abstract).
All elements in the signature of 𝑐 can change during its evolution,
including its kind 𝐾𝑐 .

The signature of a method declaration𝑚 is the tuple 𝑆𝐼𝐺𝑚 =

(𝑁𝑚, 𝑅𝑚, 𝑃𝑚, 𝐸𝑚,𝑇𝑚, 𝐴𝑚,𝑉𝑚, 𝑀𝑚, 𝐵𝑚, 𝐷𝑚), where 𝑁𝑚 is the name
of𝑚, 𝑅𝑚 is the return type of𝑚, 𝑃𝑚 is the ordered parameter list
of𝑚, 𝐸𝑚 is the list of thrown exception types of𝑚, 𝑇𝑚 is the list of
type parameters of𝑚 in the case that𝑚 is a parameterized method,
𝐴𝑚 is the list of annotations of𝑚, 𝑉𝑚 is the visibility of𝑚,𝑀𝑚 is
the list of modifiers of𝑚 (final, static, abstract, synchronized), 𝐵𝑚 is
the hashed value of𝑚’s body string representation, and finally 𝐷𝑚
is the hashed value of𝑚’s Javadoc and inline comments.

The signature of a variable/parameter declaration 𝑣 is the tuple
𝑆𝐼𝐺𝑣 = (𝑁𝑣,𝑇𝑣, 𝐴𝑣, 𝑀𝑣, 𝑆𝑣), where 𝑁𝑣 , 𝑇𝑣 , 𝐴𝑣 ,𝑀𝑣 , 𝑆𝑣 are the name,
type, annotation list, modifier (i.e., final) and scope of 𝑣 , respectively.
𝑆𝑣 includes all statements 𝑣 is visible to, and thus 𝑣 can be referenced
from. The scope of a variable starts from the first statement follow-
ing the declaration of the variable and ends to the last statement
within the block in which the variable is declared. Figure 1 depicts
the statements within the scopes of variables endpointName and
errorStr in the respective rectangular boxes. The scope is essential
for distinguishing variables with the same name and type declared
in different blocks of a method.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Mehran Jodavi and Nikolaos Tsantalis

2.2 Tracking Process
Our solution relies on RefactoringMiner [45] to track a program
element in the commit history of a project, and report all changes
and refactoring operations performed on it. Despite the fast exe-
cution time of RefactoringMiner (44 ms on median and 253 ms on
average per commit), running it on the entire commit history of
the project is computationally inefficient, as the tracked program
element is changing in a relatively small subset of commits, and
furthermore it is not always necessary to analyze all modified files
in a commit to track a single program element, especially in large
commits involving thousands of modified files. Therefore, we devel-
oped some heuristics and extended RefactoringMiner to perform
partial and incremental commit analysis.

Input: Similarly to CodeShovel, our tool is using as input a Git
repository URL, a starting commit SHA-1 ID (or HEAD by default),
the file path containing the program element of interest, the name
of the program element, and the start line number of the program
element’s declaration. Both name and start line are needed to dis-
ambiguate the program element of interest, as it is possible to have
multiple program elements with the same name (i.e., overloaded
methods, identically named variables declared in different blocks
of the same method), and it is possible to declare two or more
variables/parameters on the same line.

Output: A graph in which the nodes represent program elements
with their unique identifiers (i.e., program elements in different
commits), and each edge connecting two nodes includes the list of
changes between the corresponding program elements. The edges
are directed from child commit program elements to the matching
parent commit program elements. In other words, by traversing the
output graph, we visit previous versions of a program element (i.e.,
backward tracking). We decided to model the output as a graph,
because it is possible to have forks. For example, when multiple
methods from different subclasses are pulled up in a single super-
class method, the same program element (i.e., superclass method) is
connected with multiple program elements (i.e., subclass methods).
In addition, we model extracted and inlined methods as branches
in the evolution graph of the main tracked program element, as
we will explain in Section 2.3. To facilitate the comparison with
CodeShovel [14], we can transform the graph output to a list of
commits in which the input program element changed along with
the corresponding kinds of changes in each commit.

InFileChange

BodyChange

MethodContainerChange

MethodMove

MethodSignatureChange

NoChange

MethodAccessModifierChange

DocumentationChange

AbstractChange

InlineMethodTo

Extracted

ExtractMethodFrom

ReturnTypeChange

ExceptionChange

CrossFileChange

Introduced MethodChange

MethodModifierChange MethodAnnotationChange

MethodRename

ParameterChange

Figure 2: Hierarchy of supported change kinds for methods
adopted by CodeShovel [14]. Newly supported change kinds
are highlighted in blue colour.

We adopted and extended the change hierarchy supported by
CodeShovel [14] for method tracking, as shown in Figure 2. The
newly supported change kinds are highlighted in blue colour, and
deal with InFileChange, i.e., the extraction of a new method from
the body of the tracked method, and the inline of a method within
the body of the tracked method. In addition, we support two more
kinds of changes, namely AnnotationChange, and Documentation-
Change. The latter involves changes in the Javadoc or inline com-
ments within the body of the tracked method. Finally, for some
change kinds we have a more fine-grained reporting. For exam-
ple, CodeShovel reports any change(s) in the parameter list of a
method as a single ParameterChange, while we report individu-
ally for each parameter the following fine-grained changes, Add,
Remove, Rename, ChangeType, Merge, Split, and Reorder.

Figure 3 shows the change hierarchy supported by our tool for
variable tracking. InFileChange supports the scenario of a variable
declaration being moved to another method in the same container,
as part of a code fragment extracted to a new method or inlined
from a previously existing method, while CrossFileChange supports
the scenario of a variable declaration belonging to a method moved
to another container.

VariableSignatureChange

VariableChange

AbstractChange

VariableModifierChange

VariableContainerChange

InlinedFromMethod

ExtractedToMethod

VariableInFileChange

Introduced

VariableAnnotationChange

VariableTypeChange VariableRename

VariableCrossFileChange

NoChange

Figure 3: Hierarchy of supported change kinds for variables.

An overview of the tracking process is shown in Figure 4 and
consists of the following steps:

Step #1
git log --follow

filePath

Step #3
Using er signature

omi�ng method’s body
hashed value

Step #2
Using er signature as is

Step #5b
Using RMiner to check

if er itself was moved to
another container

Step #5a
Using RMiner to check

if er container was
renamed or moved

Step #4
Using RMiner to find the
best matching method
with signature changes

input

1. Git repository URL
2. Start commit SHA-1
3. File path
4. Program element name
5. Start line number

For each commit r,
in which filePath

changed, locate e in
parent commit p (ep)

If at any step ep is
located, skip all

subsequent steps
and proceed with
the next commit.

If er is found as introduced
the process terminates.

Figure 4: Overview of the tracking process steps.

Accurate Method and Variable Tracking in Commit History ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Step #1: Given the input file path in which program element 𝑒 is lo-
cated, we first find all commits in the project’s history in which file
path is modified using the command git log --follow filePath.
The --follow option is particularly important, as it continues list-
ing the history of a file even when it gets renamed or moved. The
first step is based on the assumption that if there are no changes
in the file containing 𝑒 in a given commit, then we can skip the
analysis of this commit as 𝑒 has no changes too.

Step #2: For each commit 𝑟 in the subset of commits obtained from
Step #1, we create a partial source code model for 𝑟 and 𝑝 (i.e.,
𝑟 ’s parent commit) by parsing only the source file corresponding
to the input file path. If 𝑟 is the starting commit, then we locate
program element 𝑒 in 𝑟 ’s model using its name and start line, and
construct its signature (𝑠𝑖𝑔𝑒𝑟) and container (𝑐𝑜𝑛𝑒𝑟) as explained in
Section 2.1. If 𝑟 is a subsequent commit, then we have 𝑒𝑟 ’s signature
and container from the previous iteration of the tracking process
(i.e., the matched program element from the previously processed
commit). Then, we attempt to locate a program element with the
same signature and container in 𝑝’s model. If a match is found,
then we link the two program elements (𝑒𝑟 , 𝑒𝑝) with their unique
identifiers and report NoChange. Such a match is possible when
all containers of the tracked program element up to the root have
identical signatures, but the file has changes in other irrelevant
parts. In such case, there is no need to execute RefactoringMiner.
If no match is found, we relax the comparison of signatures, as
explained in the next step.

Step #3: If program element 𝑒 itself or its container is a method
(i.e., 𝑒 is a variable), then we omit 𝐵𝑚 (i.e., the hashed value of the
method’s body string representation) from the method’s signature
tuple, and we attempt to locate a program element with the same
relaxed signature and container in 𝑝’s model.

If a match is found and 𝑒 is a method, we link the two methods
(𝑒𝑟 , 𝑒𝑝) with their unique identifiers and report BodyChange. Such a
match is possible when there are changes in the body of the tracked
method, but its signature remains unchanged. However, we still
need to check if the tracked method is involved in an Extract
Method or Inline Method refactoring. To avoid an unnecessary
execution of RefactoringMiner, we extract all method calls from
𝑒𝑟 and 𝑒𝑝 , respectively, and keep the calls that do not have a caller
expression or have this as a caller expression (i.e., the calls to local
methods). If there are additional calls in 𝑒𝑟 ’s call list, then we need to
check if a local method was extracted from 𝑒𝑝 . If there are additional
calls in 𝑒𝑝 ’s call list, then we need to check if a local method was
inlined to 𝑒𝑟 . In both cases, we execute RefactoringMiner on the
partial source code models for commits 𝑟 and 𝑝 including only
𝑇𝑟 (i.e., the type declaration containing 𝑒𝑟) and 𝑇𝑝 (i.e., the type
declaration containing 𝑒𝑝). For each Extract Method or Inline
Method refactoring returned by RefactoringMiner, we introduce
the extracted/inlined program elements as evolution hooks in the
output graph (Section 2.3 includes more details). However, if the
two method call lists are identical, then there is no need to execute
RefactoringMiner.

If a match is found and 𝑒 is a variable, we link the two variables
(𝑒𝑟 , 𝑒𝑝) with their unique identifiers and report NoChange. Such a
match is possible when 𝑒𝑟 and 𝑒𝑝 still have the same name, type,
modifier, annotations, and statements in their scopes, despite the

changes in the body of their container method. However, if no
matching variable is found, but the container methods 𝑐𝑜𝑛𝑒𝑟 and
𝑐𝑜𝑛𝑒𝑝 are matched, we extract all variables declared within the
body of 𝑐𝑜𝑛𝑒𝑟 and 𝑐𝑜𝑛𝑒𝑝 and omit 𝑆𝑣 (i.e., the list of statements
within the variable’s scope) from all variable signature tuples. If
the two lists of relaxed variable signatures are identical, then we
link 𝑒𝑟 with the corresponding variable 𝑒𝑝 (i.e., the variable having
the same position in the list of variables declared within 𝑐𝑜𝑛𝑒𝑝).
Such a match is possible when 𝑒𝑟 and 𝑒𝑝 still have the same name,
type, modifier, annotations, but there are some syntactic changes
in the statements within the scope of the variables. However, if
the two lists of relaxed variable signatures are not identical, then
we execute RefactoringMiner on the partial source code models
for commits 𝑟 and 𝑝 including only 𝑇𝑟 (i.e., the type declaration
containing 𝑐𝑜𝑛𝑒𝑟) and𝑇𝑝 (i.e., the type declaration containing 𝑐𝑜𝑛𝑒𝑝).
RefactoringMiner will initially match the container methods 𝑐𝑜𝑛𝑒𝑟
and 𝑐𝑜𝑛𝑒𝑝 and perform a thorough analysis after matching the
statements within their bodies, in order to find renamed, inlined,
extracted, split, merged, moved (due to method extraction or inline),
added, deleted, and matched variables. We locate 𝑒𝑟 in the reported
refactorings, link 𝑒𝑟 with the corresponding variable 𝑒𝑝 , and report
all changes found between them.

If by the end of Step #3 no match is found for 𝑒 , this is an indica-
tion that there are major changes in the signature of 𝑒 itself or its
container. This scenario is addressed in the next step.

Step #4: Assuming that 𝑒𝑟 is contained within type declaration 𝑇𝑟
in commit 𝑟 , and exists a type declaration 𝑇𝑝 in commit 𝑝 , where
both 𝑇𝑟 and 𝑇𝑝 have an identical name and container signature,
then we attempt to locate 𝑒𝑝 within 𝑇𝑝 , by executing Refactoring-
Miner on the partial source code models including only 𝑇𝑟 and 𝑇𝑝 .
RefactoringMiner initially matches the method pairs with identical
signatures (i.e., method name and parameter types), and then com-
pares all combinations of the remaining unmatched methods from
𝑇𝑟 with the remaining unmatched methods from𝑇𝑝 to find the best
matching method pairs with changes in their signatures [45].

If 𝑒𝑟 is a method, we check if there exists a pair (𝑒𝑟 , 𝑒𝑝) in the
best matching method pairs. If so, we link the two methods (𝑒𝑟 , 𝑒𝑝)
with their unique identifiers and report all changes in their signa-
tures and bodies. In addition, we add any local methods extracted
from 𝑒𝑝 or inlined to 𝑒𝑟 as evolution hooks in the output graph (Sec-
tion 2.3), as this information is provided by RefactoringMiner when
comparing two type declarations.

If 𝑒𝑟 is a variable, we check if there exists a pair (𝑐𝑜𝑛𝑒𝑟 , 𝑐𝑜𝑛𝑒𝑝)
including the container of 𝑒𝑟 in the best matching method pairs. If
so, we retrieve all variable-related refactorings (i.e., rename, inline,
extract, split, merge, move, add, delete, and match) extracted by
RefactoringMiner for this pair of methods. We locate 𝑒𝑟 in the
reported refactorings, link 𝑒𝑟 with the corresponding variable 𝑒𝑝 ,
and report all changes found between them.

If by the end of Step #4 there is still no match found for program
element 𝑒 , this is an indication that either 𝑒 itself or its container has
been moved to another file, or the type declaration 𝑇𝑟 containing
𝑒𝑟 has been renamed or moved to another package. This scenario
is addressed in the next and final step.

Step #5: At this stage, we keep the partial source code model in-
cluding only𝑇𝑟 for commit 𝑟 , but add all modified and removed files

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Mehran Jodavi and Nikolaos Tsantalis

in commit 𝑝 to 𝑝’s source code model (i.e., we create the complete
source code model for commit 𝑝). Then, we execute Refactoring-
Miner on these two source code models, and collect all reported
refactorings, including Rename Class, Move Class and Move
Method. Step #5 is the most time-consuming step in the track-
ing process, as we include all modified files in commit 𝑝 . During
our experiments, we discovered some commits (e.g., in project
hadoop [30]) in which the developers moved thousands of source
code files from one source folder to another (i.e., the moved files
have a change in their file path, but their contents remain identical),
or simply re-organized the import declarations (e.g., hibernate-
orm [47]), or updated comments, such as the license header (e.g.,
eclipse-jetty [11]). To avoid the unnecessary processing of files and
speed-up the tracking process, we exclude from 𝑝’s source code
model all files with identical contents, and files with only trivial
changes in comments and import declarations [21]. Finally, we sup-
port three scenarios in which additional files need to be included
in 𝑟 ’s source code model to correctly track program element 𝑒 .

(1) Changes on 𝑒 can only be inferred from changes in other
program elements: RefactoringMiner infers signature-level refac-
torings for method pairs not having a body (i.e., interface or ab-
stract methods), or method pairs that could not be matched based
on statement mapping information (i.e., methods with large dif-
ferences in their bodies due to functionality changes) from the
refactorings/changes detected on method pairs having identical
signatures with the unmatched method pairs [45]. The intuition is
that a change in the signature of an abstract or interface method
should propagate to all concrete implementations of that method
(i.e., overriding methods). Assuming that 𝑒𝑟 is contained within
type declaration 𝑇𝑟 in commit 𝑟 , we get the extended superclass
and implemented interface types of 𝑇𝑟 and check for each one of
these types if it corresponds to a modified file in commit 𝑟 to ensure
the super type is a local type declaration of the analyzed system. If
a super type 𝑆𝑟 indeed corresponds to a modified file in commit 𝑟 ,
then we use regular expressions to check if other modified files in
commit 𝑟 extend or implement 𝑆𝑟 and add them to 𝑟 ’s source code
model. This approach enables the inference mechanism of Refac-
toringMiner with the least possible computation cost. For example,
in project OkHttp [49], the method pair synStream—headers in
inner class SpdyConnection.Reader is matched by additionally
including class MockSpdyPeer.InFrame to 𝑟 ’s source code model,
as both classes implement the FrameReader.Handler interface.

(2) 𝑒 is copied into a new file: In some projects, which are li-
braries with public APIs, we found that developers tend to copy the
methods they want to deprecate into a new file, and then declare
the original methods or their container class as @deprecated. Let
us assume that 𝑒𝑟 is copied in type declaration𝑇𝑟 in commit 𝑟 from
type declaration 𝑇 ′

𝑝 in commit 𝑝 . Without additionally including
the original type declaration containing the copied method 𝑇 ′

𝑟 to
𝑟 ’s source code model, then 𝑒𝑟 would be detected as moved from𝑇 ′

𝑝

to 𝑇𝑟 , instead of introduced in 𝑇𝑟 as a new method. To address this
issue we use a regular expression to check if other modified files in
commit 𝑟 include a @deprecated annotation with a @link to 𝑒𝑟 ’s
signature (e.g., copymethods copied from IOUtils to CopyUtils in
project commons-io [31]), or a @deprecated annotation with a ref-
erence to𝑇𝑟 name (e.g., deprecated classes IOUtil and EndianUtil

referring to newly added classes IOUtils and EndianUtils, respec-
tively, in project commons-io [32]) and add them to 𝑟 ’s source code
model. Moreover, we check if other modified files in commit 𝑟 have
the same name as 𝑇𝑟 , but different package (e.g., methods copied
from deprecated class org.apache.commons.lang.NumberUtils
to new class org.apache.commons.lang.math.NumberUtils in
project commons-lang [7]) and add them to 𝑟 ’s source code model.

(3) 𝑒 is extracted to a new file: In this scenario, developers move
some members of an existing class into a new class, and instantiate
the new class into the origin class in order to access the moved
functionality (i.e., Extract Class refactoring), or extend the ori-
gin class in order to inherit the non-moved functionality (i.e., Ex-
tract Subclass refactoring). Let us assume that 𝑒𝑟 is moved in
type declaration 𝑇𝑟 in commit 𝑟 from type declaration 𝑇 ′

𝑝 in com-
mit 𝑝 . Without additionally including the original type declara-
tion containing the moved method 𝑇 ′

𝑟 to 𝑟 ’s source code model,
then 𝑇 ′

𝑝 would be detected as renamed to 𝑇𝑟 (if multiple members
from 𝑇 ′

𝑝 have been moved to 𝑇𝑟), instead of 𝑇𝑟 being extracted
from 𝑇 ′

𝑝 , and 𝑇 ′
𝑟 being matched with 𝑇 ′

𝑝 . To address this issue we
use a regular expression to check if other modified files in com-
mit 𝑟 create an instance of 𝑇𝑟 (e.g., methods moved to extracted
class SourceFileInfoExtractor from class ProjectResolver in
project javaparser [43]), or are extended by𝑇𝑟 (e.g., methods pushed
down to extracted subclass AbstractNestablePropertyAccessor
from origin class AbstractPropertyAccessor in project spring-
framework [35]) and add them to 𝑟 ’s source code model.

Step #5a: Assuming that 𝑒𝑟 is contained within type declaration
𝑇𝑟 in commit 𝑟 , we check all class-related refactorings (i.e., rename,
move class) to find a pair of type declarations (𝑇𝑟 , 𝑇𝑝) involving 𝑇𝑟 .
If such a pair is found, we obtain the corresponding class-level diff
object from RefactoringMiner, which includes all pairs of matched
methods.

If 𝑒𝑟 is a method, then we check if there exists a pair (𝑒𝑟 , 𝑒𝑝) in
the matching method pairs. If so, we link the two methods (𝑒𝑟 , 𝑒𝑝)
with their unique identifiers, and report a FileMove change (i.e., 𝑇𝑟
is renamed/moved to 𝑇𝑝) in addition to any changes in their signa-
tures and bodies. Moreover, we add any local methods extracted
from 𝑒𝑝 or inlined to 𝑒𝑟 as evolution hooks in the output graph (Sec-
tion 2.3), as this information is provided by RefactoringMiner when
comparing two type declarations.

If 𝑒𝑟 is a variable, we check if there exists a pair (𝑐𝑜𝑛𝑒𝑟 , 𝑐𝑜𝑛𝑒𝑝)
including the container of 𝑒𝑟 in the matching method pairs. If so, we
retrieve all variable-related refactorings (i.e., rename, inline, extract,
split, merge, move, add, delete, and match) extracted by Refactor-
ingMiner for this pair of methods. We locate 𝑒𝑟 in the reported
refactorings, link 𝑒𝑟 with the corresponding variable 𝑒𝑝 , and report
aMovedWithMethod change (i.e., 𝑐𝑜𝑛𝑒𝑟 has been relocated to 𝑐𝑜𝑛𝑒𝑝)
in addition to any changes found between the variables.

If by the end of Step #5a there is still no match found for program
element 𝑒 , this is an indication that either 𝑒 itself or its container
has been moved to another file.

Step #5b: Assuming that 𝑒𝑟 is contained within type declaration
𝑇𝑟 in commit 𝑟 , we check all method-related refactorings involving
moves (i.e., move, pull up, push down method) to find a pair of
method declarations (𝑒𝑟 , 𝑒𝑝) if 𝑒𝑟 is a method, or (𝑐𝑜𝑛𝑒𝑟 , 𝑐𝑜𝑛𝑒𝑝) if

Accurate Method and Variable Tracking in Commit History ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

𝑒𝑟 is a variable, involving a move from 𝑇𝑟 . If such a pair is found,
we proceed in the same way as described in Step #5a with the only
difference being the report of a MethodMove change instead of a
FileMove (if 𝑒𝑟 is a method).

If by the end of Step #5b there is still no match found for program
element 𝑒 , we report that 𝑒𝑟 has been Introduced in commit 𝑟 . We
further examine the refactorings reported by RefactoringMiner to
find if 𝑒𝑟 is introduced by an Extract Method refactoring, and
add the method(s) from which 𝑒𝑟 is extracted as evolution hooks in
the output graph (Section 2.3). If a matching program element 𝑒𝑝 is
found throughout Steps #2 to #5, we use its signature (𝑠𝑖𝑔𝑒𝑝) and
container (𝑐𝑜𝑛𝑒𝑝) to continue tracking program element 𝑒 in the
remaining commits obtained from Step #1.

2.3 Change Graph Evolution Hooks
It is very likely that a developer would like to inspect the evo-
lution of program elements which are extracted from or inlined
to the main tracked program element. The intuition behind this
feature is that the extracted/inlined program elements were origi-
nally part or became part of the tracked program element at some
point in its evolution. To support this feature our program element
tracking process (Section 2.2) introduces the extracted/inlined pro-
gram elements as evolution hooks in the change graph of the main
tracked program element. The developer can attach on demand the
evolution sub-graph of an extracted/inlined program element by
expanding the corresponding evolution hook.

Figure 5 shows how we model the evolution of an extracted
program element on the change graph of a tracked program element.
Assuming an Extract Method refactoring takes place in commit
𝑟 , then we create a node for the extracted element 𝑒′𝑟 with a unique
identifier 𝐼𝑒′𝑟 including the commit ID of 𝑟 , since 𝑒′𝑟 starts existing
in commit 𝑟 , its signature (𝑠𝑖𝑔𝑒′𝑟) and container (𝑐𝑜𝑛𝑒′𝑟) constructed
as explained in Section 2.1. When the developer decides to expand
the 𝑒′𝑟 node, we use 𝐼𝑒′𝑟 and start commit 𝑟 as input for our tracking
process, which is executed forwards in this case (i.e., from parent
commit to child commit), and attach the resulting graph on the 𝑒′𝑟
node, as shown in Figure 5.

start commit

erep
extracted from e

p

commit r

evolu�on hook tracked element evolu�on extracted element evolu�on

er
’

Figure 5: Tracking of a program element extracted from the
tracked element.

Figure 6 shows how we model the evolution of an inlined pro-
gram element on the change graph of a tracked program element.
Assuming an Inline Method refactoring takes place in commit
𝑟 , then we create a node for the inlined element 𝑒′𝑝 with a unique
identifier 𝐼𝑒′𝑝 including the commit ID of 𝑝 (i.e., the parent com-
mit of 𝑟), since 𝑒′𝑝 last exists in commit 𝑝 , its signature (𝑠𝑖𝑔𝑒′𝑝) and
container (𝑐𝑜𝑛𝑒′𝑝) constructed as explained in Section 2.1. When

the developer decides to expand the 𝑒′𝑝 node, we use 𝐼𝑒′𝑝 and start
commit 𝑝 as input for our tracking process, and attach the resulting
graph on the 𝑒′𝑝 node, as shown in Figure 6.

start commit

erep

inlin
ed to

e r

commit p

evolu�on hook tracked element evolu�on inlined element evolu�on

ep
’

Figure 6: Tracking of a program element inlined to the
tracked element.

It is also very likely that a developer would like to inspect the
evolution of the method(s) from which the tracked program ele-
ment is extracted. Figure 7 shows how we model the evolution of
a program element, which is the origin of extraction for a tracked
program element. Assuming an ExtractMethod refactoring takes
place in commit 𝑟 , then we create a node for the origin element
𝑒′𝑝 with a unique identifier 𝐼𝑒′𝑝 including the commit ID of 𝑝 (i.e.,
the parent commit of 𝑟), since 𝑒𝑟 was originally contained in 𝑒′𝑝 in
commit 𝑝 , its signature (𝑠𝑖𝑔𝑒′𝑝) and container (𝑐𝑜𝑛𝑒′𝑝) constructed as
explained in Section 2.1. When the developer decides to expand the
𝑒′𝑝 node, we use 𝐼𝑒′𝑝 and start commit 𝑝 as input for our tracking
process, and attach the resulting graph on the 𝑒′𝑝 node, as shown
in Figure 7.

start

er

commit r

evolu�on hook tracked element evolu�on origin element evolu�on

ep
’ er

’

Introduced
ext

ra
cte

d fr
om

e p
’

Figure 7: Tracking of a program element from which the
tracked element is extracted.

3 EVALUATION
In our evaluation, we investigate the following research questions:
RQ1. What is the accuracy of CodeTracker in method tracking and
how does it compare to that of CodeShovel?
RQ2. What is the accuracy of CodeTracker in variable tracking?
RQ3. How does the execution time of CodeTracker compare to
that of CodeShovel?
RQ4. What is the execution time speedup of CodeTracker over the
default operation mode of RefactoringMiner?

3.1 Oracle Update and Extension
Grund et al. [14] created an oracle with the change history of
200 methods from 20 popular open-source project repositories. In
particular, they used 100 of these methods (training set) to optimize
the threshold values used in CodeShovel, until they achieved 100%
training accuracy, and the remaining 100 methods (testing set) to

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Mehran Jodavi and Nikolaos Tsantalis

validate the accuracy of CodeShovel. We decided to use both the
training and testing sets to evaluate the accuracy of our tool and
compare with that of CodeShovel, since Grund et al. spent 100
hours of manual validations to construct their oracle, and thus we
can consider it as very reliable. However, after executing our tool
we found major differences in the commit history of some methods.
After careful inspection, we found out that 18 methods from the
training set and 9 methods from the testing set were matched with
a method extracted from their body at some point in their change
history. As a result, after the commit in which the the originally
tracked method is erroneously matched with an extracted one, the
oracle includes the change history of the extracted method, instead
of the original method. In all these cases, a significant portion of
the originally tracked method (over 75%, or even the entire method
body) is extracted to a new method. Silva et al. [38] found that
developers in many cases extract a large portion or even the entire
body of a method into a new one, either to introduce an alternative
method signature (i.e., different input/output parameter types), or to
deprecate a method that is no longer needed. The original method
remains in the code base and delegates to the extracted one in
order to preserve the public API (i.e., backwards compatibility).
Despite the strong similarity of the extracted method with the
original method, it is not correct to match them, as the original
method still remains in the code base with an identical signature
(i.e., method name and parameter types) in most cases, and thus
should be further tracked. As we discussed in Section 2.3, we model
such cases as branches in the change graph of the tracked method
using evolution hooks, and continue tracking the changes on the
original method. Moreover, we found some cases where the oracle
reports a method being moved to another file (i.e., MethodMove
change), while in reality the type declaration that contains the
method has been renamed or moved, and thus a FileMove change is
the correct one.

We corrected all discrepancies found in the oracle by removing
the false change instances due to incorrect method matches and
adding the new change instances resulting after the correction of
method matches. All removed and new change instances have been
manually validated by inspecting the changes on GitHub. Table 1
provides a detailed overview of the changes being commonwith the
original oracle (C columns), the changes removed from the original
oracle (R columns), and the new changes added to the original oracle
(N columns) for both training and testing sets.

We further extended this oracle with the change history of the
local variables and parameters declared in these 200 methods. Since
their number is large (967 variables in the training set and 378 vari-
ables in the testing set), we decided to follow a semi-automated
approach to construct the oracle, instead of sampling a small num-
ber of variables and manually tracking their changes in the commit
history. We leverage information from the method tracking oracle,
as we know for sure that the commits in which a variable changed
is a subset of the commits in which its container method changed.
Next, for each variable, we execute our tool to perform backward
tracking on the commits in which the container method of the
variable changed. The output is a subset of these commits along
with the changes found in each commit for the tracked variable.
There are two possible termination conditions:

Table 1: Updates in the oracle created by Grund et al. [14]
C: common R: removed N: new

Change Kind

Training set | Testing set |

C R N | C R N |

Body Change 2276 234 29 459 68 26
File Move 238 24 27 160 7 27
Parameter Change 220 30 6 68 19 8
Return Type Change 47 10 4 15 2 1
Modifier Change 44 12 2 16 4 1
Exception Change 40 9 0 5 3 2
Rename 14 8 7 16 6 2
Method Move 19 23 3 14 27 3
Introduced 81 18 19 83 17 17
Documentation Change — — 439 — — 93
Annotation Change — — 42 — — 24

Total 2979 368 578 836 153 204

(1) The variable tracking reaches the commit in which the container
method was introduced. This means that the variable exists
since the introduction of its container method.

(2) The variable is introduced in a commit before reaching the
container method introduction commit. This means that the
variable was added as part of new functionality implemented
in the container method, or because some other method was
inlined to the container method.

We validate all reported changes by manually inspecting the cor-
responding commits. If a reported change is correct, we add it in
the oracle. If a reported change is incorrect, this means that there
was a wrong variable match performed by our tool. In that case,
we manually determine the correct match/change for the tracked
variable, add it in the oracle, and continue the tracking process from
the parent commit for the correctly matched variable. This process
is repeated until we reach one of the two termination conditions for
each tracked variable. Reaching a termination condition guarantees
that we have no missing variable changes in our oracle. The number
of instances per change kind for the variables are shown in Table 2.

Table 2: Number of instances per change kind for variables.

Change Kind Training set Testing set

Introduced 967 378
Rename 145 27
Annotation Change 13 4
Type Change 264 67
Modifier Change 123 52

Total 1512 528

3.2 RQ1: Method Tracking Accuracy
The precision and recall of CodeTracker and CodeShovel was com-
puted at two levels of granularity, namely commit level (i.e., finding
the commits in which a method changed), and change level (i.e., find-
ing the kinds of changes that occurred in the commits in which a
method changed). When there are only changes in inline comments
within the body of a method, CodeShovel reports a BodyChange.

Accurate Method and Variable Tracking in Commit History ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

To ensure a fair comparison, we considered such cases as true posi-
tives, despite being labelled asDocumentationChange in the updated
oracle. Moreover, for any kind of change in the parameter list of
a method, CodeShovel reports a ParameterChange, while Code-
Tracker reports more fine-grained parameter changes, such as Add,
Remove, Rename, ChangeType, Merge, Split, Reorder, Add/Remove
Modifier, and Add/Remove/Modify Annotation. We also considered
the coarse-grained ParameterChange reports as true positives.

Table 3: Method tracking precision/recall at commit level

Dataset Tool TP FP FN Precision Recall

Training CodeShovel 2751 219 74 92.63 97.38
CodeTracker 2825 1 0 99.96 100

Testing CodeShovel 776 68 65 91.94 92.27
CodeTracker 839 0 0 100 100

Overall CodeShovel 3527 287 139 92.48 96.21
CodeTracker 3664 1 0 99.97 100

Based on the results shown in Table 3, our tool, CodeTracker,
has a consistent performance in both training and testing sets at
commit level, with an overall precision of 99.97% and recall of 100%.
On the other hand, CodeShovel has a lower precision and recall
on the testing set compared to the training set, as the similarity
thresholds used internally by CodeShovel were optimized on the
training set. This is an inherent limitation of approaches relying on
code similarity thresholds, as it is very difficult to derive universal
threshold values that can work well for all projects, regardless
of their architectural style, application domain, and development
practices [45].

Table 4: Method tracking precision/recall at change level

Dataset Tool TP FP FN Precision Recall

Training CodeShovel 3412 304 145 91.82 95.92
CodeTracker 3557 3 0 99.92 100

Testing CodeShovel 915 136 125 87.06 87.98
CodeTracker 1037 3 3 99.71 99.71

Overall CodeShovel 4327 440 270 90.77 94.13
CodeTracker 4594 6 3 99.87 99.93

Based on the results shown in Table 4, our tool, CodeTracker,
has a similar performance at change level as commit level, with
an overall precision of 99.87% and recall of 99.93%. On the other
hand, at change level, CodeShovel has a decrease of around 2%
in both precision and recall compared to the commit level results.
The FPs and FNs of CodeShovel are mainly due to mismatching
18 methods from the training set and 9 methods from the testing
set with a method extracted from their body at some point in their
change history. As a result, the majority of the FPs are body and
signature changes found in the history of these 27 mismatched
extracted methods, while the majority of the FNs are body and
signature changes missed from the remaining history of the 27
original methods, in addition to missed changes in method an-
notations and Javadoc, which are not supported by CodeShovel.
The 3 FPs for CodeTracker in the training set are due to a merge

method scenario in project javaparser [43], for which Refactoring-
Miner reports methods solve(Node) and solveField(Node) to be
moved from ProjectResolver to the same method solve(Node)
in class SourceFileInfoExtractor. Although the reported moves
are technically correct, we considered one of them as the correct
one, since our method evolution model supports only one-to-one
method mappings, similar to CodeShovel [14]. The remaining FPs
and FNs for CodeTracker are MoveMethod changes misreported as
FileMove by RefactoringMiner, because the child commit model did
not include the origin file of the method (i.e., the three heuristics
applied in Step #5 did not match the origin file of the method).

RQ1 finding: CodeTracker exhibits 99.9% precision and recall
at both commit and change levels. Compared to the previous
state-of-the-art tool, CodeTracker achieves an increase of +7.5%
in precision and +3.8% in recall at commit level, and an increase
of +9.1% in precision and +5.8% in recall at change level.

3.3 RQ2: Variable Tracking Accuracy
Table 5 shows the precision and recall of CodeTracker at commit
and change level. RefactoringMiner detects variable-related refac-
torings based on the AST node replacements found in the pairs of
mapped variable declaration statements/expressions between two
code fragments (i.e., the body of a method in the child and parent
commits). It further verifies the matched variable declaration pairs
by examining the presence of statement mappings referencing the
paired variables within the variable scopes. As a result, the FPs are
due to incorrect statement mappings, while the FNs are due to its
inability to match some statement pairs.

Table 5: Variable tracking precision/recall for CodeTracker

Dataset Level TP FP FN Precision Recall

Training Commit 1459 2 1 99.86 99.93
Change 1510 4 2 99.74 99.87

Testing Commit 512 1 0 99.81 100
Change 527 3 1 99.43 99.81

Overall Commit 1971 3 1 99.85 99.95
Change 2037 7 3 99.66 99.85

For example, in project JavaParser [44], variable parent is erro-
neously matched with variable variableDeclarator in the parent
commit (false positive), because the initializers of the two variable
declarations are identical, despite having a different type and name.
However, variable parent is extracted as a temporary variable from
variableDeclarator’s initializer in the child commit, in order to
throw an exception if the parent reference is not an instance of the
VariableDeclarator type. Therefore, variable parent is a newly
introduced variable, and the pair of variableDeclarator variables
is not matched (false negative). Although RefactoringMiner is able
to detect Extract Variable refactorings, this particular instance
was missed. In project Hadoop [13], variable resourceSecondsMap
is erroneously matched with variable memorySeconds in the parent
commit (false positive), instead of being detected as a newly in-
troduced variable (false negative). However, the developer merged

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Mehran Jodavi and Nikolaos Tsantalis

two long variables, namely memorySeconds and vcoreSeconds
into the resourceSecondsMap, which is a map data structure with
Long values.

RQ2 finding: CodeTracker exhibits 99.8% precision and 99.9%
recall at commit level, and 99.7% precision and 99.8% recall at
change level in tracking the change history of variables.

3.4 RQ3: Execution Time
Figure 8 shows the execution time of CodeTracker and CodeShovel
for tracking the entire change history of eachmethod in the training
and testing sets, respectively (the y-axis is in logarithmic scale and
the units are in milliseconds). Each tool was executed separately
on the same machine with the following specifications: Intel Core
i7-8565U CPU @ 1.80GHz × 8, 16 GB DDR3 memory, 512 GB SSD,
Ubuntu 20.04.2 LTS operating system, and Java 11.0.11 x64 with a
maximum of 8GB Java heap memory (i.e., -Xmx8g). All 20 project
repositories from the training and testing sets were locally cloned
before running the tools. For each tool, we recorded the total time
taken for tracking a method in its entire commit change history,
including the time taken for parsing the source code files and detect-
ing the changes on the tracked method in each commit, using the
System.nanoTime Java method. On median, CodeShovel processes
the commit change history of a method in 2 seconds, while our tool,
CodeTracker, takes 3.35 seconds (1.675 times slower). On average,
CodeShovel processes the commit change history of a method in 3.4
seconds, while CodeTracker takes 5.5 seconds (1.62 times slower).
However, CodeTracker has a more consistent performance between
the training and testing sets with similar median and average exe-
cution times. This consistent performance can be explained from
the observation that CodeTracker has a slightly higher percentage
of commits reaching Step #5 (i.e., the most time consuming step of
the tracking process) in the testing set compared to the training set
(6.13% vs. 4.24% as shown in Table 6), but at the same time has a
much higher percentage of commits whose processing completes in
Step #2 (i.e., the least time consuming step of the tracking process)
in the testing set compared to the training set (82.33% vs. 67.52%
as shown in Table 6). In other words, the testing set includes more
commits in which the tracked method is moved or its container
type declaration is moved/renamed, but at the same time has much
more commits in which the tracked method remains unchanged.

Table 6: Average percentage of commits processed in each
step of the tracking process.

Dataset Step #2 Step #3 Step #4 Step #5

Training 67.52% 24.21% 3.99% 4.24%

Testing 82.33% 8.66% 2.82% 6.13%

On the other hand, CodeShovel has a longer average execution
time on the testing set compared to the training set, despite the
fact that the testing set has shorter commit change histories (34.5
and 47.5 commits on median and average, respectively) than the
training set (73 and 86.3 commits on median and average, respec-
tively). More specifically, CodeShovel has a larger than 10 seconds
execution time for 10 methods of the testing set (8 of which are

from project intellij-community), and only one method of the
training set. Typically, the methods with longer execution times
have multiple commits in which their container type declaration is
moved/renamed (CodeShovel’s phase 3), or the tracked method is
moved (CodeShovel’s phase 4). Both phases 3 and 4 are the most
time consuming for CodeShovel, as it widens its search to consider
all other files that were modified in a commit.

RQ3 finding: Despite CodeTracker having a slower execution
time than CodeShovel (1.6 times on median and average), both
tools have execution times within the same order of magnitude.
The median and average execution time of CodeTracker is 3.35
and 5.5 seconds, respectively, which is acceptable given the con-
siderably increased precision and recall over CodeShovel, the
additional computation of evolution hooks (Section 2.3), and the
parallel tracking of the local variables and parameters declared
in the tracked method (i.e., CodeTracker can perform parallel
tracking of a method and its variable declarations without an
additional computational cost). The achieved execution time can
warrant applications in both research (e.g., large-scale MSR and
software evolution studies) and practice (e.g., blame-like track-
ing of method and variable change history within the context
of maintenance and program comprehension tasks).

3.5 RQ4: Speedup over RefactoringMiner
To evaluate the speedup achieved through steps 2–5 of our ap-
proach, we executed RefactoringMiner with its default operation
mode (i.e., with two complete source code models as input, includ-
ing all modified/added files in commit 𝑟 and all modified/removed
files in commit 𝑝) right after step #1. The median execution time
of RefactoringMiner for tracking the entire change history of a
method was 8.76 and 12.29 seconds, while the average execution
time was 32.83 and 42.41 seconds on the training and testing sets,
respectively. Therefore, the speedup of our approach is between 2.6–
3.4 times on the median execution time, and between 5.9–7.8 times
on the average execution time. This is achieved without jeopardiz-
ing accuracy, as almost the same precision and recall is achieved in
both ways (with the exception of very few false positives/negatives
discussed in Section 3.2).

RQ4 finding: CodeTracker achieves a speedup of 2.6–3.4 times
on the median, and between 5.9–7.8 times on the average execu-
tion time over the default operation mode of RefactoringMiner
with a negligible effect on precision and recall. This shows that
the heuristics applied throughout steps 2–5 are very effective.

4 LIMITATIONS AND THREATS TO VALIDITY
Language specificity: CodeTracker depends on RefactoringMiner
2.0 [45] for the detection of refactorings and changes on the tracked
program element, which limits its applicability to Java programs.
However, recently there have been efforts to extend Refactoring-
Miner for supporting other programming languages, e.g., Python [1,
2] and Kotlin [24, 25]. With respect to CodeTracker, supporting an-
other language would simply require to adjust the program element
signature definitions and the regular expressions used in Step #5 to
the characteristics and structure of this particular language.

Accurate Method and Variable Tracking in Commit History ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Mean = 5532.00
Median = 3307.0

Max = 73158

Mean = 2990.77
Median = 1998.5

Max = 14380

Mean = 5427.73
Median = 3642.0

Max = 38356

Mean = 3871.05

Median = 1998.0

Max = 31654

Mean = 5479.86
Median = 3354.0

Max = 73158

Mean = 3430.91
Median = 1998.0

Max = 31654

Tracker_train Shovel_train Tracker_test Shovel_test Tracker_all Shovel_all

100

1000

10k

100k

Figure 8: Execution time in milliseconds of CodeTracker and CodeShovel on training and testing sets.

Internal validity: Themain threat to the internal validity is related
to the construction of the oracle used for evaluating the precision
and recall. To mitigate this threat we relied on an existing oracle,
which was constructed by Grund et al. [14] after manually validat-
ing the change history for 200 methods (100 hours of validation).
We further corrected all discrepancies found in the oracle caused by
27 methods (18 from the training and 9 from the testing set) being
mismatched with a method extracted from their body, by manually
inspecting and validating all new change instances that resulted
after correcting the method matches. Moreover, we validated and
added two new kinds of method changes (i.e., annotation and docu-
mentation changes) that were not previously supported. Based on
the updated (and highly reliable) method history oracle, we con-
structed the change history of the variables declared in the body
of these 200 methods following a semi-automated approach, as ex-
plained in Section 3.1, and manually inspecting all change instances.
Overall, the manual validation effort for correcting and extending
the Grund et al. oracle was approximately two person-months.

External validity:Our experiments were conducted on a relatively
small dataset including the change history of 200 methods from 20
different open source projects (i.e., 10 methods from each project),
which might affected the generalizability of our findings. However,
we decided to rely on the same dataset used for the evaluation of
CodeShovel [14] to ensure a fair comparison between the two tools.
Moreover, constructing an oracle from scratch with methods from
other projects would involve a lot of manual effort and probably
include more errors from incorrect validations. On the other hand,
our extended oracle was essentially validated by two independent
research groups, which makes it more reliable.

Regarding change kinds, we considered all possible changes that
can be performed on method and variable declarations with the
exception of changes in the initializer of variables, as the number
of changes for this particular kind was very large, and manually
inspecting all of them was prohibitive.

5 CONCLUSIONS AND FUTUREWORK
In summary, the main conclusions and lessons learned are:
(1) CodeTracker has high accuracy in tracking both methods (99.9%

precision/recall) and variables (99.7% precision, 99.8% recall).
(2) The proposed heuristics for setting up RefactoringMiner to

perform partial commit analysis, resulted in an execution time
comparable to that of CodeShovel (i.e., CodeTracker is slower
by 1.67 times on median and 1.62 times on average).

(3) The speedup over the default operation mode of Refactoring-
Miner is 2.6–3.4 times on the median, and between 5.9–7.8
times on the average execution time. Despite this considerable
speedup, almost the same precision and recall is achieved in both
ways with the exception of very few false positives/negatives.
A natural extension for CodeTracker is to support attribute track-

ing, since RefactoringMiner detects attribute-related refactorings in
a similar way as variable-related refactorings. Furthermore, given
the remarkable performance of RefactoringMiner in variable track-
ing (i.e., mapping variable declaration statements), we are confident
that a similar approach for tracking code blocks (e.g., loops, try-
catch blocks) would be also effective. RefactoringMiner applies a
bottom-up statement mapping process, where it first matches the
leaf statements (i.e., statements without a body) and then uses this
information to match the parent composite statements (i.e., state-
ments with a body). This approach leads to more accurate compos-
ite statement mappings. Moreover, RefactoringMiner supports the
mapping of traditional for loops and if conditionals to Java Stream
API calls (e.g., forEach(), map(), filter(), collect()), and tra-
ditional try-catch blocks with the newer try-with-resources
statement. This would allow to track the commit change history of
loops and try-catch blocks, even if they have evolved into newer
language constructs. Since developers are interested in the change
history of methods [14], it would make sense to provide more
fine-grained historical information about specific code blocks with
changes in their body and conditional expressions.

Finally, we plan to conduct a usability study with professional
developers by providing CodeTracker’s functionality as an IDE
plugin (the tool is currently available as a Java library). It is particu-
larly interesting to investigate under which maintenance scenarios
developers find the tool useful, and what kind of historical infor-
mation (e.g., the kind of structural change, the author and time of
the change, the commit message and linked issues) they find more
relevant to their needs in each scenario.

6 DATA AVAILABILITY STATEMENT
We make the source code of CodeTracker and our oracle publicly
available [18, 19] to enable the replication of our experiments and
facilitate future research on program element tracking techniques.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their insightful
and constructive feedback to improve the work. This research was
partially supported by NSERC grant RGPIN2018-05095.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Mehran Jodavi and Nikolaos Tsantalis

REFERENCES
[1] Hassan Atwi, Bin Lin, Nikolaos Tsantalis, Yutaro Kashiwa, Yasutaka Kamei,

Naoyasu Ubayashi, Gabriele Bavota, and Michele Lanza. 2021. PyRef. https:
//github.com/PyRef/PyRef

[2] Hassan Atwi, Bin Lin, Nikolaos Tsantalis, Yutaro Kashiwa, Yasutaka Kamei,
Naoyasu Ubayashi, Gabriele Bavota, and Michele Lanza. 2021. PyRef: Refactoring
Detection in Python Projects. In Proceedings of the 21st IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2021). 136–141.
https://doi.org/10.1109/SCAM52516.2021.00025

[3] Aline Brito, Marco Tulio Valente, Laerte Xavier, and Andre Hora. 2020. You broke
my code: understanding the motivations for breaking changes in APIs. Empirical
Software Engineering 25 (2020), 1458–1492. https://doi.org/10.1007/s10664-019-
09756-z

[4] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. APIDiff:
Detecting API breaking changes. In IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER ’18). IEEE Computer Society, Los
Alamitos, CA, USA, 507–511. https://doi.org/10.1109/SANER.2018.8330249

[5] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. Why and
how Java developers break APIs. In IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER ’18). IEEE Computer Society, Los
Alamitos, CA, USA, 255–265. https://doi.org/10.1109/SANER.2018.8330214

[6] Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey. 2015.
Software History under the Lens: A Study onWhy and How Developers Examine
It. In Proceedings of the 2015 IEEE International Conference on SoftwareMaintenance
and Evolution (ICSME ’15). IEEE Computer Society, USA, 1–10. https://doi.org/
10.1109/ICSM.2015.7332446

[7] Stephen Colebourne. 2021. Apache Commons-Lang. https://github.com/apache/
commons-lang/commit/2d06a7ce8

[8] Bradley E. Cossette and Robert J. Walker. 2012. Seeking the Ground Truth:
A Retroactive Study on the Evolution and Migration of Software Libraries. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foun-
dations of Software Engineering (Cary, North Carolina) (FSE ’12). Association
for Computing Machinery, New York, NY, USA, Article 55, 11 pages. https:
//doi.org/10.1145/2393596.2393661

[9] Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta
Coelho, and Ahmed Hassan. 2017. A Framework for Evaluating the Results of
the SZZ Approach for Identifying Bug-Introducing Changes. IEEE Transactions
on Software Engineering 43, 7 (July 2017), 641–657. https://doi.org/10.1109/TSE.
2016.2616306

[10] DannyDig and Ralph Johnson. 2006. HowDoAPIs Evolve? A Story of Refactoring.
J. Softw. Maint. Evol. 18, 2 (March 2006), 83–107. https://doi.org/10.1002/smr.328

[11] Joakim Erdfelt. 2021. Eclipse Jetty. https://github.com/eclipse/jetty.project/
commit/41ed9f29f

[12] Michael W. Godfrey and Lijie Zou. 2005. Using Origin Analysis to Detect Merging
and Splitting of Source Code Entities. IEEE Transactions on Software Engineering
31, 2 (Feb. 2005), 166–181. https://doi.org/10.1109/TSE.2005.28

[13] Sunil Govindan. 2021. Hadoop. https://github.com/apache/
hadoop/commit/dae65f3bef8ffa34d02a37041f1dfdfeeee91845#diff-
d805bcb4a1f9cddb2b92a6b5982fc41beae91419c8a1252d71af9b65f6e3d43cR1005

[14] Felix Grund, Shaiful Alam Chowdhury, Nick Bradley, Braxton Hall, and Reid
Holmes. 2021. CodeShovel: Constructing Method-Level Source Code Histories.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)
(ICSE ’21). 1510–1522. https://doi.org/10.1109/ICSE43902.2021.00135

[15] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. 2011. Historage: Fine-Grained
Version Control System for Java. In Proceedings of the 12th International Workshop
on Principles of Software Evolution and the 7th Annual ERCIM Workshop on Soft-
ware Evolution (Szeged, Hungary) (IWPSE-EVOL ’11). Association for Computing
Machinery, New York, NY, USA, 96–100. https://doi.org/10.1145/2024445.2024463

[16] Yoshiki Higo, Shinpei Hayashi, and Shinji Kusumoto. 2020. On tracking Java
methods with Git mechanisms. Journal of Systems and Software 165 (2020), 110571.
https://doi.org/10.1016/j.jss.2020.110571

[17] Andre Hora, Danilo Silva, Marco Tulio Valente, and Romain Robbes. 2018. As-
sessing the Threat of Untracked Changes in Software Evolution. In Proceedings of
the 40th International Conference on Software Engineering (Gothenburg, Sweden)
(ICSE ’18). Association for Computing Machinery, New York, NY, USA, 1102–1113.
https://doi.org/10.1145/3180155.3180212

[18] Mehran Jodavi and Nikolaos Tsantalis. 2022. CodeTracker. https://doi.org/10.
5281/zenodo.7080276

[19] Mehran Jodavi and Nikolaos Tsantalis. 2022. CodeTracker source code and oracle.
https://github.com/jodavimehran/code-tracker

[20] Puneet Kapur, Bradley Cossette, and Robert J. Walker. 2010. Refactoring Refer-
ences for Library Migration. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications (Reno/Tahoe,
Nevada, USA) (OOPSLA ’10). Association for Computing Machinery, New York,
NY, USA, 726–738. https://doi.org/10.1145/1869459.1869518

[21] David Kawrykow andMartin P. Robillard. 2011. Non-Essential Changes in Version
Histories. In Proceedings of the 33rd International Conference on Software Engi-
neering (Waikiki, Honolulu, HI, USA) (ICSE ’11). Association for Computing Ma-
chinery, New York, NY, USA, 351–360. https://doi.org/10.1145/1985793.1985842

[22] Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2020. Understanding Type
Changes in Java. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for ComputingMa-
chinery, New York, NY, USA, 629–641. https://doi.org/10.1145/3368089.3409725

[23] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James Jr. Whitehead. 2006.
Automatic Identification of Bug-Introducing Changes. In 21st IEEE/ACM Interna-
tional Conference on Automated Software Engineering. IEEE Computer Society,
Washington, DC, USA, 81–90. https://doi.org/10.1109/ASE.2006.23

[24] Zarina Kurbatova. 2021. KotlinRMiner. https://github.com/JetBrains-Research/
kotlinRMiner

[25] Zarina Kurbatova, Vladimir Kovalenko, Ioana Savu, Bob Brockbernd, Dan An-
dreescu, Matei Anton, Roman Venediktov, Elena Tikhomirova, and Timofey
Bryksin. 2021. RefactorInsight: Enhancing IDE Representation of Changes in
Git with Refactorings Information. In 2021 36th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2021). IEEE Computer Society, Los
Alamitos, CA, USA, 1276–1280. https://doi.org/10.1109/ASE51524.2021.9678646

[26] Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-Answer Questions about
Code. InWorkshop on Evaluation and Usability of Programming Languages and
Tools (Reno, Nevada) (PLATEAU ’10). Association for Computing Machinery, New
York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/1937117.1937125

[27] Yun Young Lee, Darko Marinov, and Ralph E. Johnson. 2015. Tempura: Temporal
Dimension for IDEs. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. 212–222. https://doi.org/10.1109/ICSE.2015.42

[28] Mehran Mahmoudi and Sarah Nadi. 2018. The Android Update Problem: An
Empirical Study. In 15th International Conference on Mining Software Repositories
(Gothenburg, Sweden) (MSR ’18). ACM, New York, NY, USA, 220–230. https:
//doi.org/10.1145/3196398.3196434

[29] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of
API Stability and Adoption in the Android Ecosystem. In IEEE International Con-
ference on Software Maintenance (ICSM ’13). IEEE Computer Society, Washington,
DC, USA, 70–79. https://doi.org/10.1109/ICSM.2013.18

[30] Arun C Murthy, Christopher Douglas, Devaraj Das, Greg Roelofs, Jeffrey Naisbitt,
Josh Wills, Jonathan Eagles, Krishna Ramachandran, Luke Lu, Mahadev Konar,
Robert Evans, Sharad Agarwal, Siddharth Seth, Thomas Graves, and Vinod Kumar
Vavilapalli. 2021. Hadoop. https://github.com/apache/hadoop/commit/dbecbe5df

[31] Jeremias Märki. 2021. Apache Commons-IO. https://github.com/apache/
commons-io/commit/6a1bb4d53

[32] Jeremias Märki. 2021. Apache Commons-IO. https://github.com/apache/
commons-io/commit/7748ed364

[33] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny
Dig. 2013. A Comparative Study of Manual and Automated Refactorings. In
Proceedings of the 27th European Conference on Object-Oriented Programming
(Montpellier, France) (ECOOP’13). Springer-Verlag, Berlin, Heidelberg, 552–576.
https://doi.org/10.1007/978-3-642-39038-8_23

[34] Stas Negara, Mihai Codoban, Danny Dig, and Ralph E. Johnson. 2014. Mining
Fine-Grained Code Changes to Detect Unknown Change Patterns. In Proceedings
of the 36th International Conference on Software Engineering (Hyderabad, India)
(ICSE 2014). Association for Computing Machinery, New York, NY, USA, 803–813.
https://doi.org/10.1145/2568225.2568317

[35] Stéphane Nicoll. 2021. Spring Framework. https://github.com/spring-projects/
spring-framework/commit/2dc674f35

[36] Giovanni Rosa, Luca Pascarella, Simone Scalabrino, Rosalia Tufano, Gabriele
Bavota, Michele Lanza, and Rocco Oliveto. 2021. Evaluating SZZ Implementations
Through a Developer-Informed Oracle. In Proceedings of the 43rd International
Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 436–447.
https://doi.org/10.1109/ICSE43902.2021.00049

[37] Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianxiang
Wang. 2019. IntelliMerge: A Refactoring-aware Software Merging Technique.
Proc. ACM Program. Lang. 3, OOPSLA, Article 170 (Oct. 2019), 28 pages. https:
//doi.org/10.1145/3360596

[38] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We Refac-
tor? Confessions of GitHub Contributors. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (Seattle,
WA, USA) (FSE 2016). Association for Computing Machinery, New York, NY, USA,
858–870. https://doi.org/10.1145/2950290.2950305

[39] Danilo Silva and Marco Tulio Valente. 2017. RefDiff: Detecting Refactorings in
Version Histories. In 14th International Conference on Mining Software Repositories
(Buenos Aires, Argentina) (MSR ’17). IEEE Press, Piscataway, NJ, USA, 269–279.
https://doi.org/10.1109/MSR.2017.14

[40] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When Do
Changes Induce Fixes?. In International Workshop on Mining Software Repositories.
ACM, New York, NY, USA, 1–5. https://doi.org/10.1145/1082983.1083147

https://github.com/PyRef/PyRef
https://github.com/PyRef/PyRef
https://doi.org/10.1109/SCAM52516.2021.00025
https://doi.org/10.1007/s10664-019-09756-z
https://doi.org/10.1007/s10664-019-09756-z
https://doi.org/10.1109/SANER.2018.8330249
https://doi.org/10.1109/SANER.2018.8330214
https://doi.org/10.1109/ICSM.2015.7332446
https://doi.org/10.1109/ICSM.2015.7332446
https://github.com/apache/commons-lang/commit/2d06a7ce8
https://github.com/apache/commons-lang/commit/2d06a7ce8
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1109/TSE.2016.2616306
https://doi.org/10.1109/TSE.2016.2616306
https://doi.org/10.1002/smr.328
https://github.com/eclipse/jetty.project/commit/41ed9f29f
https://github.com/eclipse/jetty.project/commit/41ed9f29f
https://doi.org/10.1109/TSE.2005.28
https://github.com/apache/hadoop/commit/dae65f3bef8ffa34d02a37041f1dfdfeeee91845#diff-d805bcb4a1f9cddb2b92a6b5982fc41beae91419c8a1252d71af9b65f6e3d43cR1005
https://github.com/apache/hadoop/commit/dae65f3bef8ffa34d02a37041f1dfdfeeee91845#diff-d805bcb4a1f9cddb2b92a6b5982fc41beae91419c8a1252d71af9b65f6e3d43cR1005
https://github.com/apache/hadoop/commit/dae65f3bef8ffa34d02a37041f1dfdfeeee91845#diff-d805bcb4a1f9cddb2b92a6b5982fc41beae91419c8a1252d71af9b65f6e3d43cR1005
https://doi.org/10.1109/ICSE43902.2021.00135
https://doi.org/10.1145/2024445.2024463
https://doi.org/10.1016/j.jss.2020.110571
https://doi.org/10.1145/3180155.3180212
https://doi.org/10.5281/zenodo.7080276
https://doi.org/10.5281/zenodo.7080276
https://github.com/jodavimehran/code-tracker
https://doi.org/10.1145/1869459.1869518
https://doi.org/10.1145/1985793.1985842
https://doi.org/10.1145/3368089.3409725
https://doi.org/10.1109/ASE.2006.23
https://github.com/JetBrains-Research/kotlinRMiner
https://github.com/JetBrains-Research/kotlinRMiner
https://doi.org/10.1109/ASE51524.2021.9678646
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1109/ICSE.2015.42
https://doi.org/10.1145/3196398.3196434
https://doi.org/10.1145/3196398.3196434
https://doi.org/10.1109/ICSM.2013.18
https://github.com/apache/hadoop/commit/dbecbe5df
https://github.com/apache/commons-io/commit/6a1bb4d53
https://github.com/apache/commons-io/commit/6a1bb4d53
https://github.com/apache/commons-io/commit/7748ed364
https://github.com/apache/commons-io/commit/7748ed364
https://doi.org/10.1007/978-3-642-39038-8_23
https://doi.org/10.1145/2568225.2568317
https://github.com/spring-projects/spring-framework/commit/2dc674f35
https://github.com/spring-projects/spring-framework/commit/2dc674f35
https://doi.org/10.1109/ICSE43902.2021.00049
https://doi.org/10.1145/3360596
https://doi.org/10.1145/3360596
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1109/MSR.2017.14
https://doi.org/10.1145/1082983.1083147

Accurate Method and Variable Tracking in Commit History ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

[41] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. 2014. Incremental Origin
Analysis of Source Code Files. In Proceedings of the 11th Working Conference
on Mining Software Repositories (Hyderabad, India) (MSR 2014). Association for
Computing Machinery, New York, NY, USA, 42–51. https://doi.org/10.1145/
2597073.2597111

[42] Sunghun Kim, Kai Pan, and E. J. Whitehead. 2005. When functions change their
names: automatic detection of origin relationships. In 12th Working Conference on
Reverse Engineering (WCRE’05). 143–152. https://doi.org/10.1109/WCRE.2005.33

[43] Federico Tomassetti. 2021. JavaParser. https://github.com/javaparser/javaparser/
commit/37f93be64

[44] Federico Tomassetti. 2021. JavaParser. https://github.com/javaparser/
javaparser/commit/427dd53b9ebedcb0bdb687007eb0faf2de734df4#diff-
d4545a64b742a6d7b072135d10643c1d309ecaa62daa9450ba05dc68985543aaR477

[45] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2022. RefactoringMiner
2.0. IEEE Transactions on Software Engineering 48, 3 (2022), 930–950. https:
//doi.org/10.1109/TSE.2020.3007722

[46] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian,
and Danny Dig. 2018. Accurate and Efficient Refactoring Detection in Commit
History. In Proceedings of the 40th International Conference on Software Engineering
(Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA, 483–494. https:
//doi.org/10.1145/3180155.3180206

[47] John Verhaeg. 2021. Hibernate ORM. https://github.com/hibernate/hibernate-
orm/commit/8c806d361

[48] Chadd Williams and Jaime Spacco. 2008. SZZ Revisited: Verifying when Changes
Induce Fixes. InWorkshop on Defects in Large Software Systems (Seattle, Washing-
ton). ACM, New York, NY, USA, 32–36. https://doi.org/10.1145/1390817.1390826

[49] JesseWilson. 2021. OkHttp. https://github.com/square/okhttp/commit/a91124b6d

https://doi.org/10.1145/2597073.2597111
https://doi.org/10.1145/2597073.2597111
https://doi.org/10.1109/WCRE.2005.33
https://github.com/javaparser/javaparser/commit/37f93be64
https://github.com/javaparser/javaparser/commit/37f93be64
https://github.com/javaparser/javaparser/commit/427dd53b9ebedcb0bdb687007eb0faf2de734df4#diff-d4545a64b742a6d7b072135d10643c1d309ecaa62daa9450ba05dc68985543aaR477
https://github.com/javaparser/javaparser/commit/427dd53b9ebedcb0bdb687007eb0faf2de734df4#diff-d4545a64b742a6d7b072135d10643c1d309ecaa62daa9450ba05dc68985543aaR477
https://github.com/javaparser/javaparser/commit/427dd53b9ebedcb0bdb687007eb0faf2de734df4#diff-d4545a64b742a6d7b072135d10643c1d309ecaa62daa9450ba05dc68985543aaR477
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://github.com/hibernate/hibernate-orm/commit/8c806d361
https://github.com/hibernate/hibernate-orm/commit/8c806d361
https://doi.org/10.1145/1390817.1390826
https://github.com/square/okhttp/commit/a91124b6d

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Limitations of Current Tracking Tools
	1.3 Contributions

	2 Approach
	2.1 Program Element Identifier
	2.2 Tracking Process
	2.3 Change Graph Evolution Hooks

	3 Evaluation
	3.1 Oracle Update and Extension
	3.2 RQ1: Method Tracking Accuracy
	3.3 RQ2: Variable Tracking Accuracy
	3.4 RQ3: Execution Time
	3.5 RQ4: Speedup over RefactoringMiner

	4 Limitations and Threats to Validity
	5 Conclusions and Future Work
	6 Data Availability Statement
	Acknowledgments
	References

