
A Framework for
Collaborative Software Development Analytics

Eleni Stroulia
Computing Science Department

University of Alberta
Edmonton, AB T6G 2E8

Canada
stroulia@ualberta.ca

Fabio Rocha
Computing Science Department

University of Alberta
Edmonton, AB T6G 2E8

Canada
fabiorocha@ualberta.ca

Nikolaos Tsantalis
Computing Science Department

University of Alberta
Edmonton, AB T6G 2E8

Canada
tsantalis@ualberta.ca

ABSTRACT
In this position paper we describe a conceptual model for
analyzing collaborative software development for the
purposes of (a) providing to the developers information
which can effectively increase their awareness of their
project status and support their development tasks, and (b)
supporting its more effective management.

Author Keywords
Collaborative software development; Analytics; Software
cost

ACM Classification Keywords
D.2.6 Programming Environments: Integrated environments
D.2.9 Management: Cost estimation
D.2.9 Management: Life cycle
D.2.9 Management: Productivity
D.2.9 Management: Programming teams

General Terms
Management; Human Factors; Economics

INTRODUCTION AND BACKGROUND
We are noticing two interesting trends relevant to
collaborative software development (CSD). On one hand,
the software community recognizes the need for a new
generation of IDEs designed to flexibly support
collaborative and, to a large extent, distributed software
development. On the other, we are observing the increased
adoption of web2.0 communication tools by software
developers, who communicate within their teams and with
the community at large through a variety of informal
channels on matters relevant to their tasks. We believe that
this “tension” poses a substantial challenge (and, at the
same time, offers an exciting opportunity) to
conceptualizing the tool support for CSD in the future.

In our group, we have been long working on analyzing the

artifacts involved in CSD, for the purpose of extracting
higher-level knowledge that would help increase the team’s
awareness of the project. In this task, we had two
methodological objectives: (i) to be inclusive (by
considering data produced by the variety of tools used by
the team); and (ii) to link the collected data through a
variety of technologies.

To that end, in the context of the WikiDev project, we have
worked on two major tasks with the objective of developing
a lightweight, wiki-based CSD platform. First, we
developed a suite of APIs for ingesting data into a common
MediaWiki-based repository and corresponding adapters
for external systems to export this data through the above
APIs [1]. Second, we developed a suite of analyses for
extracting explicit and implicit relations on the basis of
which to link the collected data, including references to
common software artifacts and team members, as well as
implicit relations between developers and their tasks,
captured in natural-language text used in informal
communications [2].

There have been several similar projects aiming to collect
and cross-reference data1, from independent tools, about
software products and processes. For example, DrProject
[3] is a web-based software project management portal that
integrates a revision history viewer with issue tracking,
mailing list management, a wiki, and other features.
Atlassian JIRA2 is a project-tracking tool for bugs/defects
that allows to link issues to related source code, plan agile
development, monitor activity and report on project status.
Finally, Hackystat3 is an open source framework for
collection and analysis of software development process
and product data, where the users (developers) have to
install sensors (plug-ins) to their development tools (e.g.,

1 Due to the restrictions on the length of this position paper,
we do not discuss here a number of relevant projects
focusing on repository analyses. Instead, we choose to
eclectically mention only a few whose objectives were
primarily to serve as integration middleware among a
variety of tools.
2 http://www.atlassian.com/software/jira/overview
3 http://code.google.com/p/hackystat/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW’12, February 11–15, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

http://www.atlassian.com/software/jira/overview
http://code.google.com/p/hackystat/

CVS, eclipse, Atlassian JIRA). The sensors collect data and
send it to a centralized repository (accessible through web-
services) to form higher-level abstractions of the data.
Hackystat’s analyses mainly concern metrics such as test
coverage, complexity, coupling, commit frequency and
size.

More recently we have started to work with Jazz RTC [4], a
comprehensive CSD tool that offers, on one hand, seamless
integration with Eclipse, and, on the other, a web-based
user interface for integration with other tools. In this
context, the data-collection challenge is, to a great extent,
resolved, but the problem of a CSD linked-data framework
is still relevant, and in fact a core task in the future research
CSD agenda. In this position paper, we put forward a
general conceptual framework for analyzing CSD for the
dual purpose of providing to the developers information
which can effectively increase their awareness of their
project status and support their development tasks, and of
supporting its more effective management. This latter
objective, we believe, is essential for understanding the
nature of costs associated with CSD, and the corresponding
opportunities for value creation.

A PROPOSAL FOR A CSD ANALYTICS FRAMEWORK
The most mature proposal to date for a “software analytics
framework” has been “the 46 questions” that developers
ask, empirically identified by Fritz and Murphy [5].

Our proposal, discussed in this position paper, is developed
from a theoretical (not an empirical) perspective and aims
to make “collaboration” a first-class dimension of analysis.
At the same time, given how comprehensive the above
framework is, we have tried to classify the 46 questions
above in terms of our proposal in order to enable the
seamless migration of any work framed around these
questions in our framework.

Our framework proposes the analysis of CSD in terms of
(a) the people involved, (b) the products of their work, and
(c) the process they follow, similar to the PCANS model,
proposed by Krackhardt and Carley [6] to represent the
structure of an organization through the different
relationships among three domain elements (individuals,
tasks and resources). Following this concept, we have
conceived a comprehensive set of analyses, each of which
is viewed as linking data within or across these dimensions.
In particular, we are interested in analyses that focus on
cost-value questions.

For example, considering People vs. People analyses, we
are interested in comparing the activity of selected team
members over time, and in aggregating related activities
within a team. In the context of such analyses, the other
dimensions (products and process) become analysis facets:
for example, in aggregating related activities, we may want
to distinguish these activities in terms of the (types of)
products they affect (design models vs. production code vs.

test code vs. communication artifacts) or in terms of the
process steps in which they occur.

In the context of People vs. Products analyses, we wish to
recognize the role of individuals with respect to specific
software artifacts (designer, owner developer, and tinkerer)
and the amount and the quality of the overall contribution
of an individual to the project as a whole.

In the context of People vs. Process analyses, we wish to
examine the activities of individuals, and the role they play,
in the project lifecycle, the extent to which these roles
conform with the “official” process model adopted by the
project, and the relative information content of the process-
specific communication and coordination artifacts (like
“stories” in agile development or work-items in RUP as
implemented in Jazz) vs. the variety of informal
communication channels increasingly adopted by
developers like automatic status updates [7].

In the Products vs. Products analyses, the relations among
software artifacts become the subject of examination. These
may be “reflection” relations, where implementation-level
artifacts are compared against higher-level (requirements-
and design-level) artifacts for the purpose of establishing
(non-)conformance or traceability links or assessing
progress. When products of the same type are examined,
dependency relations are identified, whether direct and
explicit (such as “calls” or “uses”) or hidden and implicit
(such as “co-evolves” [8]). Adopting a People facet in these
analyses, we can examine the properties of the social
networks implied by the relations among products upon the
developers working with these products.

Under the umbrella of Products vs. Process analyses, we
see investigations of how the number and types of products
manipulated by the team, as well as the amount and types of
changes they suffer, evolves over time in the course of the
project. Analysis aimed at recognizing whether a phase is
fundamentally one of feature expansion or one of
refactoring [9], [10]. Again adopting a People facet, we can
examine the relative amount and type of contributions the
various team members make.

Finally, under the Process vs. Process analyses, we are
interested in analyzing the conformance of the team’s
activities to their officially adopted process, based on how
they coordinate these activities through formal and informal
communication channels. The use of informal
communication channels is a relatively recent phenomenon,
and we anticipate a variety of uses for them in support of
more traditional processes.

The Cost Dimension
We believe that the above framework can be quite useful in
organizing the various CSD analyses that we envision will
be the subject of research in the near- and medium-term
future. However, the types of analyses that, we believe, will
become particularly relevant in the context of CSD, are

those examining issues of cost and value, in ways that may
lead to management decisions.

For example, People vs. People communication analyses
may focus on estimating organizational costs and
supporting decisions on how to distribute a team physically
or how to adapt the process to better support and simplify
communication and coordination. People vs. Products
analyses for monitoring productivity may also drive
estimates of organizational costs and decisions on how to
assign team members to working on specific products.
Finally, Products vs. Products analyses for monitoring
software quality can drive software cost estimates and guide
maintenance vs. redevelopment decisions.

SUMMARY
Future CSD will be quite varied in terms of the numbers of
people involved in a project at any point in time, the types
of software and coordination/communication artifacts
manipulated by the team members, and the process models
adopted by these teams and their variations. The systematic
analysis of CSD, especially for cost-value trade-off analysis
and decision making, will benefit from a systematic
framework such as the one we propose here.

ABOUT THE AUTHORS
Eleni Stroulia has been interested in software-development
analyses, both from a process and from a product
perspective. Starting with JDEvAn [11] and CVSChecker
[12], following with WikiDev and WebDiff [13] and more
recently with Jazz, she is interested in supporting the
management of the software-development process based on
information extracted from the project’s history.

Fabio Rocha is a Master’s student at the University of
Alberta. His research interests include collaborative
software systems and business concerns of software
development. He is currently working on the development
of analytics services and visualizations for the IBM Jazz
collaborative software delivery platform.

Nikolaos Tsantalis is a Postdoctoral Fellow at the
Department of Computing Science, University of Alberta,
Canada. His research interests include design pattern
mining, identification of refactoring opportunities, and
design evolution analysis. He is currently working on the
development of differencing services for heterogeneous
software artifacts and their integration in Web2.0 systems.

ACKNOWLEDGEMENTS
This work was funded by NSERC, AITF (Alberta Innovates
Technology Futures) and IBM. The authors are also
grateful to Marios Fokaefs, Diego Serrano, Maryam Hasan
and Ken Bauer for their contributions to the work that led to
these ideas.

REFERENCES
1. Bauer, K., Fokaefs, M., Tansey, B. and Stroulia, E.

WikiDev 2.0: Discovering Clusters of Related Team
Artifacts. In Proc. of the 2009 Conference of the Center
for Advanced Studies on Collaborative Research
(CASCON '09), 174-187.

2. Hasan, M., Stroulia, E., Barbosa, D. and Alalfi, M.
Analyzing natural-language artifacts of the software
process. In Proc. of the 2010 IEEE International
Conference on Software Maintenance (ICSM '10), 1-5.

3. Reid, K.L. and Wilson, G.V. DrProject: A Software
Project Management Portal to Meet Educational Needs.
In Proc. of the 38th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE '07), 317-321.

4. Cheng, L.-T., Hupfer, S., Ross, S. and Patterson, J.
Jazzing up Eclipse with Collaborative Tools. In Proc. of
the 2003 OOPSLA workshop on eclipse technology
eXchange (eclipse '03), 45-49.

5. Fritz, T. and Murphy G.C. Using Information Fragments
to Answer the Questions Developers Ask. In Proc. of
the 32nd ACM/IEEE International Conference on
Software Engineering (ICSE '10), vol. 1, 175-184.

6. Krackhardt D. and Carley K. M. A PCANS Model of
Structure in Organizations. In International Symposium
on Command and Control Research and Technology,
1998, 113-119.

7. King, A. and Lyons, K. Automatic Status Updates in
Distributed Software Development. In Proc. of the 2nd
International Workshop on Web 2.0 for Software
Engineering (Web2SE '11), 19-24.

8. Xing, Z. and Stroulia, E. Understanding the Evolution
and Co-evolution of Classes in Object-oriented Systems.
International Journal of Software Engineering and
Knowledge Engineering, vol. 16, 1 (2006), 23-52.

9. Schofield, C., Tansey, B., Xing, Z. and Stroulia, E.
Digging the Development Dust for Refactorings. In
Proc. of the 14th IEEE International Conference on
Program Comprehension (ICPC '06), 23-34.

10. Xing, Z. and Stroulia, E. Analyzing the Evolutionary
History of the Logical Design of Object-Oriented
Software. IEEE Transactions on Software Engineering,
vol. 31, 10 (2005), 850-868.

11. Xing, Z. and Stroulia, E. The JDEvAn Tool Suite in
Support of Object-Oriented Evolutionary Development.
In Companion of the 30th International Conference on
Software Engineering (ICSE Companion '08), 951-952.

12. Liu, Y., Stroulia, E. and Erdogmus, H. Understanding
the Open-Source Software Development Process: a Case
Study with CVSChecker. In Proc. of the First
International Conference on Open Source Systems (OSS
'05), 154-161.

13. Tsantalis, N., Negara, N. and Stroulia, E. WebDiff: A
Generic Differencing Service for Software Artifacts. In
Proc. of the 27th IEEE International Conference on
Software Maintenance (ICSM '11), 586-589.

	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	General Terms

	INTRODUCTION AND BACKGROUND
	A PROPOSAL FOR A CSD ANALYTICS FRAMEWORK
	The Cost Dimension

	SUMMARY
	ABOUT THE AUTHORS
	ACKNOWLEDGEMENTS
	REFERENCES

