
R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2011, LNCS 7680, pp. 159–196, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Differencing UML Models: A Domain-Specific
vs. a Domain-Agnostic Method

Rimon Mikhaiel1, Nikolaos Tsantalis2, Natalia Negara1,
Eleni Stroulia1, and Zhenchang Xing3

1 Computing Science Department, University of Alberta, Edmonton, AB, T6G 2E8, Canada
2 Department of Computer Science and Software Engineering, Concordia University, Montreal,

QC, H3G 1M8, Canada
3 Department of Computer Science, School of Computing, National University of Singapore,

13 Computing Drive, Singapore 117417
{rimon,negara,stroulia}@ualberta.ca,

tsantalis@cse.concordia.ca, xingzc@comp.nus.edu.sg

Abstract. Comparing software artifacts to identify their similarities and
differences is a task ubiquitous in software engineering. Logical-design
comparison is particularly interesting, since it can serve multiple purposes. When
comparing the as-intended vs. the as-implemented designs, one can evaluate
implementation-to-design conformance. When comparing newer code versions
against earlier ones, one may better understand the development process of the
system, recognize the refactorings it has gone through and the qualities
motivating them, and infer high-order patterns in its history. Given its
importance, design differencing has been the subject of much research and a
variety of algorithms have been developed to compare different types of software
artifacts, in support of a variety of different software-engineering activities. Our
team has developed two different algorithms for differencing logical-design
models of object-oriented software. Both algorithms adopt a similar conceptual
model of UML logical designs (as containment trees); however, one of them is
heuristic whereas the other relies on a generic tree-differencing algorithm. In this
paper, we describe the two approaches and we compare them on multiple
versions of an open-source software system.

Keywords: UML, software differencing, software evolution.

1 Introduction

Differencing of software artifacts is a task essential to a variety of software-
engineering activities, and a multitude of its instances can be found in a range of well-
recognized areas of software-engineering research. Alternative designs are compared
to each other in order to recognize their differences and assess their relative merits.
Design models are compared against code in order to evaluate implementation-to-
design conformance. Newer code versions are compared against earlier ones when
submitted to a shared repository, in order to recognize potentially conflicting edits and
properly merge them. Code fragments are compared against each other to recognize

160 R. Mikhaiel et al.

“clones”, i.e., lexically and syntactically similar code that could potentially be
abstracted into a single “named” and reusable code structure. Component interfaces
are matched against queries in order to enable the discovery and selection of reusable
components.

In this paper, we explore the problem of object-oriented design differencing.
Recognizing the differences between two object-oriented designs is essential for the
following tasks.

(a) To understand (at a high level of abstraction) the evolution between two versions
of a software system, one may reverse engineer the corresponding design
versions and compare the as-implemented design of the software.

(b) To analyze the long-term evolution of a system and its constituent components
and recognize interesting restructuring and expansion phases, one can repeatedly
perform the above analysis over a sequence of subsequent software versions.

(c) To recognize the progress of the development team towards implementing the
software design, one may again reverse engineer the design of the code base and
compare it against the intended design of the system.

(d) Finally, to merge out-of-sync versions of software, one has to compare the merge
candidates.

We have chosen to focus on design-level differencing because of several reasons.
First, design provides a high level, yet information rich, abstraction of the software
implementation, essential for understanding complex systems. Second, there is a
standard representation of object-oriented design (namely UML and XMI), which is
available in the context of many development environments, thus enabling the study
of our methods and tools in a broad range of contexts. Third, high-level abstraction
makes possible the comparison of design documents (high-level description) against
source code (low-level implementation). Finally, adopting logical UML models as the
underlying representation of the artifacts to be compared, we have the option of
expanding our study to other types of UML models representing requirements (use
cases), dynamic behaviors (sequence diagrams) and physical architecture (component
diagrams).

Having committed to a particular representation of software, the question becomes
how to design an algorithm for comparing instances of this representation. In principle,
there are two different methodological approaches to addressing this question. On one
hand, one can design an algorithm specific to the adopted representation, aware of the
semantics of the modeled elements. The advantages of such domain-specific
approaches are that they usually produce intuitive results, since the understanding of
the representation semantics is “embedded” in the algorithm design, and their process
is usually straightforward to follow and explain. Their major disadvantage is that they
are not easy to generalize or to migrate to other representations of software. The
alternative is to map the software representation to a more abstract representation (such
as strings, trees, or graphs) for which differencing algorithms already exist and to
configure these more general algorithms to somehow take into account the semantics
of the domain. This approach is clearly more generalizable than domain-specific
methods, since one can imagine multiple mappings of the same algorithm to multiple
software representations; however it is likely to suffer from unintuitive results since the

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 161

complex semantics of the domain have to be abstracted into a set of few elements and
their relations.

Our team has been exploring these two alternative methodologies in the context of
the PhD theses of Zhenchang Xing [28] and Rimon Mikhaiel [10]. In this paper, we
describe in detail VTracker, and summarize our understanding of the relative
advantages and disadvantages of two algorithms through an extensive comparison on
multiple version of an open-source system. The paper is organized as follows. We
first present UMLDiff, a domain-specific algorithm for differencing UML class
models. Next, we discuss VTracker, an extended tree-differencing algorithm that can
be systematically configured with a domain-specific cost function in order to be
applied to tree-like representations in different domains. In presenting the two
algorithms, we comparatively discuss their workflow and assumptions with respect to
the cost functions they use to compare the various software elements. Next, we
present an extensive experiment where both algorithms have been applied to
recognize the changes that occurred in multiple successive versions of an open-source
system in order to compare their accuracy, efficiency and scalability. Finally, we
review a set of use cases where this type of differencing can be applied for a variety
of maintenance activities.

2 UMLDiff

UMLDiff is an algorithm designed to compare software systems, in terms of their
UML logical models. The algorithm takes as input two directed graphs, G(V, E),
corresponding to the models of the systems to be compared. The vertex set, V, of each
such graph contains the elements of the system’s UML logical model; the edge set, E,
contains the relations among them. The model elements and the possible relations
among them are shown in Tables 1 and 2.

Given two versions of a software system and the graphs G1(V1, E1) and G2(V2, E2),
corresponding to their UML logical-design models, UMLDiff essentially maps the
two model graphs by computing the intersection and margin sets between (V1, V2) and
(E1, E2). More specifically, (V1–V2) and (E1–E2) are the sets of removed model
elements and relations, (V1∩V2) and (E1∩E2) are the sets of the mapped elements and
relations, and (V2–V1) and (E2–E1) are the sets of the added model elements and
relations.

UMLDiff is a heuristic tree-differencing algorithm, relying on the fact that the
composition relations (see Table 3) induce a spanning tree on the directed graph of
the system’s UML logical model. The UML semantics guarantees that all model
elements can be visited by traversing the containment hierarchy, starting from the top-
level subsystem (corresponding to the system as a whole), and that the children of
their containing parent are unique in terms of their names. There are four logical
levels in which all types of model elements belong (see Table 3): subsystem
(including the top-level subsystem) > package > (class, interface) > (attribute,
operation). Note that the model elements of type subsystem, package, class and
interface may contain same-type elements.

162 R. Mikhaiel et al.

Table 1. Types of Elements in the UML Logical Model

Metaclass
<<Stereotype>> Description

Subsystem A subsystem is a grouping of model elements.
Package A package is a grouping of model elements (Java specific).
Class A class declares a collection of attributes, operations and methods, to

describe the structure and behavior of a set of objects; it acts as the
namespace for various elements defined within its scope, i.e. classes and
interfaces.

Interface An interface is a named set of operations that characterize the behavior of
an element.

DataType A data type is a type whose values have no identity.
Attribute An attribute is a named piece of the declared state of a classifier, which

refers to a static feature of a model element. An attribute may have an
initValue specifying the value of the attribute upon initialization.

Operation
<<create>>

<<initialize>>

An operation is a service that can be requested from an object to effect
behavior, which refers to a dynamic feature of a model element.

Method A method is the implementation of an operation.
Parameter A parameter is a declaration of an input/output argument of an operation.
Exception An exception is a signal raised by an operation.
Reception A reception is a behavioral feature; the classifier containing the feature

reacts to the signal designated by the reception feature.

Table 2. Types of Relations among the Elements of a UML Logical Model

Metaclass
<<Stereotype>> Description

Generalization A generalization is a taxonomic relation between a more general
element (parent) and a more specific element (child).

Abstraction
<<realize>>

An abstraction is a dependency relation; it relates two (sets of)
elements representing the same concept.

Usage <<call>><<send>>
<<instantiate>>

<<read>><<write>>

A usage is a dependency relation in which one element requires
another element (or set of elements) for its full implementation or
operation.

Association An association is a declaration of a semantic relation between
classifiers that can be of three different kinds: 1) ordinary
association, 2) composite aggregate, and 3) shareable aggregate.

Table 3. Composition Relations over the Elements of the UML Logical Models

Element type Types of the element’s children
Top-level
Subsystem

Subsystem and Package
ProgrammingLanguageDataType
Class and Interface whose isFromModel=false

Subsystem Subsystem and Package
Package Package, Class and Interface
Class Class and Interface

Attribute, Operation, Operation<<create>>, Operation<<initialize>>
Interface Class and Interface, Operation
Attribute N/A
Operation Parameter

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 163

2.1 The UMLDiff Algorithm

Given two input graphs, UMLDiff starts by comparing their vertices, i.e., mapping the
elements of the first model to “same” elements of the second model. Once this
process has been completed, it proceeds to analyze the relations of the two graphs.

2.1.1 Mapping Elements
UMLDiff traverses the containment-spanning trees of the two compared models,
descending from one logical level to the next, in both trees at the same time. It starts
at the top-level subsystems that correspond to the two system models and progresses
down to subsystems, packages, classes and interfaces, and finally, attributes and
operations. At each level, it compares all elements at that level from version 1, ei-1, to
all elements of version 2, ej-2, and recognizes pairs of “same” elements, i.e., elements
that correspond to the same design-model concept.

Similarity for UMLDiff is established on the basis of two criteria: (a) lexical
similarity, i.e., a metric of the lexical distance between the identifiers of two same-
level elements, and (b) structure similarity, i.e., a metric of the degree to which the
two compared elements are related in the same ways to other elements that have
already been established to be the same.

Name similarity is a “safe” indicator that e1 and e2 are the same entity: in our
experience with several case studies, very rarely is a model element removed and a
new element is added to the system with the same name but different element type
and different behavior. UMLDiff recognizes same-name model elements of the same
type first and uses them as initial “landmarks” to subsequently recognize renamed and
moved elements.

Within each level, after all same-name elements have been recognized, UMLDiff
attempts to recognize renamed and/or moved elements at that level. When a model
element is renamed or moved – frequent changes in the context of object-oriented
refactorings – its relations to other elements tend to remain the same, for the most
part. For example when an operation moves, it still reads/writes the same attributes
and it calls (and is called by) the same operations. Therefore, by comparing the
relations of two same-type model elements, UMLDiff infers renamings and moves:
the two compared elements are the same, if they share “enough” relations to elements
that have already been established to be the same, even though their names (in the
case of renamings) and/or their parent (containing) model elements are different (in
the case of moves).

The knowledge that two model elements are essentially the same, in spite of having
been renamed or moved, is added to the current set of mapped elements, and is used
later on to further match other not-yet-mapped elements. This process continues until
the leaf level of the two spanning trees has been reached and all possible
corresponding pairs of model elements have been identified.

Given two renaming or move candidates, UMLDiff computes their structural
similarity as the cardinality of the intersection of their corresponding related-element
sets (see Section 2.2.2 for details). Given the sets of elements that are connected to the
two compared candidates with a given relation type, UMLDiff identifies the common

164 R. Mikhaiel et al.

subset of elements that have already been mapped. Therefore, if most of the model
elements related to two candidates were also renamed and/or moved and cannot be
established as “same”, the UMLDiff structure-similarity heuristic will fail. If, on the
other hand, a set of related elements were renamed or moved but enough model
elements related to the affected set remained the “same”, it would be possible to
recognize this systematic change.

The structure-similarity metric fails when global renamings are applied, i.e.,
renamings to meet a new naming convention, for example. In such cases, there may
be so many elements affected that the initial round of recognizing “same” elements
based on name similarity may not produce enough mapped elements, to be used as
landmarks for structure similarity. To address this problem, UMLDiff can be
configured with a user-provided string transformation – introducing a prefix or
appending a suffix, or replacing a certain substring – to be applied to the names of the
model elements of one of the compared versions, before the differencing process. To
further accelerate the recognition of “same” elements, UMLDiff propagates operation
renamings along the inheritance hierarchy, i.e., it assumes that if an operation o1 in a
class c1 has been renamed to o2, then all its implementations in the subclasses of c1

have also been similarly renamed.
Finally, as each round of recognition of “same” elements based on structure

similarity establishes more landmarks on the basis of which new elements can
be recognized as structurally similar, UMLDiff can be configured to go through
multiple rounds of renaming and move identification, until no more new renamed
and/or moved elements can be found or it finishes the user-specified number of
iterations.

2.1.2 Mapping Relations
Once UMLDiff has completed mapping the sets of model elements, V1 and V2, it
proceeds to map the relation sets, E1 and E2, by comparing the relations of all pairs of
model elements (v1, v2), where v2=null if v1 is removed and v1=null if v2 is added. The
relations from (to) a removed model element are all removed and the relations from
(to) an added model element are all added. For a pair of mapped elements (v1, v2),
they may have matched, newly added, and/or removed relations. Note that a removed
(added) relation between two model elements does not indicate any of the elements it
relates being removed (added).

Finally, UMLDiff detects the redistribution of the semantic behavior among
operations, in terms of usage-dependency changes, and computes the changes to the
attributes of all pairs of mapped model elements.

2.1.3 Configuration Parameters
The UMLDiff differencing process is configured through the following set of
parameters.

1. The LexicalSimilarityMetric specifies which of three alternative lexical-similarity
metrics (Char-LCS, Char-Pair, and Word-LCS) will be used by UMLDiff.

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 165

2. The RenameThreshold and MoveThreshold specify the minimum similarity values
between two model elements in the two compared versions in order for them to be
considered as the same conceptual element renamed or moved. UMLDiff allows
multiple rounds (MaxRenameRound and MaxMoveRound) of renaming and/or
move identification in order to recover as many renamed and moved entities as
possible.

3. The ConsiderCommentSimilarity parameter defines whether the similarity of the
comments of the model elements should also be taken into account when
comparing two elements, if the compared elements have an initial overall similarity
value above the MinThreshold. This threshold prevents model elements with very
low name- and structure-similarity from qualifying as renamings or moves just
because of their similar comments.

4. The ConsiderTransclosureUsageSimilarity parameter controls whether the
similarity of the transitive usage dependencies between two compared operations
may also be used to assess their structural similarity.

5. At the end of the differencing process, UMLDiff can be instructed whether or not to
compute the usage dependency changes for all model elements and analyze the
redistribution of operation behavior.

2.2 Assessing Similarity

In the above section, we have described how UMLDiff maps elements relying on two
heuristics – lexical and structure similarity. In this section we delve deeper on the
details of how exactly lexical and structure similarity are computed. The equations
specifying these computations are intuitively motivated and have been tuned through
substantial experimentation. These computations are fundamentally heuristic, tailored
to the idiosyncrasies of the UML domain and our intuitions and understanding of the
practices of developers in naming identifiers.

2.2.1 Lexical Similarity
To assess the similarity of the identifiers of (and the textual comments associated
with) two compared model elements, UMLDiff integrates three metrics of
string similarity: (a) the longest common character subsequence (Char-LCS); (b)
the longest common token subsequence (Word-LCS); and (c) the common adjacent
character pairs (Char-Pair). All these metrics are computationally inexpensive
to calculate, given the usually small length of the names and comments of
model elements. They are also case insensitive, since it is common to misspell
words with the wrong case or to modify them with just case changes. They are
all applicable to name similarity, while only Char-LCS and Word-LCS may
be applied to compute comment similarity. Irrespective of the specific metric used,
let us first describe what exactly UMLDiff considers as the “identifier” of each
model-element type.

The lexical similarity of operations is calculated as the product of their identifier
similarity and their parameter-list similarity. In turn, the similarity of two parameter

166 R. Mikhaiel et al.

lists is computed based on the Jaccard coefficient of the two bags of data types of the
operations’ parameters, i.e. the intersection of two bags of parameter types divided by
the union of two bags of parameter types.

For packages, we split package names into a set of words by “.”, and then compute
the lexical similarity of packages using the similarity equations defined below.
The similarity of the comments associated with two model elements is only consulted
when both elements have associated comments (i.e., the UMLDiff parameter
ConsiderCommentSimilarity is true) and the initial overall similarity metric between
these elements is greater than the UMLDiff parameter MinThreshold.

The longest common character subsequence (Char-LCS) algorithm [15] is
frequently used to compare strings. Word-LCS applies the same LCS algorithm, using
words instead of characters as the basic constituents of the compared strings. The
names of model elements are split into a sequence of words, using dots, dashes,
underscores and case switching as delimiters. Comments are split into words using
space as the sole delimiter. The actual metric used for assessing LCS-similarity is
shown in Equation 1.

Char/Word-LCS(s1, s2) = 2 * length(LCS(s1, s2)) / (length(s1)+length(s2)),
where LCS() and length() is based on the type of token considered, i.e.,
characters or words.

Equation 1

LCS reflects the lexical similarity between two strings, but it is not very robust to
changes of word order, which is common with renamings. To address this problem,
we have defined the third lexical-similarity metric in terms of how many common
adjacent character pairs are contained in the two compared strings. The pairs(x)
function returns the pairs of adjacent characters in a string x. By considering adjacent
characters, the character ordering information is, to some extent, taken into account.
The Char-Pair similarity metric, which is a value between 0 and 1, is computed
according to Equation 2.

Char-Pair(s1, s2) = 2 * |pairs(s1)∩pairs(s2)| / (|pairs(s1)|+|pairs(s2)|).

Equation 2

2.2.2 Structure Similarity
Table 4 lists the relations that UMLDiff examines to compute the structure similarity
between two model elements of the same type. The top-level subsystems,
corresponding to the two compared versions of a UML logical model, are always
assumed to match. The structure similarity of subsystems, packages, classes and
interfaces is determined based on (a) the elements they contain, (b) the elements they
use, and (c) the elements that use them. The structure similarity of attributes is
determined by the operations that read and write them, and their initialization
expressions. The structure similarity of operations is determined by the parameters
they declare, their outgoing usage dependencies (including the attributes they read
and write, the operations they call, and the classes/interfaces they create), and their
incoming usage dependencies (including the attributes (through their initValue) and
the operations that call them).

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 167

Table 4. The UML relations for computing structure similarity

Element type Type of relations
Subsystem [namespace – ownedElement] Incoming and outgoing usage
Package [namespace – ownedElement] Incoming and outgoing usage
Class, Interface [namespace – ownedElement] and [owner – feature]

Incoming and outgoing usage
Attribute Usage<<read>>, Usage<<write>> and inherent Attribute.initValue
Operation [BehaviorFeature – parameter] and [typedParameter – type]

Outgoing usage:
Usage<<read>>, Usage<<write>>, Usage<<call>>, Usage<<instantiate>>

Incoming usage: Usage<<call>>

The structure similarity of two compared elements is a measure of the overlap

between the sets of elements to which the compared elements are related. The
intersection of the two related-element sets contains the pairs of model elements that
are related to the compared elements (with the same relation type) and have already
been mapped. In effect, this intersection set incorporates knowledge of any “known
landmarks” to which both compared model elements are related.

Given two model elements of the same type, v1 and v2, let Set1 and Set2 be their
related-element sets, the structure similarity between v1 and v2 according to a given
group of relations is a normalized value (between 0 and 1) as computed according to
Equation 3.

StructureSimilarity = matchcount / (matchcount + addcount + removecount),
where the matchcount, addcount, and removecount are the cardinalities of
[Set1 ∩ Set2], [Set2 – Set1], [Set1 – Set2] respectively.

Equation 3

For a usage dependency, its count tag, which indicates the number of times that it
appears between the client and supplier elements, is used to compute its matchcount,
addcount, and removecount.

The similarity of the parameter lists of two operations is based on the names and
types of their parameters. The computation of parameter-list similarity is insensitive
to the order of parameters. For non-return parameters, if none of the two operations is
overloading, the matchcount for a pair of same-name parameters is 1. If any of the
two compared operations is overloading, the types of the two same-name parameters
is further examined, in order to distinguish the overloading methods from each other,
which often declare the same-name parameters but with different parameter types. In
the case of overloading, if the same-name parameters are of mapped types, their
matchcount is 1; otherwise, their matchcount is 0.5. For the return parameters, if their
types are mapped, the matchcount is 1; else it is set at 0. If the type of the return
parameter of both operations is void, the matchcount for the return parameter is 0.

The similarity of the initValue of two compared attributes is computed in the same
way as the outgoing usage similarity between two operations. The initValue-similarity
value is added to the overall matchcount of the Usage<<write>> similarity between two
attributes.

168 R. Mikhaiel et al.

Determining the similarity when both related model-element sets are empty is
challenging, when, for example, two operations are not called by any other
operations. In such cases, setting the structure similarity to be by default 0 or 1 is not
desirable: without any explicit evidence of similarity, assuming that the structure is
completely the same or completely different may skew the subsequent result.
Therefore, in such cases, UMLDiff uses the name similarity with an increasing
exponent. The effect is dampened as more empty sets are encountered. For example,
when computing the structure similarity of two operations in the order of their
parameter-list, outgoing usage and incoming usage similarities, if the two compared
operations declare no parameters, have return type void, and have no outgoing and
incoming usage dependencies, UMLDiff returns name-similarity1 for comparing
parameter-list similarity, name-similarity2 for outgoing usage similarity, and name-
similarity3

 for incoming usage similarity.

2.2.3 Overall Similarity Assessment
Given two model elements e1 and e2 of the same type, their overall similarity metric,
used for determining potentially renamed and moved model elements, is computed
according to the Equation 4, below.

SimilarityMetric=(lexical-similarity+ΣNstructure-similarity)/(lexical-similarity+N),
where lexical-similarity = name-similarity + comment-similarity, and N is the
number of different types of structure similarities computed for a given type of
model elements, as defined in Table 2.

Equation 4

The value of ΣNstructure-similarity is adjusted in the following cases.
When comparing two operations, if any of them is overloaded, ΣNstructure-

similarity is multiplied by the parameter-list similarity of the compared operations in
order to distinguish the overloading operations from each other, which often have
similar usage dependencies but with different parameters.

When determining the potential moves of attributes and operations, if the declaring
classes/interfaces of the compared attributes/operations are not related through
inheritance, containment, or usage relations, the value of ΣNstructure-similarity is
multiplied by the overall similarity of the classes in which the compared
attributes/operations are declared, and divided by the product of the numbers of all the
not-yet-mapped model elements with the same name and type as the two compared
elements. This is designed to improve the low precision when identifying attribute and
operation moves.

UMLDiff uses two user-defined thresholds (RenameThreshold and MoveThreshold):
two model elements are considered as the “same” element renamed or moved when
their overall similarity metric is above the corresponding threshold. If, for a given
element in one version, there are several potential mappings above the user-specified
threshold in the other version, the one with the highest similarity score is chosen. The
higher the threshold is, the stricter the similarity requirement is. The smaller the
threshold is, the riskier the renamings-and-moves recognition process is.

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 169

3 VTracker

The VTracker algorithm is designed to compare XML documents, based on a
tree-differencing paradigm. It calculates the minimum edit distance between two
labeled ordered trees, given a cost function for different edit operations (e.g. change,
deletion, and insertion). Essentially, VTracker views XML documents as partially
ordered trees, since XML elements contain other XML elements and the order of
contained elements within a container does not matter, unless these elements are
contained in a special ordered container. Given that UML logical models can be
represented in XMI, i.e., an XML-based syntax, the problem of UML logical-model
differencing can be reduced to XML-document differencing and VTracker can be
applied to it.

VTracker is based on the Zhang-Shasha's tree-edit distance [30] algorithm, which
calculates the minimum edit distance between two trees T1 and T2

1, given a cost
function for different edit operations (e.g. change, deletion, and insertion) in
complexity of O(|T1|

3/2|T2|
3/2), according to the analysis of Dulucq and Tichit [1].

Intuitively, given two trees, the Zhang-Shasha algorithm identifies the minimum
cost of mapping the nodes of the two trees to each other, considering the following
three options, illustrated in Figure 1.a:

(a) the cost of mapping the root nodes of the two trees plus the cost of mapping the
remaining forests to each other (assuming that the root nodes of the two trees are
comparable);

(b) the cost of deleting the root of the first tree plus the cost of mapping the remaining
forest to the entire second tree (assuming that the root of the first tree was newly
inserted in the second tree); and

(c) the cost of deleting the root of the second tree plus the cost of mapping the entire
first tree against the remaining forest of the second tree (assuming that the root of
the first tree is missing in the second tree).

The VTracker algorithm, for calculating the edit distance between two trees rooted by
nodes x and node y respectively, is shown in pseudocode in Algorithm 1. The
algorithm assumes that nodes are numbered in a post-order manner where a parent
node is visited after all its children, from left to right, have been recursively visited.
The process, as shown in lines 5-8, starts by determining the span of each node (x and
y); the span of node x includes all the nodes starting at the left-most child of x to x,
the root, plus a “dummy” node, which represents the void node given index zero
while the left-most child at index one. The algorithm proceeds to progressively
calculate the edit distance between portions (forests) from both trees. For example,
fdist[i][j] is the distance between the first forest (including all the nodes in the first
tree up to and including node with index i) and the second forest (including all the
nodes in the second tree up to and including node with index j). Then, the process
keeps adding a single node on each of the compared forests (lines 10 to 13) and
assessing the cost, until it reaches the last point where both sides are not forests
anymore but the complete trees.

1 We use T1 and T2 to refer to the trees and the number of their nodes, at the same time.

170 R. Mikhaiel et al.

Input: T1 and T2 trees
01 DECLARE matrix tdist with size [|T1|+1] * [|T2|+1]
02 DECLARE matrix fdist with size [|T1|+1] * [|T2|+1]

03 FUNCTION treeDistance (x , y)
04 START
05 lmx = lm1(x) // left most node of x
06 lmy = lm2(y) // left most node of y
07 span1 = x – lmx + 2 //size of sub-tree x + 1
08 span2 = y – lmy + 2 //size of sub-tree y + 1
09 fdist[0][0] = 0
10 FOR i = 1 TO span1 – 1 // set the first column
11 fdist[i][0] = fdist[i-1][0] + cost(k,-1,i,j)
12 FOR j = 1 TO span2 – 1 // set the first row
13 fdist[0][j] = fdist[0][j-1] + cost(-1,l,i,j)

14 k = lmx
15 l = lmy
16 FOR i = 1 TO span1 - 1
17 FOR j = 1 TO span2 – 1
18 IF lm1(k) = lmx and lm2(l) = lmy
19 THEN // tree edit distance
20 fdist[i][j] = min(fdist[i-1][j] + cost(k,-1,i,j),

 fdist[i][j-1] + cost(-1,l,i,j),
 fdist[i-1][j-1] + cost(k,l,i,j))

21 tdist[k][l] = fdist[i][j]
22 ELSE // forest edit distance
23 m = lm1(k) – lmx
24 n = lm2(y) – lmy
25 fdist[j][j] = min(fdist[i-1][j] + cost(k,-1,i,j),

 fdist[i][j-1] + cost(-1,l,i,j),
 fdist[m][n] + tdist(k,l,i,j))

26 l++
27 k++
28 RETURN tdist[x][y]
29 END

Algorithm 1: The Zhang-Sasha Tree Comparison

At line 9, the algorithm starts by initializing fdist[0][0], i.e., the cost of transforming

a void forest into another void forest, to zero. In lines 10 and 11 it calculates the
deletion costs of various forests of the first tree, which it progressively leads to
calculating the cost of deleting the whole first tree. Similarly, the algorithm calculates
the insertion costs in lines 12 and 13. At this point it has calculated the cost of mapping
the two trees through the drastic change of deleting all the nodes of the first one and
adding all the nodes of the second.

Then, beginning at line 18, the algorithm starts adding one node to each tree and
calculating the distance between the resulting forests. In each step, if both sides have
one full sub-tree, it applies the tree distance mechanism; otherwise it uses the forest
edit distance mechanism (illustrated in Figure 1.b), where it chooses the minimum
cost option of the three below:

• The cost of mapping node x to node y plus the cost of matching the remaining
forests to each other.

• The cost of deleting node x plus the cost of matching remaining forest of first tree
against the entire second tree.

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 171

• The cost of inserting node y plus the cost of matching entire first tree against
remaining forest of the second tree.

(a) Visualization of Tree-Edit Distance (b) Visualization of Forest-Edit Distance

Fig. 1. Visualization of Zhang-Shasha algorithm [30]

VTracker extends the Zhang-Shasha algorithm in four important ways. First, it uses
an affine-cost policy, which adjusts the cost of each operation if it happens in the
vicinity of many similar operations. The affine-cost computation algorithm is
discussed in Section 3.1.

Second, unlike the Zhang-Shasha algorithm, which assumes “pure” tree structures,
VTracker allows for cross-references between nodes of the compared trees, which is
essential for comparing XML documents that use the ID and IDREF attributes.
VTracker considers the existence of these references in two different situations during
the matching process. First, it considers referenced elements as being a part of the
referring elements’ structure (see Section 3.2); when two nodes are being compared,
VTracker considers all their children irrespective of whether they are defined in the
context of their parent nodes or referenced by them. Additionally, through its
“context-aware matching” process, VTracker considers not only the internal structure
of the compared elements but also the context in which they are used, namely the
elements by which they are being referenced.

Third, in a post-processing step, VTracker applies a simplicity-based filter to
discard the more unlikely solutions from the solution set produced during the tree-
alignment phase (see Section 3.3).

Finally, in addition to being applied with the default cost function that assigns
the same cost to addition/deletion/change operations, VTracker can be configured
with a domain-specific cost function (see Section 3.4) constructed through an initial
boot-strapping step where VTracker with the default cost function is applied
to comparing the forest of elements from the XML Schema Definition of the domain
to itself.

3.1 Cost Computation

The original Zhang-Shasha algorithm assumes that the cost of any deletion/insertion
operation is independent of the context in which the operation is applied: the cost of a
node insertion/deletion is the same, irrespective of whether or not that node's children

172 R. Mikhaiel et al.

are also deleted or inserted. As a result, the Zhang-Shasha algorithm considers as
equally expensive two different scripts with the same number and types of edits, with
no preference to the script that may include all the changes within the same locality.
Such behavior is unintuitive: a set of changes within the same sub-tree is more likely
than the same set of changes dispersed across the whole tree. Since the parent-child
relation within the tree is likely to represent a semantic relation in the domain,
whether it is composition (the parent contains the child), or inheritance (the parent is a
super-type of the child), or association (the parent uses/refers to the child), it is more
likely than not that changes in one participant of the relation will affect the other. This
is why changes are likely to be clustered together around connected nodes, as opposed
to “hitting” a number of unrelated nodes.

In order to produce more intuitive tree-edit sequences, VTracker uses an affine-cost
policy. In VTracker, a node's deletion/insertion cost is context sensitive: if all of a
node’s children are also candidates for deletion, this node is more likely to be deleted
as well, and then the deletion cost of that node should be less than the regular deletion
cost. The same is true for the insertion cost.

As shown in the Algorithm 2 below, the cost function accepts four parameters.
The first two parameters, x and y, represent the absolute indexes of the two nodes
being considered within the two full trees; the other two parameters, i and j,
representing the local their indexes within the two sub-trees being considered that
help to determine the edit operation context. A delete operation is denoted by y=-1,
and an insert operation is denoted by x=-1 correspondingly; otherwise, it is matching
operation and the objective is to assess how much it will cost to transform a node x
to node y. As shown in GetDeletionCost function to assess the cost of deleting a
certain node, the node is checked to be eligible for an affine discounted cost;
otherwise the standard edit cost is used. The GetInsertionCost function is similar to
the deletion one.

FUNCTION Cost (x, y, i, j)
START
 IF y = -1
 THEN RETURN GetDeletionCost (x, i, j)
 ELSEIF x = -1 RETURN GetInsertionCost (y, i, j)
 ELSE RETURN MappingCost (x, y, i, j)
 ENDIF
END

FUNCTION GetDeletionCost (x, i, j)
START
 IF IsDeleteAffineEligible(i, j)
 THEN RETURN DISCOUNTED_DELETION_COST // the whole tree is deleted
 ELSE RETURN STANDARD_DELETION_COST
 ENDIF
END

Algorithm 2: Calculating Costs

Algorithm 3 explains the logic of calculating the cost of transforming node x to
node y, i.e., the cost of mapping nodes x and y. Normally, a NodeDistance function is
used to reflect the domain logic of assessing the cost of node x being transformed to
node y. However, if any of the two nodes x or y has reference to another node, a
different mechanism is used. This mechanism follows the reference to the referred-to

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 173

node. Consider for example the case where node x has no references, while node y is a
reference to node z. In order to assess the similarity between nodes x and y, we
actually need to assess the similarity between node x and node z. To that end, the
treeDistance algorithm, described in Algorithm 1, is used to assess the similarity
between the sub-tree rooted at x and the sub-tree rooted at z. This mechanism is
explained in more details in Section 3.2.

FUNCTION MappingCost (x,y,i,j)
START
 newX = x
 newY = y
 IF x has a reference
 THEN newX = referenced Id
 ENDIF
 IF y has a reference
 THEN newY = referenced Id
 ENDIF
 IF x <> newX OR y <> newY
 THEN RETURN (treeDistance(newX,newY)/
 (TreeDeletionCost(newX)+TreeInsertionCost(newY)))*
 STANDARD_CHANGE_COST
 ELSE RETURN NodeDistance(x,y)
 ENDIF
END

Algorithm 3: Cost, in the presence of References

FUNCTION IsDeleteAffineEligible (i,j)
START
 IF y = 0
 THEN // the whole tree is to be deleted
 RETURN true
 ELSE // Cost of matching sub-forest is the actual cost minus
 // Cost of matching the remaining forests to each other
 CostSubForest = fdist [i-1][j] – fdist [lm1(i)-1][j]
 // Cost of deleting everything minus
 // Cost of matching the remaining forests to each other
 CostDelSubForest = fdist [i-1][0] – fdist [lm1 (i)-1][0]

 IF costSubForest = costDelSubForest
 RETURN true
 ELSE
 RETURN false
END

Algorithm 4: Affine Costs

3.2 Reference-Aware Edit Distance

Tree-edit distance algorithms only consider node-containment relationships, i.e.,
parent nodes containing children nodes. VTracker, designed for XML documents, is
not a pure tree-differencing algorithm; it is aware of other relations between XML
elements that are represented as additional references between the corresponding tree
nodes. This feature is very important, since most XML documents reuse element
definitions thus implying references from an element to the original element
definition. The Zhang-Shasha simply ignores such references. In VTracker such
reference structure is considered in an integrated manner within the tree-edit distance
calculation process.

174 R. Mikhaiel et al.

A typical interpretation of such references is that the referenced element structure
is meant to be entirely copied under at the reference location; but, to avoid potential
inconsistencies through cloning and local changes, elements are reused through a
reference to one common definition. VTracker compares tree nodes by traversing the
containment structure until it encounters a reference. It then recursively follows the
reference structure as if it was a part of the current containment structure, until it
reaches a previously examined node; then it backtracks recording all the performed
calculations, for future use by other nodes referring to the same node.

The question then becomes “how should the cost function be adjusted in order to
compute the differences of two nodes in terms of the similarities and differences of
the elements they contain and refer to?” As shown in Algorithm 3 above, the
definition of the cost function is changed when one of the nodes is a reference to
another node. If any or both nodes are references (i.e., have nothing but references),
then the cost of changing one into the other is the tree edit-distance between the
referenced tree structures. Let’s assume that node x refers to node x’ and node y refers
to node y’. The cost of changing node x to node y is the tree-edit distance between the
sub-tree rooted at x’ against the sub-tree rooted at y’. Additionally, a normalization
step is essential here because the tree-edit distance between x’ and y’ can vary
according to the size of the two trees. Our approach divides the calculated edit
distance between the two referenced sub-trees by the cost of deleting both of them
which is the maximum possible cost. In this sense, the normalized cost is always
ranging from 0 (in case of perfect match) to 1 (in case of totally different structures).
Finally, the normalized edit distance is scaled against the maximum possible cost of
change, i.e. a normalized cost of 1.0 should be scaled to the maximum cost of
changing two nodes to each other. This step is necessary to ensure that the calculated
change cost is in harmony with other calculated change costs.

In addition to taking into account efferent relations, i.e., references from the
compared nodes to other nodes, VTracker also considers the afferent relations of the
compared elements, i.e., their “usage context” by nodes that refer to the compared
elements. In a post-calculation process, usage-context distance measures are
calculated and combined with standard tree-edit distance measures into a new
context-aware tree edit distance measure. For each two nodes x and y, we established
two sets, context1(x) = {v | v→x} and context2(y) = {w | w→y}, that include the nodes
from which x and y are referenced, respectively. Now, the usage-context distance
between x and y is calculated as the Levenshtein edit distance [6] between these
elements, where the distance between any two elements is the tree edit distance
between these two sub-trees, and the final result is called the usage context distance
between x and y. Finally, the consolidated context-aware tree edit distance measure is
the average between the usage context distance and the tree edit distance measure.

3.3 Simplicity Heuristics

Frequent times, the differencing process may be unable to produce a unique edit script
as there may be multiple scripts that transform one tree to the other with the same
minimum cost. VTracker uses three simplicity heuristics, to discard the more unlikely
solutions from the result set.

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 175

The path-minimality criterion eliminates “long paths”. When there is more than
one different path with the same minimum cost, the one with the least number of
deletion and/or insertion operations is preferable.

The vertical simplicity heuristic eliminates any edit sequences that contain “non-
contiguous similar edit operations”. Intuitively, this rule assumes that a contiguous
sequence of edit operations of the same type essentially represents a single mutation
or refactoring on a segment of neighboring nodes. Thus, when there are multiple
different edit-operation scripts with the same minimum cost, and the same number of
operations, the one with the least number of changes (refractions) of edit-operation
types along a tree branch is preferable.

Finally the horizontal simplicity criterion is implemented by counting the number
of horizontal refraction points, found when a node suffers an edit operation different
from the one applied to its sibling. Therefore, a solution where the same operation is
applied to (most of) a node’s children is preferable to another where the same children
suffer different types of edit operations.

3.4 Schema-Driven Synthesized Cost Function

The VTracker algorithm is generic, i.e., it is designed to compare XML documents
in general and not XMI documents specifically. However, in order to produce
accurate solutions that are intuitive to domain experts, VTracker needs to be equipped
with a domain-specific cost function that captures the understanding of subject-matter
experts of what constitutes similarity and difference among elements in the
given domain. Lacking such knowledge, a standard cost function can always be
used as a default, which may however sometimes yield less accurate and non-intuitive
results. To address the challenge of coming up with a “good” domain-specific
cost function, we have developed a method for synthesizing a cost function from
the domain’s XML schema, relying on the assumption that the XML schema captures
in its syntax a (big) part of the domain’s semantics. Essentially, VTracker assumes
that the designers of the domain schema use their understanding of the domain
semantics to identify the basic domain elements and to organize related elements into
complex ones.

In addition to the domain-specific or default cost functions, VTracker uses
more cost functions to handle node-level cost assessment. For example,
VTracker uses a Levenshtein string edit distance [6] to measure the distance between
any two literal values like two node names, attribute names or values, text node
contents, etc.

4 Comparison of the UMLDiff vs. VTracker Methodologies

UMLDiff and VTracker have both been applied to the task of recognizing design-level
differences between subsequent system versions. In this section we review some
interesting methodological differences between the two of them.

176 R. Mikhaiel et al.

They both conceptualize logical-design models of object-oriented software as
trees. The parent-child relationship between tree nodes corresponds (a) to
the instances of the composition relations in UMLDiff and (b) to the XMI containment
relations, in VTracker. The two sets of relations are essentially the same. Practically,
UMLDiff is applied to a database of “design facts” extracted through a process
that analyzes a system’s source code; therefore UMLDiff always takes into account
the exact same relations. VTracker, on the other hand, takes as input two
XML documents of any type; to be applied to the task of UML model comparison,
in principle, it should be provided with the XMI representation of the model.
In practice, however, VTracker’s computation requires too much memory
and therefore it cannot be applied to the complete raw XMI representations of
large systems. Therefore it has to be applied to a filtered version of XMI and therefore
care has to be given on what elements of the XMI syntax are preserved to
be considered by VTracker. Through experimentation during the development of
the WebDiff system [14], we have discovered that VTracker works well when
applied to XML composition models of single classes, and inheritance models. When
multiple classes are compared at the same time, the mapping of tree elements
becomes more complex and the computation tends to become impractical.
Performance is at the crux of the difference between the two approaches. By
restricting itself to a consistent representation of the same design facts, UMLDiff can
make assumptions about what to consider comparing and how. VTracker does not
always get applied to the same types of XML documents, and, as a result, in its
particular application, one has to trade off “richness” of the model representation
against efficiency.

Both UMLDiff and VTracker can be aware of additional types of relations, like
association and inheritance, between logical-model elements. UMLDiff exploits these
relations while calculating the structure-similarity metric between same-type elements
that are considered as candidates for move or renaming. With VTracker there are two
options. Assuming containment as the primary relation defining the tree structure,
additional edges between model elements can be introduced to reflect these other
relations. This approach enables VTracker to consider these relations through its
usage-context and reference-aware matching features; however, it has a substantial
negative impact on its performance. In our experimentation with VTracker to date, we
have developed parallel representations of the logical model, each one considering
one of these relations separately, resulting in separate containment, inheritance and
association trees, each one to be compared with the corresponding tree of the second
logical model.

UMLDiff and VTracker exhibit interesting similarities and differences in terms of
their similarity/cost functions for comparing model elements.

• They both combine metrics of lexical and structure similarity.
• We have experimented with a variety of lexical similarity metrics for comparing

identifiers in UMLDiff. VTracker, by default, assigns 0 to the distance between two
elements when their labels (i.e., identifiers) are the same and 1 when not and can
be configured to use the Levenshtein distance [6] for these labels.

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 177

• The function for UMLDiff’s structural similarity assessment was “hand crafted”
after much experimentation. VTracker’s cost function is by default very simple (all
change operations have the same cost) and has been extended with affine policy
and domain-specific weight calculation.

To study in detail the similarities and differences of the two approaches we performed
an extensive experiment, where the two methods have been applied to recognize the
changes that occurred in multiple successive versions of an open-source system. More
specifically, the experiment is driven by three research questions:

1. How does the generic differencing algorithm perform (in terms of precision and
recall) compared to the tailor-made one in the examined differencing problem?

2. Is the generic differencing algorithm efficient and scalable in the examined
differencing problem?

3. Does the additional effort required for the configuration of the generic
differencing algorithm make it an acceptable solution for the examined differencing
problem?

To answer the aforementioned research questions we performed a direct comparison
of VTracker with UMLDiff against a manually obtained gold standard. In the
following subsections, we describe in detail the process that has been applied in order
to conduct this experiment.

4.1 Specification of XML Input for VTracker

As we have already mentioned above, VTracker is a tree-differencing algorithm,
potentially able to handle any kind of XML documents. Nevertheless, the particulars
of the XML schema of the documents to be compared can have substantial
implications for the accuracy and efficiency of VTracker. Therefore, it is very
important to come up with an appropriate XML representation of the design elements
and relationships in an object-oriented software system. To this end, we have divided
the object-oriented design model to three distinct hierarchical structures, implied by
the three different dependency relationships (design aspects) specified by the Unified
Modeling Language (UML).

• Containment: A hierarchical structure representing the containment relationships
between a class and its members (i.e., operations and attributes declared within the
body of the class).

• Inheritance: A hierarchical structure representing inheritance relationships
(including both generalization and realization relationships) between classes.

• Usage: A hierarchical structure representing the usage dependencies among an
operation and other operations and/or attributes (i.e., operation calls and attribute
accesses within the body of the operation).

We applied VTracker on the three aforementioned design aspects separately for each
class of the examined system. This divide-and-conquer approach leads to the
construction of XML trees with a smaller number of nodes compared to the

178 R. Mikhaiel et al.

alternative approach of usin
all the classes of the exami
improvement of efficiency
being compared. An indire
possibility of extracting inc
combinations that have to b

The process of generatin
following steps:

1. The source code of the
extract the structure an
the underlying design m

2. For each class being p
(one for each compare
(i.e., containment, inhe

Figure 2 shows a pair of
aspect of class PaintI
hierarchical structure of the
exist between the source-c
operation PaintItem()a
PaintItem, while par
PaintItem().

Fig. 2. XML rep

ng a single XML tree for all design aspects together or
ined system. A direct consequence of this approach is

y due to the significant reduction in the size of the tr
ect consequence is the improvement of accuracy, since
correct node matches is smaller when the number of n
be compared is smaller.
ng the XML input files for VTracker is performed in

e two compared versions is parsed and analyzed in orde
nd the relationships between the source code elements
models.
present in both versions, we generate a pair of XML f
ed version) for each one of the examined design aspe
eritance and usage).

generated XML files regarding the containment des
tem in versions 1.0.5 and 1.0.6 of JFreeChart. T
e XML files represents the containment relationships t
code elements declared in the given class. For examp
and attributes paint and value are members of cl
rameters paint and value belong to operat

(a) Version 1.0.5

(b) Version 1.0.6

presentation of class PaintItem for containment

for
the

rees
the

node

the

er to
s of

files
ects

sign
The
that

mple,
lass
tion

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 179

In Figure 2, one can observe that the parameter types of an operation are
represented both as attributes of the Operation node, as well as attributes of the
Parameter child nodes. The motivation behind this apparent duplication of
information is to further improve the accuracy of VTracker when trying to match
overloaded operations (i.e., operations having the same name but a different number
or types of parameters). By including them as attributes of the Operation node, we
give to these attributes an increased weight (compared to the weight that they
normally have as attributes of the Parameter child nodes) and thus we can avoid
the problematic situation of mapping incorrectly a set of overloaded operations in the
first tree to the corresponding set of overloaded operations in the second tree.

Figure 2 shows that two changes occurred in class PaintItem between versions
1.0.5 and 1.0.6. The type of the attribute value as well as the type of the parameter
value in operation PaintItem() have been changed from Number to double
(the changes are highlighted in yellow). The XML files regarding the inheritance and
usage design aspects are structured in a similar manner.

4.2 Configuration of VTracker

The configuration of VTracker plays an important role on the accuracy of the
technique, since it affects the weights assigned to the attributes of the nodes during
the pair-wise matching process. The configuration process is very straightforward,
since it only requires the specification of two properties.

The first property is idAttributeName for which we have to specify the most
important attribute (i.e., id attribute) for each type of node in the compared trees. The
specified attributes are assigned a higher weight compared to the other attributes of
each node type. Practically, this means that if the ID attribute of a node is changed,
then the two versions of the node are considered less similar than if another attribute
was changed.

The second property is changePropagationParent for which we have to
specify the node types that should be reported as changed if at least one of their child
nodes is added, removed or changed. This feature allows us to identify that a node has
changed because of changes propagated from its children, even if the parent node
itself is unchanged. For example, an operation node should be considered as changed
if one of its parameters has been renamed even if this specific change has no effect on
the attributes of the operation node.

Table 5 shows the configuration properties that we have specified for the XML files
corresponding to the containment design aspect (as shown in the example of Figure 2).

Table 5. Configuration of VTracker for the containment design aspect

Property Value(s)

idAttributeName

Class => className
Operation => operationName
Parameter => paramName
Attribute => attrName

changePropagationParent Operation

180 R. Mikhaiel et al.

4.3 Extraction of True Occurrences

In order to compute the accuracy (i.e., precision and recall) of a differencing
technique we need to determine first the actual changes that occurred between
different versions of the examined artifact and consider them as the set of true
occurrences. Within the context of object-oriented design differencing we consider
the following types of design changes per design aspect.
For containment:

• Addition/deletion of an operation or an attribute.
• Change of an operation, which includes any kind of change in its signature (i.e.,

change of visibility, addition/deletion of modifiers, change of return type,
renaming of the operation’s name, change in the order of parameters, change in the
types of parameters and addition/deletion of parameters).

• Change of an attribute, which includes change of the attribute’s visibility,
addition/deletion of modifiers, change of the attribute’s type and renaming of the
attribute’s name.

For inheritance:

• Addition/deletion/change of the class being extended by a given class.
• Addition/deletion of an interface being implemented by a given class.

For usage:

• Addition/deletion of an operation call or attribute access within the body of an
operation.

• Change of an operation call. This type of change refers to operation calls which
either correspond to operation declarations whose signature has changed or have
been replaced with calls to other operations (possibly declared in a different class)
that return the same type and possibly take the same arguments as input.

• Change of an attribute access. This type of change refers to attribute accesses which
either correspond to changed attribute declarations or have been replaced with accesses
to other attributes (possibly declared in a different class) having the same type.

For the extraction of true occurrences we have followed a procedure that ensures, to a
large extent, a reliable and unbiased comparison of the examined differencing
approaches. Two of the authors of the paper have independently compared the source
code of all JFreeChart classes throughout successive stable versions2.

The comparison has been performed with the help of a source-code differencing
tool offered by the Eclipse IDE. The employed tool provides a more sophisticated
view of the performed changes in the sense that it is able to associate a change with
the context of the source code element where the change occurred. In contrast to
traditional text differencing tools, the Eclipse differencing tool offers an additional
view as the one illustrated in Figure 3 showing the changes that were performed in
class PaintItem between versions 1.0.5 and 1.0.6.

In this view, the listed class members are those on which changes have been
performed between the two compared versions. Furthermore, the plus (+) and minus (-)
symbols indicate that a change occurred in the signature of the corresponding class
member (plus symbol is used to represent the previous value of the changed class

2 http://sourceforge.net/projects/jfreechart/

 Differencing UML Mod

Fig. 3. D

member, while minus symb
member). The absence of a
of the corresponding class m
on the elements shown in t
changes on the actual source
change. This differencing v
easier, faster and more acc
throughout the evolution of
time consuming, which is w

The two authors exam
inheritance (ranging from
pairs for usage (ranging fro
a smaller number of versio
version pair is significantly
impossible. Furthermore, it
since they occur within the
structure and a large numbe
this specific version range
completely different packa
package structure (introduc
latest versions in the evolu
since they cover a more
Furthermore, they contain
the scalability of the examin

After the completion of
aforementioned versions, th
consensus in the cases of a
more careful re-examinatio
actually renamed. In some o
a deletion of a class memb
interpreted it as a change to

The number of true occ
containment, inheritance and

3 Note that UMLDiff can hand

of recognizing class moves a
the time complexity of comp

dels: A Domain-Specific vs. a Domain-Agnostic Method

Differencing view offered by the Eclipse IDE

bol is used to represent the next value of the changed c
symbol indicates that the change occurred within the b

member, thus not affecting its signature. By double-click
the differencing view, it is possible to directly inspect
e code and make a safer conclusion about the nature of e
view feature offered by the Eclipse IDE made significan
curate the manual inspection of the changes that occur
f JFreeChart. Clearly, this type of inspection is prohibitiv

why automated differencing methods are being developed.
mined 14 successive version pairs for containment

version 1.0.0 to version 1.0.13) and 8 successive vers
om version 1.0.0 to version 1.0.8). The reason for select
on pairs for usage is that the number of usage changes
y larger, thus making the examination of all version p
t is significantly harder to manually inspect usage chang
body of the operations, which in turn may have a comp

er of overlapping changes. Finally, the reason for select
is that the classes in versions prior to 1.0.0 are placed i
age structure making difficult their mapping to the n
ced after version 1.0.0).3 Moreover, we have selected
ution of JFreeChart (until the last/current version 1.0.1
e mature development phase of the examined proj
a larger number of larger classes, which allows us to
ned differencing techniques.
the independent comparison of all classes throughout

he two authors merged their results by reaching a comm
a different change interpretation. The cases that require
on usually involved operations or attributes that have b
of these cases, one of the authors interpreted the change
ber and an addition of a new one, while the other aut

o the same class member.
currences for each type of change per design aspect (
d usage) is shown in Tables 6, 7, 8 respectively. As it can

dle this type of overall source-code reorganization, as it is cap
across packages. VTracker is also, in principle, capable, howe
aring whole system structures as a trees is prohibitive.

181

lass
ody

king
the

each
ntly
rred
vely
.
and
sion
ting
per

pairs
ges,
plex
ting
in a
new
the

13),
ect.
test

the
mon
ed a
been
e as
thor

(i.e.,
n be

able
ever

182 R. Mikhaiel et al.

observed from the tables most of the actually performed changes are additions,
especially in containment and inheritance aspects. This is not surprising, since
JFreeChart is a Java library that is used by client applications for creating and displaying
charts. Consequently, its developers tried to maintain a consistent public interface
throughout its evolution without performing several deletions and signature changes.

Table 6. True Occurrences for containment (operations and attributes)

Versions
Added
oper.

Removed
oper.

Changed
oper.

Added
attr.

Removed
atrr.

Changed
attr.

1.0.0-1.0.1 10 0 0 1 0 0
1.0.1-1.0.2 60 0 0 17 1 0
1.0.2-1.0.3 86 3 2 29 0 16
1.0.3-1.0.4 70 1 3 9 1 0
1.0.4-1.0.5 85 0 5 11 1 1
1.0.5-1.0.6 78 7 2 22 1 2
1.0.6-1.0.7 125 0 3 50 3 2
1.0.7-1.0.8 36 0 0 6 0 0
1.0.8-1.0.8a 4 0 0 0 0 0
1.0.8a-1.0.9 15 1 1 0 0 0
1.0.9-1.0.10 94 0 3 11 0 6
1.0.10-1.0.11 117 0 1 41 4 3
1.0.11-1.0.12 45 2 0 11 1 4
1.0.12-1.0.13 160 4 6 50 2 0
TOTAL 985 18 26 258 14 34

Table 7. True Occurrences for inheritance (generalizations and realizations)

Versions Added
gener.

Removed
gener.

Changed
gener.

Added
realiz.

Removed
realiz.

1.0.0-1.0.1 1 0 0 2 0
1.0.1-1.0.2 3 0 0 3 0
1.0.2-1.0.3 16 0 0 23 0
1.0.3-1.0.4 5 0 0 17 1
1.0.4-1.0.5 3 0 0 5 0
1.0.5-1.0.6 6 0 0 11 0
1.0.6-1.0.7 18 0 0 52 0
1.0.7-1.0.8 0 0 0 0 0
1.0.8-1.0.8a 0 0 0 0 0
1.0.8a-1.0.9 0 0 0 0 0
1.0.9-1.0.10 4 0 0 35 18
1.0.10-1.0.11 6 0 0 23 0
1.0.11-1.0.12 0 0 0 0 18
1.0.12-1.0.13 9 0 0 30 0
TOTAL 71 0 0 201 37

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 183

Table 8. True Occurrences for usage (operation calls and attribute accesses)

Versions
Added
oper.
calls

Removed
oper. calls

Changed
oper.
calls

Added
attr.
accesses

Removed
atrr.
accesses

Changed
attr.
accesses

1.0.1-1.0.2 119 31 25 51 6 0
1.0.2-1.0.3 306 99 47 72 31 134
1.0.3-1.0.4 180 23 18 82 15 0
1.0.4-1.0.5 143 102 64 109 14 11
1.0.5-1.0.6 266 97 85 36 20 5
1.0.6-1.0.7 210 74 46 106 28 13
1.0.7-1.0.8 84 223 115 21 2 0
TOTAL 1324 650 400 489 117 164

4.4 Evaluation of Precision and Recall

In order to evaluate the accuracy of the two examined differencing approaches, we
should compare the set of true occurrences with the results reported by each tool. For
this purpose, we have defined a common report format per design aspect (i.e.,
containment, inheritance and usage) in order to make easier the comparison of the
results reported by each tool with the set of true occurrences. Next, we generated
human readable textual descriptions of the true occurrences for each examined
version pair of JFreeChart and per design aspect (based on the common report
format). Finally, we transformed the output produced by each tool to the common
report format. In particular, we have created a parser that goes through the changes
reported in the edit scripts produced by VTracker and generates a report per design
aspect following the common format rules. Additionally, we executed a set of
appropriate queries on the database tables where UMLDiff stores the change facts of
interest and transformed the results of the queries into the common report format.

The source code required for the replication of the experiment along with the gold
standard containing the actual changes that occurred between the successive versions of
JFreeChart and the edit scripts produced by VTracker and UMLDiff are available online4.

For the computation of precision and recall we need to define and quantify three
measures, namely:

• True Positives (TP): the number of true occurrences reported by each examined
tool.

• False Positives (FP): the number of false occurrences reported by each examined
tool.

• False Negatives (FN): the number of true occurrences not reported by each
examined tool.

After determining the values for the three aforementioned measures the accuracy of
each examined tool can be computed based on the following formulas:

4 http://hypatia.cs.ualberta.ca/~vtracker/

184 R. Mikhaiel et al.

(1)

 (2)

In Tables 9, 10, 11 we present the results of precision and recall for the containment,
inheritance and usage design aspects, respectively.

Table 9. Precision (P) and recall (R) per type of change for containment

 VTracker UMLDiff
P (%) R (%) P (%) R (%)

Added operations 100 100 99.4 97.6
Removed operations 100 100 55.5 83.3
Changed operations 100 100 100 100
Added attributes 98.4 98 98.4 98
Removed attributes 75 64.3 64.7 78.6
Changed attributes 83.3 88.2 91.9 100

Table 10. Precision (P) and recall (R) per type of change for inheritance

 VTracker UMLDiff
P (%) R (%) P (%) R (%)

Added generalizations 100 100 100 100
Removed generalizations N/A N/A N/A N/A
Changed generalizations N/A N/A N/A N/A
Added realizations 100 100 84.4 100
Removed realizations 100 100 N/A 0

N/A: not applicable due to zero by zero division.

Table 11. Precision (P) and recall (R) per type of change for usage

 VTracker UMLDiff
P (%) R (%) P (%) R (%)

Added operation calls 99 93.6 83.6 87.7
Removed operation calls 99.3 88.5 99.6 92
Changed operation calls 79.7 100 100 82.2
Added attribute accesses 99.8 97.1 98.5 95.3
Removed attribute accesses 99 88 98.9 77.8
Changed attribute accesses 92.1 100 100 6.1

4.4.1 VTracker
As shown in Table 9, VTracker demonstrated an absolute precision and recall in
identifying the actual changes that occurred in operations, but failed to identify
correctly some changes which were related to attributes. In total, VTracker missed 4
changes in attributes:

FPTP

TP

+
=Precision

FNTP

TP

+
=Recall

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 185

• In versions 1.0.4-1.0.5 and class AbstractBlock, the attribute border with
type BlockBorder was changed to attribute frame with type BlockFrame.
This double change (i.e., attribute renaming and type change) was reported as a
removal of attribute border from version 1.0.4 and an addition of attribute
frame in version 1.0.5.

• In versions 1.0.10-1.0.11 and class XYDrawableAnnotation, the attributes
width and height were renamed to displayWidth and displayHeight.
VTracker produced an incorrect mapping of the renamed attributes with other
attributes of the class.

• In versions 1.0.10-1.0.11 and class PaintScaleLegend, the static and final
attribute SUBDIVISIONS was changed to non-static and non-final attribute
subdivisions. This change was reported as a removal of the original attribute
and an addition of a new one.

Moreover, VTracker reported erroneously 6 cases of attribute changes that were
actually removals of fields from previous versions and additions of new ones.

Table 10 shows that VTracker demonstrated an absolute precision and recall in
identifying inheritance related changes.

Finally, VTracker demonstrated a relatively high precision and recall in identifying
usage-related changes (see Table 11). The lowest percentage is observed in the
precision for changed operation calls (79.7%). This is due to a significant number of
cases that were identified as changed operation calls, while actually they correspond
to removals of operation calls from previous versions (usually by deleting code
fragments within the body the operations) and additions of new operation calls.

4.4.2 UMLDiff
In general, UMLDiff demonstrated a high precision and recall in identifying
containment related changes (Table 9). In comparison with VTracker, UMLDiff
performed better in the identification of changed attributes. This means that the use of
domain-specific heuristics (e.g., by combining attribute usage information) can lead to
better results especially with respect to the renaming of attributes.

As shown in Table 10, UMLDiff failed to identify correctly all removals of
realizations. Moreover, the realizations that were supposed to be reported as removed
were actually reported as added (false positives). As a result, this situation had also a
negative impact on the precision of added realizations. All problematic cases refer to
subclasses that implemented a list of interfaces in a previous version that were
removed in the next version. However, the same list of interfaces was implemented by
their superclasses in both previous and next versions. We believe that this inaccuracy
is caused by the fact that UMLDiff computes and reports transitively all inheritance
relationships (i.e., the generalizations and realization relationships of a superclass are
also considered as direct relationships for all of its subclasses).

Regarding usage-related changes, UMLDiff demonstrated a low recall in identifying
changed attribute accesses (6.1%). All problematic cases refer to accesses of attributes
that were renamed or whose type has changed between two versions. Possibly,
UMLDiff considers that the access itself does not change when the attribute that it
refers to is changed.

186 R. Mikhaiel et al.

4.4.3 Comparison of Overall Accuracy
In Table 12 we present the overall precision and recall (i.e., over all types of changes)
per design aspect. It is obvious that VTracker demonstrated better overall precision
and recall in all examined design aspects. This result can be mainly attributed to the
fact that VTracker performed better on the changes related to operations and operation
calls (especially to the operations and operation calls that have been added, Table 9
and 11) whose number is significantly larger compared to the other types of changes
(Table 6 and 8) and thus its overall precision and recall was positively affected.

Table 12. Overall precision and recall

 VTracker UMLDiff
P (%) R (%) P (%) R (%)

Containment 99 98.9 97.7 97.4
Inheritance 100 100 88.1 88.1
Usage 95.6 94 91.8 84.4

It is very important to note that the improved accuracy in the results of VTracker

was achieved by using the default implementation of the tree-differencing algorithm
and without performing any kind of tuning in the default comparator or similarity
function. As already explained in Sections 5.1 and 5.2, we used VTracker “out of the
box” (so to speak) simply defining the XML input format for each examined design
aspect and specifying the required configuration options. The obtained experimental
results on the identification of design changes in object-oriented models open the way
for the application of VTracker (and possibly other domain-independent differencing
approaches) on other software engineering differencing problems whose artifacts can
be represented in the form of XML.

4.5 Evaluation of Efficiency and Scalability

In order to assess the efficiency and scalability of VTracker, we have measured the
CPU time required in order to compare the set of XML file pairs corresponding to all
the classes of JFreeChart in a given version pair. We performed this analysis for all 14
examined version pairs (starting from version 1.0.0 until version 1.0.13) and per
design aspect separately. The measurements have been performed on a
MacBookPro5,1 (Intel Core 2 Duo 2.4 GHz and 4 GB DDR3 SDRAM). The results
of the analysis are shown in Figure 4.

As it can be observed from Figure 4, the inheritance design aspect requires the
least amount of CPU time (ranging from 16 to 20 seconds for all the classes in a given
version pair), the containment design aspect requires a larger amount of CPU time
(ranging from 300 to 458 seconds), while the usage design aspect requires the largest
amount of CPU time (ranging from 3843 to 6292 seconds, approximately 64 to 105
minutes). From a more detailed analysis of the results, we can conclude that there is
an almost linear relation between the size of the compared trees (in terms of the
number of their nodes) and the time required for their comparison. For example, when
the size of the compared trees is increased by 10 times, the time required for their

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 187

Fig. 4. CPU time (in seconds) per examined version pair and design aspect for VTracker

comparison in also increased by 10 times. This outcome may initially not seem
intuitive, since the problem of matching ordered labeled trees is quadratic to the
number of nodes by nature. However, VTracker applies a set of heuristics (described
in Section 3) that make the performance of the tree differencing algorithm linear for a
major part of the matching problem and quadratic for the rest.

Another interesting observation is that the time required for the analysis of a
version pair increases as JFreeChart evolves. This phenomenon can be attributed to
two reasons: first because the number of classes increased as the project evolved, and
second because the size of some classes increased as the project evolved.

Additionally, we have measured the CPU time required by UMLDiff for the
comparison of each JFreeChart version pair in order to provide a direct comparison of
efficiency between the two differencing approaches. Figure 5 shows the CPU time
required for the comparison of each JFreeChart version pair by VTracker and
UMLDiff, respectively. In the case of VTracker, the given CPU time is actually the
sum of the CPU times required for differencing each design aspect (Figure 4).

As it can be observed from Figure 5, UMLDiff performed better in every examined
JFreeChart version pair and required on average 27% less CPU time compared to
VTracker, even though it considered all design aspects in the same context. The
separation of the three design aspects is necessary to make the use of VTracker
feasible for large systems (otherwise it suffers from insufficient-memory problems
and fails). This simplification of the problem also has a positive impact to the
accuracy of VTracker, which is difficult to quantify however. From VTracker’s
efficiency analysis per design aspect, we estimated that the comparison of the XML
files representing usage constitutes 93% of the total CPU time. The XML files for the
usage design aspect have exactly the same structure as the XML files for containment
(Figure 2) with the addition of nodes representing operation calls and attribute
accesses (as children of the Operation nodes). As a result, the XML files for the
usage aspect contain a significantly larger number of nodes and their alignment

188 R. Mikhaiel et al.

Fig. 5. CPU time (in seconds) per examined version pair for VTracker and UMLDiff

requires significantly more processing time, since matching is performed at two levels
(i.e., the Operation level and the OperationCall and AttributeAccess
level). However, the fact that VTracker can analyze each design aspect separately
makes it a more efficient solution for the detection of API-level changes (i.e., changes
in the public interface of the examined classes that can be detected by analyzing the
containment and inheritance design aspects).

4.6 Threats to Validity

Let us now consider the various threats to the validity of our experiment and findings.
In principle, the internal validity of our experiment could potentially be threatened by
erroneous application of tools and incorrect observations and interpretations by the
experimenters. On the other hand, the threats to external validity of the conducted
experiment are associated with factors that could limit the generalization of the results
to other examined projects, differencing algorithms and domains.

4.6.1 Internal Validity
The first threat to the internal validity of the conducted experiment is related with the
determination of true occurrences. Obviously, the extracted set of true occurrences
affects the computation of both precision and recall and consequently could also
affect the conclusions of the experiment. This threat was alleviated by two means.
First, the extraction of design changes was performed independently by two of the
authors and their results were merged by reaching a common consensus in the cases
of a different change interpretation. In this way, we tried to eliminate the bias in the
interpretation of changes. Second, the authors inspected the changes with the help of a
sophisticated source code differencing tool offered by the Eclipse IDE. This tool

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 189

made easier and more accurate the inspection and interpretation of changes in
comparison to generic text differencing tools which are not able to associate a change
with the context of the source code element where the change occurred. In this way,
we tried to eliminate human errors in the process of manually identifying source code
changes.

The second threat to the internal validity of the conducted experiment is related
with the correct and proper use of the examined differencing tools. Obviously, this
could affect the results being reported by the examined tools and consequently the
conclusions of the experiment. This threat was alleviated by taking advice directly
from the developers of the tools (who are also authors of this paper) on how to
properly configure, execute and collect the change information. More specifically, the
developer of UMLDiff (Xing) specified the queries required for the extraction of the
examined design changes from the database in which the change facts are stored.
Furthermore, the developer of VTracker (Mikhaiel) gave advice towards the
construction of XML input files that optimize the accuracy and efficiency of
VTracker, the proper configuration of VTracker for the employed XML schema
representation, and finally the correct parsing of the produced edit script describing
the changes.

4.6.2 External Validity
Regarding the generalization of the results to other projects, we have selected an
open-source project, namely JFreeChart, which has been widely used as a case study
in several empirical studies and source code differencing experiments in particular.
Therefore, it can be considered as a rather representative and suitable project for this
kind of experiments. However, it should be noted that JFreeChart is a project that
evolved mostly by adding new features and fixing bugs. Moreover, due to the fact that
it is a library, it has not been subject to a large number of refactoring activities (a
heavily refactored library would cause several compilation problems to already
existing client applications). Obviously, the presence of complicated refactorings in
the evolution of a project would have a significant impact on the accuracy of any
differencing technique. As a result, we cannot claim that the results can be
generalized to any kind of software projects (e.g., frameworks, APIs, applications).

Regarding the generalization of the results to other differencing algorithms, we
have compared a generic domain-agnostic algorithm (VTracker) with a domain-
specific algorithm (UMLDiff), which is considered as the state-of-the-art in the
domain of object-oriented model differencing. Several prior experimental studies
[19], [25] have demonstrated a high accuracy for UMLDiff in accordance with the
results of this experiment. Therefore, it can be considered as one of the best
differencing algorithms in its domain.

Finally, regarding the generalization of the results to other domains, we have
selected a domain, namely object-oriented design models, which is very rich in terms
of model elements and relationships among them. As a result, we could assume that
our generic algorithm would demonstrate a similar performance in domains having a
similar or lower complexity, such as Web service specification documents in the form
of WSDL files. However, this assumption needs to be empirically validated with
further experiments.

190 R. Mikhaiel et al.

5 Related Work

The general area of software-model differencing is quite vast. A pretty comprehensive
overview can be found in Chapter 2 of Xing’s thesis [28]. In this paper, we
eclectically review the most relevant work (Section 5.1) and we discuss the work of
our own team building on UMLDiff and VTracker (Section 5.2).

5.1 Object-Oriented Design Differencing

Object-oriented software systems are better understood in terms of structural and
behavioral models, such as UML class and sequence models. The UML modeling
tools often store UML models in XMI (XML Metadata Interchange) format for data-
interchange purposes. XML-differencing tools (such as DeltaXML5 for example),
applied to these easily available XMI representations, report changes of XML
elements and attributes, ignoring the domain-specific semantics of the concepts
represented by these elements. VTracker, with its domain-aware affine cost function
and its ability to take into account references, is exactly addressing this problem of
domain-aware XML differencing. VTracker (and its precursor algorithms) has in fact
been applied to other domains, including HTML comparison [9], RNA alignment [7],
and WSDL comparison [8, 31].

In the context of UML differencing, several UML modeling tools come with their
own UML-differencing methods [2, 11]. Each of these tools detect differences
between subsequent versions of UML models, assuming that these models are
manipulated exclusively through the tool in question which manages persistent
identifiers for all model elements. Relying on consistent and persistent identifiers is
clearly not possible if the development team uses a variety of tools, which is usually
the case.

More generally, on the subject of reasoning about similarities and differences
between UML models, we should mention Egyed’s work [3] on a suite of rule- and
constraint- and transformation-based methods for checking the consistency of the
evolving UML diagrams of a software system. Similarly, Selonen et al. [13] have also
developed a method for UML transformations, including differencing.

Kim et al. [5] developed a method for object-oriented software differencing that
works at the level of the source code itself (and does not require its design model).
The algorithm takes as an input two versions of a program and starts by comparing
the method headers from each program version and identifying the ones that most
match at the lexical level, based on a set of matching rules and a similarity threshold.
The algorithm iteratively and greedily selects the best rule to apply to identify the
next pair of matching methods in order to maximize the total number of matches.
This idea was later extended to LSDiff (Logical Structural Diff) [4], which involves
more rules.

More recently, Xing [29] proposed a general framework, GenericDiff, for model
comparison. GenericDiff represents a domain-independent approach for model

5 Mosell EDM Ltd: http://www.deltaxml.com

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 191

differencing that is also aware of domain-specific properties and syntax. In this
approach the domain-specific inputs are separated from the general graph matching
process and are encoded by using composite numeric vectors and a pair-up graph.
This allows the domain-specific properties and syntax to be uniformly handled during
the matching process. GenericDiff is similar to VTracker, in that they both model the
subject systems in terms of a more abstract representation; they are different in that
GenericDiff adopts a bipartite-graph model where VTracker adopts a tree model.

5.2 Work Building on UMLDiff and VTracker

In this section, we review research from our team, building on UMLDiff and VTracker
for different use cases in design differencing: (a) understanding the design changes
between two versions of a system; (b) analyzing the evolution history of a system and
its constituent components; (c) comparing the intended vs. the as-implemented design
of a system; and (d) merging out-of-sync versions of software.

Both UMLDiff and VTracker have been applied to the task of UML-design
differencing. UMLDiff was implemented in the context of JDEvAn [27], an Eclipse
plugin, which can be invoked by the developer to query a pre-computed database of
design changes and the analyses based on them. The envisioned usage of UMLDiff in
the context of JDEvAn was that it would be applied as an off-line process to pairs of
“stable” releases of the system as a whole and its results would be made available to
developers in the context of their development tasks, i.e., looking at the recent
changes of an individual class, or reviewing the refactorings across the system during
the most recent releases.

VTracker, on the other hand, was implemented as a service accessible through
WebDiff [14], a web-based user interface. In the context of the WebDiff portal,
VTracker can be applied to any level of logical models, including models of systems,
packages or individual classes. Table 13 below identifies the publications in which
these studies are described in detail.

Table 13. Studies with UMLDiff and VTracker

 UMLDiff/JDEvAn VTracker/WebDiff
design changes 19, 25 14

longitudinal class/system analysis 16, 17, 18, 21, 23
design vs. code differencing 14

refactoring and merging 22, 24, 26

5.2.1 Longitudinal Analysis of Individual Classes and the Overall System
Ever since Lehman and Belady first formulated the “Laws of Software Evolution” in
1974, describing the balance between forces driving new software development and
forces that slow down progress and increase the brittleness of a system, software-
engineering research has been investigating different metrics and methods for
analyzing evolution to recognize the specific forces at play at a particular point in the
life of a system.

192 R. Mikhaiel et al.

Relying on UMLDiff, we developed a method for analyzing the long-term
evolution history of a system as a whole, its individual classes, and related class
collections, based on metrics summarizing its design-level changes. Given a sequence
of UML class models, extracted from a corresponding sequence of code releases, we
can use UMLDiff to extract the design-level changes between each pair of subsequent
code releases, to construct a sequence of system-wide system-change transactions and
class-specific class-change transactions.

To analyze potential co-evolution patterns between sets of system classes [18, 23],
we first discretized the class-change transactions into a sequence of 0s (when there
was no change to the class) and 1s (if there was at least some change to the class). In a
subsequent experiment, we conducted a more refined discretization process,
classifying the collection of changes that each class suffered into one of five discrete
categories, depending on whether they have high/low/average number of element
additions/deletions/changes. We then applied the Apriori association-rule mining
algorithm to recognize sets of coevolving classes (as itemsets). Recognizing
coevolving classes is interesting since co-evolution implies design dependencies
among the coevolving classes; when such dependencies are undocumented, they are
likely to be unintentional and possibly undesirable. In fact co-evolution is frequently
referred to as a “bad design smell” implying the need for refactoring.

In addition to co-evolution, we have explored two more types of analyses of
longitudinal design evolution. We used phasic analysis to recognize distinct phases in
the discretized evolution profile of a design entity, whether it is the system as a whole or
an individual class. Intuitively, a phase consists of a consecutive sequence of system
versions, all of which exhibit similar classifications of changes. Identifying a phase in a
class-evolution profile may provide some insight regarding the development goals
during the corresponding period. We further used Gamma analysis to recognize
recurring patterns in the relative order of phases in an evolution profile, such as
consistent precedence of a phase type over another. Different process models advocate
distinctive ordering of activities in the project lifecycle; gamma analysis can reveal such
consistent relative orderings and, thus, hint at the adopted process model. In particular,
Gamma analysis provides a measure of the general order of elements in a sequence and
a measure of the distinctiveness or overlap of element types.

Finally, we developed a set of special-purpose queries [22, 24] to the design-
changes database to extract information about combination of design-level changes
characteristic of refactorings.

5.2.2 Design vs. Code Differencing
We have experimented with reflexion, i.e., comparison between design (as intended)
vs. design as implemented in the code (extracted through reverse-engineering tools)
using the VTracker through the WebDiff portal. It is interesting to note here that
although both UMLDiff and VTracker are equally applicable (and able to address) to
this task, pragmatically VTracker is a better choice. Since UMLDiff is implemented as
a java-based program accessing a database of extracted design-level facts, to apply it
to this task, we would have to develop a parser for XMI to extract the relevant design
facts from a UML design and store them in the JDEvAn [27] database for UMLDiff.

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 193

VTracker, on the other hand, requires as input XML documents easily available as the
products of either a design tool or a reverse engineering tool.

5.2.3 Software Merging
A particularly interesting case of software merging is that of migrating applications to
newer versions of libraries and/or frameworks. Applications built on reusable
component frameworks are subject to two independent, and potentially conflicting,
evolution processes. The application evolves in response to the specific requirements
and desired qualities of the application’s stakeholders. On the other hand, the
evolution of the component framework is driven by the need to improve the
framework functionality and quality while maintaining its generality. Thus, changes
to the component framework frequently change its API on which its client
applications rely and, as a result, these applications break.

Relying on UMLDiff, in the Diff-CatchUp tool [26], we tackled the API-evolution
problem in the context of reuse-based software development, which automatically
recognizes the API changes of the reused framework and proposes plausible
replacements to the “obsolete” API based on working examples of the framework
code base. The fundamental intuition behind this work is that when a new version of
the framework is developed, it is usually associated with a test suite that exercises it.
This test suite constitutes an example of how to use the new framework version and
can be used as an example for other client applications that need to migrate.

6 Summary and Conclusion

In this paper, we reviewed two different algorithms and their corresponding tool
implementations for object-oriented design differencing, a task that is essential for the
purposes of (a) recognizing design-level changes between two versions of a software
system; (b) comparing the intended design of a system against its as-implemented
design; (c) analyzing the long-term evolution of a system and its constituent
components; and (d) merging out-of-sync versions of software.

UMLDiff and VTracker assume the same basic conceptual model of UML models,
namely, as trees, where nodes correspond to design elements, their children
correspond to the elements’ contents, and additional edges connect them to other
“related” design elements. The actual representations on which the two algorithms
operate are different. UMLDiff works on a database of design facts, precisely
reflecting the UML relations in the system. VTracker works on XML documents and
primarily exploits and relies on the tree structure of these documents, as opposed to
the semantics of the underlying UML relations they represent. Together, they give us
an interesting test-bed on which to study software-model differencing in general.

In order to compare the two approaches, we first extracted the actual design
changes that occurred between successive versions of the JFreeChart open-source
project and used them as the set of true occurrences. This gold standard has been
made publicly available and can serve as a benchmark for the evaluation of other
differencing techniques, as well as for the replication of the conducted experiment.
Based on the extracted set of true occurrences we computed the precision and recall
of VTracker and UMLDiff and compared their accuracy for several types of changes

194 R. Mikhaiel et al.

within three design aspects, namely containment, inheritance and usage. In general,
VTracker proved to be more accurate than UMLDiff over most types of changes per
design aspect despite of being domain-independent. UMLDiff performed better than
VTracker only in the identification of changed attributes. The experimental results
open the way for the application of VTracker on other software engineering
differencing problems whose artifacts can be represented in the form of XML.

Finally, we performed an efficiency analysis based on the CPU time required by
VTracker and UMLDiff for the comparison of all classes per version pair of
JFreeChart. We concluded that VTracker has a comparable performance to UMLDiff,
since VTracker required on average 27% more CPU time compared to UMLDiff.
Additionally, the analysis has shown that there is an almost linear relation between
the size of the compared trees (in terms of the number of their nodes) and the time
required for their comparison and thus the VTracker algorithm can be efficiently
applied to domains of problems having even a larger size.

The fundamental contribution of this study is that it demonstrates VTracker’s
relevance to software difference, as a flexible and effective tool for recognizing
changes in software evolution. In the future, we plan to apply VTracker to more
instances of this general problem, by developing more XML representations of
software, towards producing a general software differencing service.

Acknowledgements. Many more people have been involved in this work over the
years during which these algorithms were being developed and evaluated, including
Brendan Tansey, Ken Bauer, Marios Fokaefs and Fabio Rocha. Their contributions
towards this body of work have been invaluable and we are grateful for them. This
work has been supported by NSERC, AITF (former iCORE) and IBM.

References

1. Dulucq, S., Tichit, L.: RNA Secondary structure comparison: exact analysis of the
Zhang–Shasha tree edit algorithm. Journal Theoretical Computer Science 306(13),
471–484 (2003)

2. Comparing and merging UML models in IBM Rational Software Architect,
http://www-128.ibm.com/developerworks/rational/library/
05/712_comp/

3. Egyed, A.: Scalable consistency checking between diagrams - The VIEWINTEGRA
approach. In: Proceedings of the 16th International Conference on Automated Software
Engineering, pp. 387–390 (2001)

4. Kim, M., Notkin, D.: Discovering and Representing Systematic Code Changes. In:
Proceedings of the 31st International Conference on Software Engineering, pp. 309–319
(2009)

5. Kim, M., Notkin, D., Grossman, D.: Automatic Inference of Structural Changes for
Matching Across Program Versions. In: Proceedings of the 29th International Conference
on Software Engineering, pp. 333–343 (2007)

6. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady 10(8), 707–710 (1966)

 Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method 195

7. Mikhaiel, R., Lin, G., Stroulia, E.: Simplicity in RNA Secondary Structure Alignment:
Towards biologically plausible alignments. In: Post Proceedings of the IEEE 6th
Symposium on Bioinformatics and Bioengineering, pp. 149–158 (2006)

8. Mikhaiel, R., Stroulia, E.: Examining Usage Protocols for Service Discovery. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 496–502. Springer, Heidelberg
(2006)

9. Mikhaiel, R., Stroulia, E.: Accurate and Efficient HTML Differencing. In: Proceedings of
the 13th International Workshop on Software Technology and Engineering Practice, pp.
163–172 (2005)

10. Mikhaiel, R.: Comparing XML Documents as Reference-aware Labeled Ordered Trees,
PhD Thesis, Computing Science Department, University of Alberta (2011)

11. Ohst, D., Welle, M., Kelter, U.: Difference tools for analysis and design documents. In:
Proceedings of the 19th International Conference on Software Maintenance, pp. 13–22
(2003)

12. Schofield, C., Tansey, B., Xing, Z., Stroulia, E.: Digging the Development Dust for
Refactorings. In: Proceedings of the 14th International Conference on Program
Comprehension, pp. 23–34 (2006)

13. Selonen, P., Koskimies, K., Sakkinen, M.: Transformations between UML diagrams.
Journal of Database Management 14(3), 37–55 (2003)

14. Tsantalis, N., Negara, N., Stroulia, E.: WebDiff: A Generic Differencing Service for
Software Artifacts. In: Proceedings of the 27th IEEE International Conference on Software
Maintenance, pp. 586–589 (2011)

15. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of the
ACM 21(1), 168–173 (1974)

16. Xing, Z., Stroulia, E.: Understanding Phases and Styles of Object-Oriented Systems’
Evolution. In: Proceedings of the 20th International Conference on Software Maintenance,
pp. 242–251 (2004)

17. Xing, Z., Stroulia, E.: Understanding Class Evolution in Object-Oriented Software. In:
Proceedings of the 12th International Workshop on Program Comprehension, pp. 34–45
(2004)

18. Xing, Z., Stroulia, E.: Data-mining in Support of Detecting Class Co-evolution. In:
Proceedings of the 16th International Conference on Software Engineering & Knowledge
Engineering, pp. 123–128 (2004)

19. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differencing. In:
Proceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering, pp. 54–65 (2005)

20. Xing, Z., Stroulia, E.: Towards Experience-Based Mentoring of Evolutionary
Development. In: Proceedings of the 21st IEEE International Conference on Software
Maintenance, pp. 621–624 (2005)

21. Xing, Z., Stroulia, E.: Analyzing the Evolutionary History of the Logical Design of
Object-Oriented Software. IEEE Trans. Software. Eng. 31(10), 850–868 (2005)

22. Xing, Z., Stroulia, E.: Refactoring Practice: How it is and How it Should be Supported -
An Eclipse Case Study. In: Proceedings of the 22nd IEEE International Conference on
Software Maintenance, pp. 458–468 (2006)

23. Xing, Z., Stroulia, E.: Understanding the Evolution and Co-evolution of Classes in Object-
oriented Systems. International Journal of Software Engineering and Knowledge
Engineering 16(1), 23–52 (2006)

24. Xing, Z., Stroulia, E.: Refactoring Detection based on UMLDiff Change-Facts Queries. In:
Proceedings of the 13th Working Conference on Reverse Engineering, pp. 263–274 (2006)

196 R. Mikhaiel et al.

25. Xing, Z., Stroulia, E.: Differencing logical UML models. Autom. Softw. Eng. 14(2),
215–259 (2007)

26. Xing, Z., Stroulia, E.: API-Evolution Support with Diff-CatchUp. IEEE Trans. Software
Eng. 33(12), 818–836 (2007)

27. Xing, Z., Stroulia, E.: The JDEvAn tool suite in support of object-oriented evolutionary
development. In: Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008 Companion), pp. 951–952 (2008)

28. Xing, Z.: Supporting Object-Oriented Evolutionary Development by Design Evolution
Analysis, PhD Thesis, Computing Science Department, University of Alberta (2008)

29. Xing, Z.: Model Comparison with GenericDiff. In: Proceedings of the 25th IEEE/ACM
International Conference on Automated Software Engineering, pp. 135–138 (2010)

30. Zhang, K., Shasha, D.: Simple fast algorithm for the editing distance between trees and
related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

31. Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau, A.: An Empirical Study on Web
Service Evolution. In: Proceedings of the IEEE International Conference on Web Services,
ICWS 2011, pp. 49–56 (2011)

	Differencing UML Models: A Domain-Specific vs. a Domain-Agnostic Method
	Introduction
	UMLDiff
	The
	Assessing Similarity

	VTracker
	Cost Computation
	Reference-Aware Edit Distance
	Simplicity Heuristics
	Schema-Driven Synthesized Cost Function

	Comparison of the UMLDiff vs. VTracker Methodologies
	Methodologies
	Specification of XML Input for
	Configuration of
	Extraction of True Occurrences
	Evaluation of Precision and Recall
	Evaluation of Efficiency and Scalability
	Threats to Validity

	Related Work
	Object-Oriented Design Differencing
	Work Building on UMLDiff and VTracker

	Summary and Conclusion
	References

