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Abstract—Lambda expressions have been introduced in Java
8 to support functional programming and enable behavior pa-
rameterization by passing functions as parameters to methods.
The majority of software clones (duplicated code) are known
to have behavioral differences (i.e., Type-2 and Type-3 clones).
However, to the best of our knowledge, there is no previ-
ous work to investigate the utility of Lambda expressions for
parameterizing such behavioral differences in clones. In this
paper, we propose a technique that examines the applicability of
Lambda expressions for the refactoring of clones with behavioral
differences. Moreover, we empirically investigate the applicability
and characteristics of the Lambda expressions introduced to
refactor a large dataset of clones. Our findings show that Lambda
expressions enable the refactoring of a significant portion of
clones that could not be refactored by any other means.
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I. INTRODUCTION

The refactoring of software clones can help to reduce the
size of the code-base [1], [2], [3], avoid software defects due to
inconsistent clone updates [4], [5], and minimize the negative
effect of duplicated code on maintenance effort and cost [6],
[7]. A recent study involving GitHub contributors has shown
that they are seriously concerned about code duplication [8].
Among the top reasons they applied Extract Method refac-
torings was to reuse existing code (i.e., avoid duplication)
and remove already existing duplication [8]. However, clone
refactoring is not trivial, because the majority of clones are not
identical code fragments, i.e., developers tend to modify the
copied code fragments to adjust them to another context, or
to different requirements. As a matter of fact, there are more
copy/pasted fragments in which minor to significant editing
activities took place than identical clones in repositories [9].

Motivation: The current state-of-the-art clone refactoring
techniques merge clones by introducing parameters in the
extracted method for the expressions being different among
the merged clone fragments [10], [11]. After the refactoring,
the parameterized expressions are passed as arguments to the
extracted method calls, and thus these expressions are eval-
uated before the execution of the extracted duplicated code.
However, this parameterization approach could cause a change
in the program behavior, especially when the parameterized
expressions are method calls and object creations, due to side-
effects on the state of the objects involved in these expressions.

In a previous work [12], we developed a refactorability
analysis approach that can automatically determine whether
the parameterization of the expressions being different be-
tween two clones could change the program behavior. The
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proposed technique performs a sophisticated static source code
analysis to extract intra- and inter-procedural data dependen-
cies between the statements inside the clone fragments to
be merged, and examines whether these data dependencies
would be preserved after the refactoring of the clones. If the
parameterization of the clone differences breaks at least one
of the originally existing dependencies, then the refactoring is
not behavior-preserving, and thus the clones are assessed as
non-refactorable. Using this refactorability analysis tool, we
performed a large-scale empirical study on clones detected by
four different clone detectors in nine open-source projects [12],
where we found out that around 94% of the detected clones
belong to either Type-2 (i.e., structurally/syntactically identical
code fragments with variations in identifier names, literal
values, and types), or Type-3 (i.e., copied fragments with
statements changed, added or removed in addition to Type-
2 differences) categories. Only 14% of these Type-2 and
Type-3 clones were assessed as safely refactorable using the
standard parameterization approach. Among the top reasons
preventing these clones from being refactorable are (1) the
presence of different expressions within matched statements
whose parameterization would change the program behavior,
(2) the presence of unmapped statements within the clone
fragments, also known as clone gaps, and (3) the presence of
different method calls having a void return type (Java does
not allow parameters of void type).

Java 8 introduced Lambda expressions as a means to support
functional programming. A Lambda expression in Java 8§, is
an anonymous function containing either a block of statements
or a single expression that can be passed as a parameter to a
method, thus achieving behavior parameterization [13]. One
of the most important features of a Lambda expression is that
it executes in the context of its invocation (i.e., inside the
method in which it is passed as an argument), and thus it can
use the values of the variables that are defined in that context.
This makes Lambda expressions ideal for the parameterization
of the three behavioral differences discussed in the previous
paragraph preventing the refactoring of Type-2 and Type-3
clones, since with Lambda expressions we can parameterize
behavior that is different among the clone fragments without
changing the original execution order.

Contributions: In this paper, we propose a technique and a
tool that utilizes Lambda expressions to enable the refactoring
of Type-2 and Type-3 clones having behavioral differences
that cannot be parameterized with regular parameters. In



particular, we developed an algorithm to examine whether it
is possible to introduce Lambda expressions for the unmapped
statements (i.e., clone gaps) and expressions assessed as non-
parameterizable by our previously proposed refactorability
analysis approach [12]. To the best of our knowledge, this is
the first work to investigate the use of Lambda expressions as a
means to refactor software clones with behavioral differences.
To evaluate the efficacy of the proposed technique, we first
assess its correctness by refactoring and testing 12,602 clone
pairs covered by unit tests, and reporting the compilation errors
and test failures that occurred. Next, we apply the proposed
technique on a dataset of 46,765 Type-2 and Type-3 clone
pairs, and report the percentage of the clone pairs whose
refactoring was enabled using Lambda expressions, and the
characteristics of the introduced Lambda expressions. Finally,
we make publicly available the dataset of the examined clones
to facilitate future research on clone refactoring [14].

II. MOTIVATING EXAMPLES

In this section, we use two examples of clones from open-
source projects to motivate the reader about the usefulness of
Lambda expressions in the refactoring of clones.

Example 1: Figure la shows two duplicated methods found
in the test code of the JFreeChart project (version 1.0.10)
that create a mock object of Day and Hour type, respec-
tively, to test its method getFirstMillisecond (). Both test
methods initially save the current Locale and TimeZone of
the system into temporary variables saved and savedZone,
respectively, and set the Locale to UK and the TimeZone to
Europe/London, before instantiating the mock object. After
testing an assertion with assertEquals (), the Locale and
TimeZone of the system is reset to the original values saved
in the temporary variables. The reset of the Locale and
TimeZone is necessary to avoid affecting other unit tests
whose execution follows. The duplicated test methods are
Type-2 clones and have only two differences (highlighted
in yellow), namely (1) the type of the mock object being
instantiated, and (2) the literal of 1ong type passed as the first
argument in assertEquals (). It should be emphasized that
the same test method is duplicated 9 times in the JFreeChart
test code-base, each time testing a different subclass type of
the RegularTimePeriod superclass type, namely Day, Hour,
Millisecond, Minute, Month, Quarter, Second, Week,
and Year, with exactly the same differences.

If we assume that the developers of these test methods
decide to test the mock objects with another Locale and/or
TimeZone, they would have to apply the same changes 9
times, which requires significant effort and time. Therefore, we
can argue that this is an interesting case for refactoring, assum-
ing that future test maintenance activities are probable. In fact
there is evidence that developers read, write, and maintain test
code [15], [16], [17], and thus clone refactoring could facilitate
test code reuse, understandability, and maintainability.

To refactor these test methods there are two alternative
approaches. The first approach is to extract the identical func-
tionality (i.e., the first four statements constitute the common
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set up logic of the tests, while the last two statements constitute
the common fear down logic of the tests) into separate
methods. However, this approach might not be always feasible
(e.g., the set up logic of the tests should return two variables,
namely saved and savedZone, and Java allows methods to
return at most one value), and does not eliminate completely
the duplication (e.g., the two statements initializing the mock
objects and testing the assertion will remain duplicated). The
second approach is to parameterize the differences in the test
methods. Figure 1b shows the parameterization of the test
methods using two regular parameters. Note that in the ex-
tracted method the types of the mock objects have been gener-
alized to the common superclass type RegularTimePeriod,
and method getFirstMillisecond() is polymorphically
called. This parameterization is changing the program behavior
and makes the refactored tests fail. The reason is that the
mock objects are instantiated before the execution of the
extracted method, when they are passed as arguments to the
extracted method, and thus their instantiation is not using
the appropriate Locale and TimeZone configured in the
set up logic of the tests. Through inter-procedural program
dependence analysis, we can see that Day and Hour construc-
tors are using the static variables Locale.defaultLocale
and TimeZone.defaultTimeZone, defined by statements
Locale.setDefault () and TimeZone.setDefault () , re-
spectively, in the set up logic, and thus there are inter-
procedural data dependencies from these statements to the
constructor invocations. Figure 1c shows the parameterization
of the test methods using Lambda expressions to pass the
two different class instantiations as arguments to the extracted
method. Note that the type of the first parameter in the
extracted method is the java.util.function.Supplier
functional interface (more details about functional interfaces
will be given in Section III-B), and the Lambda expressions
passed as arguments are executed by calling the get () method
over the Supplier parameter arg0. This parameterization is
preserving the program behavior and makes the refactored tests
pass, because the mock objects are instantiated in exactly the
same execution point as before the refactoring.

Example 2: Figure 2a shows two duplicated methods found
in the Apache Ant project (version 1.7.0) that belong to
classes LineContains and LineContainsRegExp, respec-
tively. Both methods implement a similar logic, i.e., they read
a stream line-by-line (the current line is saved in the line
field), and the first method (left side of Figure 2a) examines if
line contains one of the words inside the contains vector,
while the second method (right side of Figure 2a) examines if
line matches with one of the regular expressions inside the
regexps vector. The duplicated methods are Type-3 clones
and have two main differences, namely (1) the types of the
elements inside the vectors (contains is a vector of String
objects, while regexps is a vector of RegularExpression
objects), and (2) the logic behind the matching of line as
indicated by the unmapped statements (highlighted in red)
inside the inner for loop.



Difference between mapped statements

public void testGetFirstMillisecond() {
Locale saved = Locale.getDefault();
_-Locale.setDefault(Locale.UK);
TimeZone savedZone = TimeZone.getDefault();

‘-~ TimeZone. setDefaul t(TimeZone.getTimeZone( "Europe/London™)); Y TimeZone. setDefaul t(TimeZone.getTimeZone( "Europe/London"));

Day d = new Day(1, 3, 1970);

assertEquals(5094000000L, d.getFirstMillisecond());

Locale. setDefault(saved);
TimeZone. setDefault(savedZone);

}

[*s]Data dependence
public void testGetFirstMillisecond() {
Locale saved = Locale.getDefault();
-Locale.setDefault(Locale.UK);
TimeZone savedZone = TimeZone.getDefault();

Hour h = new Hour(15, 1, 4, 2006);

assertEquals(1143900000000L, h.getFirstMillisecond());

Locale. setDefault(saved);
TimeZone. setDefault(savedZone);

}

(a) A pair of clones found in the tests of the JFreeChart open-source project

public void testGetFirstMillisecond() {
extracted(new Day(1, 3, 1970), 5094000000L);

public void testGetFirstMillisecond() {

}

extracted(new Hour(15, 1, 4, 2006), 1143900000000L);

public void extracted(RegularTimePeriod argd, long argl) {

Locale saved = Locale.getDefault();
Locale.setDefault(Locale.UK);
TimeZone savedZone = TimeZone.getDefault();

TimeZone.setDefault(TimeZone.getTimeZone("Europe/London"));

RegularTimePeriod d = argo;
assertEquals(argl, d.getFirstMillisecond());
Locale.setDefault(saved);
TimeZone.setDefault(savedZone);

}

(b) Parameterization with regular parameters changing the program behavior

public void testGetFirstMillisecond() {

extracted(()->new Day(1, 3, 1970), 5094000000L);

public void extracted(Supplier<RegularTimePeriod> argd, long argl) {

Locale saved = Locale.getDefault();
Locale.setDefault(Locale.UK);
TimeZone savedZone = TimeZone.getDefault();

TimeZone. setDefaul t(TimeZone.getTimeZone( "Europe/London™));

RegularTimePeriod d = arg@.get();
assertEquals(argl, d.getFirstMillisecond());

public void testGetFirstMillisecond() {

extracted(()->new Hour(15, 1, 4, 2006), 1143900000000L);

Locale. setDefault(saved);

}

TimeZone. setDefault(savedZone);

(c) Parameterization with Lambda expressions preserving the program behavior

Fig. 1.

Unmapped statement
public int read()
throws IOException {
1if (!getInitialized()) {
2 initialize();
3 setInitialized(true);

}
4int ch = -1;
5 if (line != null) {
6 ch = line.charAt(0);
if (line.length() == 1) {
line = null;
} else {
line = line.substring(1);

}
} else {
10 final int containsSize = contains.size();
for (line = readLine();
line != null;
line = readLine()) {
12 boolean matches = true;
13 for (int i=0; matches & i<containsSize;
14 ,-String containsStr =
' (String)contains.elementAt (i)

i) {

-
>

“matches = line.indexOf(containsStr)>=0;

}
16 if (matches ~ isNegated()) {
17 break;

}
s if (line != null) {
19 return read();

20 return ch;

Difference between mapped statements [a]Data dependence

public int read()
throws IOException {

1 if (lgetInitialized()) {
initialize();
setInitialized(true);

}
4int ch = -1;
5 if (line != null) {
ch = line.charAt(0);
if (line.length() == 1) {
8 line = null;
} else {
line = line.substring(1);

}
} else {
10 final int regexpsSize =
11 for (line = readLine();
line != null;
line = readLine()) {
12 boolean matches = true;
13 for (inti=0; matches & i<regexpsSize; i++){
1 -RegularExpression regexp = }
i (RegularExpression)regexps.elementAt(i);
15 “Regexp re = regexp.getRegexp(getProject());
16 “matches = re.matches(line);

regexps.size();

}
v if (matches ~ isNegated()) {
18 break;

}
19 if (line != null) {
return read();

21 return ch;

(a) A pair of clones found in the Apache Ant open-source project

public int read() throws IOException {

return extracted(contains,
(Integer i) -> {

String containsStr = (String)contains.elementAt(i);

return line.indexOf(contain:

(c) Clones after refactoring with Lambda expressions
Using Lambda expressions to enable the refactoring of Type-3 clones.

Fig. 2.

Using Lambda expressions to enable the refactoring of Type-2 clones.

protected int extracted(Vector vector,

Function<Integer, Boolean> matcher)
‘throws IOException {

if (!getInitialized()) {
initialize();
setInitialized(true);

}
int ch = -1;
if (line != null) {
ch = line.charAt(0);
if (1line.length() == 1) {
line = null;
} else {
line = line.substring(1);

}
} else {
final int containsSize =vector.size();
for (line = readLine();
line != null;
line = readLine()) {
boolean matches = true;
for (int i =0; matches & i<containsSize; i+){

matches = (boolean)matcher.apply(i);

}
if (matches ~ isNegated()) {
break;

}
if (line != null) {
return read();

return ch;

(b) Extracted method after refactoring

public int read() throws IOException {

return extracted(regexps,

(Integer i) -> {

sStr)>=0;

RegularExpression regexp = (RegularExpression)regexps.elementAt(i);
Regexp re = regexp.getRegexp(getProject());

return re.matches(line);

}
)s
}
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To refactor these methods one could first try to convert
them into Type-2 clones by moving the unmapped statements
before or after the common code. In our previous work [12],
we observed some typical patterns of Type-3 clones that can
be easily converted into Type-2 clones by inlining temporary
variables that appear in only one of the clones, or by moving
statements declaring a variable at a different nesting level.
However, in the example of Figure 2a it is not possible to
move the unmapped statements, because they depend on the
value of variable i that increments after each iteration of the
inner for loop (i.e., there is a data dependence from the for
loop, which declares and increments variable i to the first
unmapped statement that uses i to retrieve the next element
from the vector). In turn, the statements that follow inside
the inner for depend on the variable declared by the first
unmapped statement (i.e., containsStr and regexp, respec-
tively), as shown by the data dependencies. Therefore, we need
a parameterization approach that preserves the execution of the
unmapped statements inside the inner for loop.

Figure 2c shows the parameterization of the methods using
Lambda expressions to pass the two different 1ine matching
behaviors as arguments to the extracted method (Figure 2b).
The Lambda expressions (Figure 2c¢) take as input parameter
i and return the matching result as a boolean. The type
of the second parameter in the extracted method is the Java
predefined java.util.function.Function functional in-
terface, and the Lambda expressions passed as arguments
are executed by calling the apply (i) method through the
Function parameter matcher. This example demonstrates
that Lambda expressions are executed in the context of their
invocation, and thus they can use the values of the variables
that are defined in that context (i.e., variable i).

Alternatively, these methods could be parameterized by ap-
plying the Template Method design pattern [18], i.e., introduc-
ing a new abstract method in the common superclass where the
extracted code (i.e., template) will be pulled up, replacing the
uncommon code with a call to the abstract method, and finally
overriding the abstract method in the subclasses containing the
original clones with the corresponding behavior. However, it
is not always possible to apply the Form Template Method
refactoring [19], because (a) the clones might exist in the same
class or in classes not having a common superclass, (b) it
might not be always possible to make the common superclass
abstract, if the project contains objects instantiated from the
common superclass, (c) the common superclass might have
other subclasses that must provide an implementation for the
newly introduced abstract method without necessarily needing
its functionality, and (d) it might not be always possible to
introduce a new intermediate common superclass (i.e., extract
superclass) to host the template method, if the subclasses
containing the original clones belong to different levels of the
inheritance hierarchy. On the other hand, there are no such
restrictions for the application of Lambda expressions.

With these examples, it becomes clear that Lambda expres-
sions can enable the refactoring of clones whose parameteri-
zation is not feasible or behavior-preserving by other means.
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III. APPROACH
A. Input

The input of our approach is the output of the clone
refactorability analysis tool from our prior research [12],
which takes as input a pair of clone fragments, and returns
a mapping between the statements of the clone fragments,
along with the differences (i.e., pairs of expressions being
different) inside the mapped statements, and a list of unmapped
statements (i.e., statements that could not be matched with any
statement from the other clone fragment due to incompatible
AST structure) for each clone fragment. In a nutshell, the
solution proposed in our prior research [12] applies a maximum
common subgraph algorithm [20] on the Program Dependence
Graphs [21] of the clones in a divide-and-conquer fashion by
breaking the initial statement mapping problem to smaller sub-
problems based on the control dependence structure of the
clones. In this way, it explores the search space of alternative
mapping solutions in order to maximize the number of mapped
statements and minimize the number of differences between
them. Additionally, it can properly handle clones in which
matching statements have been reordered, in contrast to token-
based differencing approaches, such as MCIDiff [22], that do
not consider the syntactic structure of the program.

A visual representation of the extracted information is
shown in Figure 2a, where the differences between the mapped
statements are highlighted in yellow and the unmapped state-
ments are highlighted in red. In the final phase, a list of
preconditions is examined to determine whether the detected
differences can be safely parameterized with regular param-
eters, and whether the unmapped statements can be safely
moved before or after the common code. If the examined
preconditions fail, the corresponding differences or unmapped
statements are associated with a precondition violation, and
the clones are assessed as non-refactorable.

Our current work focuses on the differences and unmapped
statements associated with precondition violations and pro-
poses a method to examine whether their parameterization
with Lambda expressions is feasible.

B. Lambda Unification

Since Lambda expressions are anonymous functions, the
unification of two code fragments into a common function (or
a functional interface following the Java terminology) requires
that these code fragments can be abstracted to two functions
with an identical signature. More specifically, there are three
conditions that should be met regarding the signature:
1) The code fragments should return at most one variable of
the same type, or different types that can be generalized to
a common type.
The code fragments should require the same input param-
eter types from the extracted duplicated code.
The code fragments should throw the same exception types.

2)

3)
Our approach can be divided into 4 parts:

1. Handling of statement gaps:
A statement gap consists of two sets of consecutive un-
mapped statements .S; and S;, which are nested at the same



level. To determine whether a statement gap can be param-
eterized in the form of Lambda expressions, we propose
Algorithm 1. In a nutshell, the proposed algorithm is a recur-
sive function that can expand backwards and/or forwards the
original sets of statements (if necessary), so that the final sets
of statements require the same input parameters and produce
the same output. Additionally, when the aforementioned con-
ditions are finally met, it also examines a list of preconditions
to ensure that the introduction of the Lambda expressions is
feasible and behavior-preserving.

Algorithm 1 Recursive function determining if a statement

gap can be parameterized in the form of Lambda expressions

Input: A statement-level gap [S;, S;]

Output: true if Lambda refactoring is feasible, false oth-
erwise, updated sets [S, S;] if expansion occurred

1: function LAMBDAREFACTORABLE(S;, S;)

2: UV, = usedVariables(S;)

3: UV, = usedVariables(S;)

4: if commonParameters(UV;, UV;) then

5: RV, = returnedVariables(S;)

6: RV = returnedVariables(S};)

7: if validReturnType(RV;, RV;) then

8: if checkPreconditions(S;, S;) then

9: return true

10: end if

11: else if [S, S;] = forward(S;, S;) # [S;, S;] then
12: return LAMBDAREFACTORABLE(S], S})

13: end if

14: else if [S], S%] = backward(S;, S;) # [Si, S;] then
15: return LAMBDAREFACTORABLE(S/, S})

16: end if

17: return false

18: end function

Function usedVariables (lines 2, 3) takes as input a set of
statements and returns the set of variables that are collectively
used in the input statements. Function returnedVariables (lines
5, 6) takes as input a set of statements and returns the set of
variables that are modified in the input statements and are
used by code executed after the input statements. Function
commonParameters (line 4) takes as input two sets of variables
and examines if the types of the corresponding variables
are the same. It should be noted that the input sets do not
need to have the same cardinality, as long as one of them
is a proper (or strict) subset of the other, and the additional
variables of the superset are declared before the clone fragment
to be extracted (e.g., parameters of the method containing
the clone fragment). This relaxation was necessary in order
to deal with overloaded method calls accepting a different
number of arguments. Function validReturnType (line 7) takes
as input two sets of variables and examines if the cardinality
of both sets is equal to zero or one (i.e., one variable can be
returned at most). When the cardinality of both sets is equal
to one, it additionally examines if the types of the variables
are the same, or if they are sub-types of a common superclass.

Function checkPreconditions (line 8) takes as input two sets of
statements and examines the following list of preconditions:

1) The statements contained in S; and S; should collectively
throw the same exception types.

2) Sets S; and S; should not include branching statements
(break, continue) without including the corresponding
target switch or loop statement.

3) Sets S; and S; should not include conditional return
statements (i.e., return without an expression causing a
direct exit from the method containing the clone).

4) If sets S; and S; contain return statements with an
expression returning a value, then all possible execution
flows should end with a return statement.

5) If sets S; and S; contain statements using variables de-
clared in the code remaining in the original methods
after refactoring, then these variables should be final or
effectively final (i.e., a variable or parameter whose value is
never changed after it is initialized [23]). This condition ap-
plies only to local variables and parameters of the methods
containing the clone fragments, but not to accessed fields,
and it is required because Java handles Lambda expressions
as single-method anonymous classes [24].

6) Sets S; and S; should not include all statements of the
original clone fragments. This condition is necessary to
avoid cases where the expansion might cover the entire
clone fragments.

Finally, function backward (line 14) adds the statement exe-
cuted right before the first statement in S; and .S}, respectively,
as long as this statement is nested at the same level. Function
forward (line 11) adds the statement executed right after the
last statement in S; and S;, respectively, as long as this
statement is nested at the same level and contains differences,
which cannot be parameterized with regular parameters.

2. Handling of expression differences:

An expression difference consists of two expressions found
in two mapped statements of the clone fragments, which may
have a different syntactic structure (i.e., different types of AST
nodes), but are evaluated to the same type or types having
a common superclass. For example, in the clones shown in
Figure 2a mapped statements 15 and 16 from each clone,
contain an expression difference highlighted in yellow. The ex-
pressions have a different AST type (on the left clone fragment
we have an infix expression line.indexOf (containsStr)
>= 0, while on the right one we have a method invocation ex-
pression re.matches (1ine)), but both of them are evaluated
to type boolean. As a result, the condition validReturnType
is met by default, and the only remaining conditions that
should be examined to determine if the two expressions can be
parameterized as Lambdas is commonParameters and check-
Preconditions (only preconditions 1 and 5 are applicable).

3. Merging of overlapping gaps and expression differences:

After all statement gaps and expression differences are
processed, we apply a post-processing step to determine if
some of them can be merged in order to minimize the
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number of Lambda expressions that should be introduced.
More specifically, we apply three merging operations:

1) If the statements corresponding to an expression difference
are included inside an expanded statement gap, then only
the statement gap is parameterized.

2) If a statement gap is subsumed by another one (i.e., all
its statements are included within a larger statement gap),
then only the larger one is parameterized.

3) If two statement gaps have an overlap (i.e., they share some
common statements, but do not subsume one another), then
they are merged into a single statement gap. If the merged
statement gap is refactorable according to Algorithm 1,
then the original overlapping statement gaps are not pa-
rameterized, and only the merged one is parameterized.

4. Creating appropriate functional interfaces:

For each one of the final statement gaps and expression
differences an appropriate functional interface should be added
as a parameter to the extracted method. Java 8 provides a list of
predefined functional interfaces in the java.util.function
package, which are used whenever it is possible:

1) Function<T,R>: The Lambda expressions take as input
one argument (T) and return a result (R).

Supplier<T>: The Lambda expressions take no input
arguments and return a result (T).

Consumer<T>: The Lambda expressions take as input one
argument (T) and return no result.

2)
3)

All aforementioned functional interface types do not support
exception throwing. Therefore, when the Lambda expressions
take as input two or more arguments and/or throw one or
more exceptions, a custom functional interface needs to be
introduced within the same class that the extracted method
will be placed in:

@FunctionalInterface

interface CustomInterface {
TO apply(T1l argl, T2 arg2,

...) throws E1, E2,
C. Running Example

In this subsection, we will demonstrate the application of
Algorithm 1 on the motivating example we used in Section II,
shown in Figure 2a. The initial input to the algorithm is the
sets of statements S; = {14} and S; = {14, 15}. Both sets of
statements are nested at the same level under the mapped for
loops (with IDs 13 and 13, respectively). The sets of used
variables are UV, = {int i} and UV; = {int i}, and
thus the function commonParameters returns true, and there
is no need for a backward expansion of the sets S; and Sj.
However, the sets of returned variables are RV, = { String
containsstr} and RV; = {Regexp re}, and thus the
function validReturnType returns false, because the types of
the variables differ and cannot be generalized to a common
super-type. Therefore, the function forward is executed and
updates the original input statements to S, = {14, 15} and
S% = {14, 15, 16}. After the forward expansion, the sets
of used variables UV; and UV; remain the same, while the
sets of returned variables are becoming RV; = {boolean
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matches} and RV; = {boolean matches}. As a result,
now the sets S; and S’ contain statements that require the
same input parameters and produce the same output, and thus
no further expansion is needed.

IV. EVALUATION

To assess the correctness and applicability of the proposed
technique for enabling the refactoring of clones with non-
trivial behavioral differences, we designed a study aiming to
answer the following research questions:

RQ1: Does the proposed approach refactor clones without
introducing compile errors or changing program behav-
ior?

RQ2: What portion of the clones that cannot be parameterized
with regular parameters, becomes refactorable with
Lambda expressions?

RQ3: What are the characteristics of the introduced Lambda
expressions?

A. Experiment Setup

To investigate our research questions we created a large
and diverse dataset of clones extracted from 9 open source
projects using 4 different clone detectors, consisting of 46,765
clone pairs having statement gaps (Type-3) and/or expression
differences (Type-2) that were assessed as non-refactorable
using the standard parameterization approach [12].

Subject Selection: To avoid bias in the selection of projects
and enable the comparison of our results with previous studies,
we adopted the systems used in the studies conducted by Tairas
and Gray [10] and Tsantalis et al. [12], shown in Table L.

TABLE I
EXAMINED PROJECTS

Project Domain Age" KLoC
Apache Ant 1.7.0 Java application build tool 61/2 67
Columba 1.4 email client 11/2 75
EMF 2.4.1 modeling framework 51/2 118
JMeter 2.3.2 server performance testing ~ 71/4 54
JEdit 4.2 text editor 5 51
JFreeChart 1.0.10 chart library 71/2 76
JRuby 1.4.0 programming language 31/2 101
Hibernate 3.3.2 Java persistence framework — 71/2 209
SQuirrelL SQL 3.0.3  universal SQL client 8 141

T years of development from the initial release to the examined release

The dataset includes projects from 9 different application
domains, having a different development history ranging from
2 to 8 years. We assume that these two variation points affect
the variability of the clones present in these systems, and thus
the generalizability of our findings.

Clone Detector Selection: We used 4 popular clone detection
tools, namely CCFinder [25], Deckard [26], CloneDR [27],
and NiCad [28]. The selection criteria, tool descriptions, and
configuration settings are detailed in [12]. We also kept in the
dataset only one instance of the clones reported by multiple
tools to avoid having duplicate data points.

Data Collection: Figure 3 shows the process we followed for
collecting the data required to investigate our questions.
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The workflow applied for the collection of the experimental data.

We have fully automated the data collection process, by
developing an Eclipse command-line application [29] that:

1) Computes the unit test code coverage for the project under
analysis using the JaCoCo library [30].

Parses the output of clone detection tools and determines if
the clones are fully, partially, or not covered by unit tests.
Executes the proposed technique implemented as part of
the JDeodorant Eclipse plug-in [31] in headless mode for
each pair of clones reported by a clone detection tool.
Applies the appropriate refactoring for each pair of clones
assessed as Lambda-parameterizable by the proposed tech-
nique, based on the relative location of the clones.

Builds the project after each refactoring and reports any
compilation errors.

Executes the test suite of the project for each refactored
pair of clones that is covered by unit tests, compares the
test results after refactoring with those before refactoring,
and reports any differences.

Restores the project in its original state after each refactor-
ing, by undoing the applied refactoring and rebuilding the
project.

Stores the collected information in CSV files (used for
statistical analysis), HTML reports (containing statement
mapping information and precondition violations for a pair
of clones), and a spreadsheet (containing information about
all clones examined in the project and links to the reports).

2)

3)

4)

5)

6)

7)

8)

B. Correctness of Lambda Refactorings (RQ1)

Motivation: The goal of RQ1 is to ensure that the proposed
approach can safely refactor clones using Lambda expressions
without introducing compilation errors and changing program
behavior. This kind of evaluation is essential to strengthen the
validity of the collected empirical data that will be used to
answer RQ2 and RQ3. Our hypothesis is that if our approach
assesses the behavioral differences appearing between a pair
of clone fragments as Lambda-parameterizable, then it should
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be possible to refactor these clones without causing any
compilation errors, and all tests of the project should pass
after the application of the refactoring, assuming the clones
are covered by unit tests.

Approach: The execution of the entire test suite of a project
after each refactoring is rather time consuming. Therefore, for
the investigation of RQ1, we narrowed down our analysis on
a single project, namely JFreeChart. The reason we selected
this project is that it has one of the highest unit test source
code coverage (e.g., 54.4% coverage for the src directory
and 69.5% including tests), and the fastest test suite execution
time (less than 10 seconds) among the examined projects.
Moreover, JFreeChart contains clones with diverse relative
locations, allowing to test all clone refactoring scenarios sup-
ported by our refactoring engine (i.e., Extract Method, Extract
and Pull Up Method, Form Template Method, Extract Utility
Method). We collected 12,602 clone pairs that were assessed
as Lambda-parameterizable by our approach and were covered
by unit tests, out of which 230 (1.8%) are located in the
same method, 1,821 (14.5%) are located in the same class,
9,585 (76%) are located in different classes having a common
superclass, and 966 (7.7%) are located in unrelated classes.
Each clone pair was refactored and tested by executing the
entire test suite of the project after each refactoring. To the
best of our knowledge, this is one of the most extensive
evaluations of a clone refactoring engine, even comparable to
the evaluation of tools specialized in the testing of refactoring
engines, such as SafeRefactor [32] and ASTGen [33].

Results: None of the 12,602 applied refactorings caused a
compilation error, and only one refactoring led to a test
failure. The clones involved in the test failure are the
methods writeObject () in classes XYShapeAnnotation
and DialValueIndicator, respectively. The problem is
actually caused from the way that the statements of
these methods are matched by [12] and the special role
of these methods in the serialization of objects. More
specifically, the methods include statements calling spe-
cial functions (e.g.,
SerialUtilities.writeStroke ()

SerialUtilities.writePaint (),
) that write the field
values of the classes into a stream. For the deserialization
phase, the methods readObject () located in the same classes
are used to restore the serialized field values by reading them
in a specific order from the stream. However, the statement
mapping algorithm [12] matches the statements of the methods
in a different order than their original order in an attempt to
maximize the number of mapped statements. This is causing
the field values to be inserted in a different order into the
stream after the refactoring, and thus the deserialization fails.
We consider that this issue can be fixed by improving the
mapping algorithm [12] to assume the presence of data depen-
dencies between statements reading/writing from/to a stream.

Conclusion: We found that the proposed clone refactoring
approach is very reliable by testing it on 12,602 pairs of clones.
Our clone refactoring engine did not introduce any compilation
errors and caused only one test failure.



C. Applicability of Lambda Expressions (RQ2)

Motivation: The goal of RQ2 is to assess the applicability of
Lambda expressions for the refactoring of Type-2 and Type-
3 clones. Answering this question will help us understand
how useful are Lambda expressions for parameterizing the
behavioral differences existing in typical Type-2 and Type-
3 clones detected by clone detection tools. Moreover, we
break down the collected results taking into account three
dimensions: (1) the source code type (clones in production
vs. test code), (2) the relative location (clones within the same
method, same class, same inheritance hierarchy, or unrelated
classes), and (3) the clone type (Type-2 vs. Type-3). This will
help us understand if Lambda expressions are more useful
for a particular category of clones. Finally, we investigate the
percentage of the clone pairs for which the Template Method
design pattern can be safely applied as an alternative solution

to Lambda expressions.
TABLE 11
RELATIVE CLONE LOCATION AND LAMBDA APPLICABILITY

Source Type |

Clone Location |

#Pairs (%) | #Applicable (%)

All

Same method
Same class
Same Java file
Same hierarchy
Unrelated classes
Total

2832 ( 6.1%)
10723 (22.9%)
141 ( 0.3%)
25025 (53.5%)
8044 (17.2%)
46765 (100%)

1340 (47.3%)
7644 (71.3%)
113 (80.1%)
15824 (63.2%)
2297 (28.6%)
27218 (58.2%)

Production

Same method
Same class
Same Java file
Same hierarchy
Unrelated classes
Total

2343 ( 7.5%)
8715 (28.0%)
129 ( 0.4%)
12315 (39.5%)
7661 (24.6%)
31163 (100%)

1209 (51.6%)
5800 (66.6%)
101 (78.3%)
6663 (54.1%)
2238 (29.2%)
16011 (51.4%)

Test

Same method
Same class
Same Java file
Same hierarchy
Unrelated classes
Total

489 ( 3.1%)
2008 (12.9%)
12 (0.1%)
12710 (81.5%)
383 ( 2.5%)
15602 (100%)

131 (26.8%)
1844 (91.8%)
12 ( 100%)
9161 (72.1%)
59 (15.4%)
11207 (71.8%)

Approach: Our analysis focused on 46,765 clone pairs having
statement gaps (Type-3) and/or expression differences (Type-
2) that were assessed as non-refactorable by [12]. This means
that it is not possible to move the statement gaps before or
after the common code, and introduce regular parameters for
the expression differences, due to data dependencies between
the code in the gaps/differences and the common code to be
extracted. The third column of Table II shows the number and
percentage of clone pairs in 5 different categories of relative
location, for all clone pairs, those detected in production code,
and those detected in test code, respectively. Two thirds of the
examined clone pairs belong to production code, while one
third of them to test code. We can also observe that most of
the clone pairs are located in different subclasses of the same
inheritance hierarchy (especially for clones in test code), while
the second most frequent relative clone location is within the
same class declaration. There is also a significant number of
clone pairs located in unrelated classes of the production code.
Regarding the types of the examined clone pairs, as shown
in the second column of Table III, 60% of them are Type-2
clones, while the remaining 40% are Type-3 clones.
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All clone pairs went through Lambda analysis (step 3 in
Figure 3), and those without precondition violations were
refactored and compiled (but not tested). We consider that a
clone pair refactored with Lambda expressions can be safely
refactored using the Template Method design pattern in two
cases: 1) when the clone is extracted to a new superclass,
because it can be declared abstract and thus we can add
abstract methods for the behavioral differences that will be
overridden by its subclasses containing the original clone
fragments, and 2) when the clone is extracted to an existing
superclass that is already abstract and is only inherited by
the two subclasses containing the original clone fragments.

TABLE III
CLONE TYPE AND LAMBDA APPLICABILITY

Clone Type | #Pairs (%) | #Applicable (%)
Type 11 ‘ 28363 (60.65%) ‘ 16173 (57.02%)
Type 111 ‘ 18402 (39.35%) ‘ 11045 (60.02%)

Results: As we can observe in the last column of Table II, the
parameterization with Lambda expressions is feasible in 58.2%
of the examined clone pairs. Moreover, Lambda expressions
tend to be more applicable to clones detected in test code than
clones detected in production code (71.8% vs. 51.4%). We
believe this is due to the nature of the differences appearing
in test clones, which are mostly related to the instantiation of
the objects being tested and the assertions being examined. We
also found that the clones located in the same class or different
subclasses in the same inheritance hierarchy tend to be more
refactorable with Lambda expressions than clones located in
unrelated classes. This result shows that the behavioral differ-
ences found in more “distant” clones (i.e., located in unrelated
classes) are more difficult to be abstracted into Lambdas,
possibly because the implemented requirements are different.
Regarding the applicability of Lambdas with respect to clone
types, as we can observe in the last column of Table III,
the percentage of Type-2 and Type-3 clones that can be
parameterized using Lambda expressions is very similar (57%
vs. 60%). Finally, out of the 27,218 clone pairs refactored
with Lambda expressions, we found that the Template Method
design pattern could be applied in only 34.2% of them.

Conclusion: We found that Lambda expressions is a promising
Java feature for the refactoring of clones with behavioral dif-
ferences, especially for those located in test code. In addition,
Lambda expressions tend to be more beneficial for clones
located in the same class or subclasses in the same inheritance
hierarchy. Moreover, Lambda expressions can equally benefit
both Type-2 and Type-3 clones. Finally, the Template Method
design pattern can be used as an alternative approach to
Lambdas in only one third of the refactored clone pairs.

D. Characteristics of Lambda Expressions (RQ3)

Motivation: In the previous research question, we saw that
Lambda expressions can be very effective in the refactoring of
clones with behavioral differences. However, this refactoring
tends to disperse the duplicated code from two locations
originally to three locations after refactoring, i.e., the code



corresponding to behavioral differences remains in the original
locations and is passed as Lambdas to the extracted method,
while the common code is extracted to another method in
the same class, a superclass, or a utility class. The goal of
RQ3 is to assess the effect of Lambda expressions on the
dispersion of the original code. According to best practice
guidelines, Lambda expressions should be short [34], and de-
velopers should prefer the standard functional interfaces [35].
When the clone fragments have a small number of behavioral
differences with a small size that can be parameterized using
the predefined functional interface types provided by Java, the
resulting refactored code will be less dispersed. The smaller
the number and size of the differences, the more the code is
concentrated to a single location after refactoring. The more
predefined functional interface types are applicable, the less
new custom types will be introduced after refactoring.

Approach: Our analysis focused on the 27,218 clone pairs
refactored with Lambda expressions. We used the following
indirect measures for code dispersion:
1) The number of Lambda expressions required to parameter-
ize the behavioral differences of the clone fragments.
2) The relative size of the Lambda expressions to the size of
the clone fragments.
3) The functional interface types used to parameterize the
behavioral differences of the clone fragments.
For each clone pair, we count the number of Lambda ex-
pressions required to parameterize its behavioral differences
(Figure 4a). For each Lambda expression, we compute the
ratio of its size (i.e., number of statements) over the size of
the clone fragment (Figure 4b). In particular, for expression
differences, we approximate their size to one statement, al-
though an expression is always part of a statement. Finally,
for each Lambda expression, we record the functional interface
type (Function, Supplier, Consumer, or custom) used to param-
eterize the corresponding behavioral difference (Figure 5a).
Moreover, since the Java predefined functional interface types
do not support exception throwing, our refactoring implemen-
tation introduces a new custom type whenever the code inside
the Lambda expressions is throwing an exception, even if the
number of arguments meets the requirements of a predefined
type. Therefore, we investigate the percentage of the custom
types that could be potentially converted to the Java predefined
types, if they supported exception throwing (Figure 5b).

28 1.00

0.33

0.17

|

Expression Diffs Statement Gaps

(a) Number of Lambda Expressions (b) Size of Lambda Expressions

Fig. 4. Characteristics of the Lambda Expressions in refactored clone pairs.
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Results: As we can observe in the box plot shown in Figure 4a,
the median value for the number of Lambda expression per
clone pair is equal to 1, while the third (upper) quartile is equal
to 2. This means that 50% of the refactored clone pairs require
only one Lambda expression, while 75% of them require two
or less. Regarding the size of the Lambdas, for expression
differences the median value is equal to 1/6 of the clone
fragment size (box plot on the left side of Figure 4b), while for
statement gaps the median value is equal to 1/3 of the clone
fragment size (box plot on the right side of Figure 4b). Finally,
as we can observe in Figure 5a almost 60% of the Lambda
expressions can be parameterized using the Java predefined
functional interface types (i.e., Function, Supplier, Consumer),
and thus there is no need to create custom types. As we
can observe in Figure 5b, an additional 30% of the custom
types could be converted to the Java predefined types if they
supported exception throwing, increasing the Lambdas that
could be potentially covered by the predefined types to 72%.

(b) Break down of Custom types

Conclusion: The majority of the refactored clone pairs require
a small number (two or less) of Lambda expressions to
parameterize their behavioral differences. On average, the size
of the Lambda expressions is relatively small covering 1/6
of the clone fragment for expression differences, and 1/3 of
the clone fragment for statement gaps. 60% of the Lambda
expressions can be parameterized with the Java predefined
functional interface types. This could increase to 72% if the
Java predefined types supported exception throwing.

E. Threats to Validity

Internal: How reliable is the used statement mapping algo-
rithm? The algorithm used for the mapping of the statements
within the clone fragments [12] definitely affects the results
of this study, since it produces the expression differences
and statement gaps used as input by the proposed Lambda
refactoring approach. This algorithm maximizes the number
of matched statements and handles the matching of reordered
statements between the clone fragments. Despite the fact that
it is using data dependence information (coming from inter-
procedural data flow analysis) as well as type binding infor-
mation (coming from the compiler), to guide the matching of
the statements, there might be some cases where the statement
mapping returned by the algorithm is not the most accurate due
to missing dependencies resulting from an incomplete analysis.
However, the extensive testing we performed on 12,602 clone
pairs (Section IV-B) gives us the confidence that the used
statement mapping algorithm is reliable and accurate.



How does the clone-pair granularity affect the results? The
results of this study are reported at clone-pair level, because
the used statement mapping algorithm does not support the
analysis of clone groups (also known as clone classes) contain-
ing more than two clone fragments, but only pairs of clones.
Whenever a clone group is analyzed, we apply our technique
on every possible combination of clone pairs (i.e., (Z) for
a group with n clone fragments). The majority of the clone
groups analyzed in this study contain 2 or 3 clone instances
(the median is equal to 2, the third quartile is equal to 3,
and the mean size is 2.9). This means that for most clone
groups the number of clone pair combinations is either 1 or 3,
and thus reporting the results at clone-group level would not
significantly affect our findings.

External: How representative are the examined clones? The
clone detectors used in the study have several configuration
options, related to the size and similarity of the clones. Even
minor changes in the settings can affect significantly the char-
acteristics of the detected clones [36]. Wang et al. introduced a
search-based approach to determine the configurations (from
the space of all configuration choices) that maximizes tool
agreement [36]. However, in our study it is important to get
as more diverse clones as possible from each clone detector.
Therefore, we used the default or recommended configuration
options for each tool. These settings have been consistently
used in a large number of empirical studies and can be
considered as standards.

How representative are the examined projects? We included
in our study 9 projects coming from 9 different application
domains, but also having a different Java version compatibility.
For example, the projects EMF and JRuby are using the newer
language features, such as Generics and varargs, but other
projects like Ant are compatible with previous Java versions.
This diversity in the domain and the language features used
by each project makes possible to generalize our findings to
several other open-source projects with similar characteristics.
Moreover, we adopted the exact same systems used in previous
studies [10], [12] to avoid bias in the selection of subjects.

Verifiability: To make the results of this study reproducible,
we provide online all the artifacts required to reproduce and
replicate the experiments, including the source code of our
tools [31], [29], the results of the clone detection tools used
in the experiment, and the R scripts we developed to obtain
the results of the experiments [14].

V. RELATED WORK

Clone Refactoring: Meng et al. [11] proposed a technique for
automated clone refactoring based on systematic edits (i.e.,
similar edits to different locations in the source code). One
major difference is that Meng et al. [11] rely on systematic
edits, while our approach takes as input the results of clone
detection tools. Relying on systematic edits for clone refac-
toring is a rather intuitive solution, since it is believed that
clones being frequently and consistently modified during the
evolution of a software system should have a higher priority
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for refactoring [2]. However, systematic edits cannot capture
clones that are not consistently updated, mainly because the
developers are not aware of their existence, or clones that are
never updated. On the other hand, an approach based on the
input of clone detectors is more generic and universal, since
existing tools can detect both consistently and inconsistently
modified clones depending on their configuration (i.e., similar-
ity threshold), as well as stable clones. Other clone refactoring
techniques have a more restricted scope. For instance, Tairas
and Gray [10] focus only on Type-2 clones having expression
differences whose parameterization is free of side-effects.
Hotta et al. [37] and Juillerat et al. [38] focus only on clones
that can be refactored by applying the Template Method design
pattern. Our technique has a much broader scope being able
to handle clones with diverse relative locations and behavioral
differences. Finally, there are works based on machine learning
that recommend clones for refactoring [1], [2], [3].

Lambda Refactoring: Gyori et al. [39], [40] developed a tool,
named LAMBDAFICATOR, which automates two refactorings
introducing Lambda expressions. The first refactoring converts
anonymous inner classes to lambda expressions. The second
one converts for loops that iterate over Collections to
functional operations that use lambda expressions. The goal
of this work is to make the code more succinct by eliminating
anonymous classes, and enable unobtrusive parallelism by ap-
plying functional operations like map or filter to iterations.
However, our goal is to leverage Lambda expressions in order
to eliminate code duplication.

Lambda-related Studies: There is a very limited number
of studies investigating the effect of Lambda expressions on
development, debugging and testing effort. A recent controlled
experiment comparing the use of C++ lambdas with itera-
tors [41] has shown that participants spent more time with
compiler errors, and had more errors, when using lambdas
as compared to iterators, suggesting difficulty with the syntax
chosen for C++. However, the experience level of the par-
ticipants had a large effect on the experiment results, since
professionals were more likely to complete tasks, with or
without lambdas, and could do so more quickly than students.
Therefore, the experience of the developers, the language syn-
tax, and tool support (e.g., for debugging lambda expressions)
play a significant role on the understandability of the code.

VI. CONCLUSIONS

In summary, the main conclusions and lessons learned are:
1) Lambdas are effective for parameterizing behavioral differ-
ences (58% applicability), especially for test clones (72%).
Lambdas are equally beneficial for parameterizing Type-2
and Type-3 clones (57% vs. 60% applicability).

The majority of clones require one or two Lambdas.

60% of the Lambdas can be parameterized using just three
of the Java predefined functional interface types.
Extending these functional interface types to support ex-
ception throwing, would increase the aforementioned per-
centage to 72%.

2)

3)
4)

5)
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