
JSDeodorant: Class-awareness for JavaScript
programs

Laleh Eshkevari, Davood Mazinanian, Shahriar Rostami, and Nikolaos Tsantalis
Department of Computer Science and Software Engineering

Concordia University, Montreal, Canada
Email: {l mousa, d mazina, s rostam, tsantalis}@cse.concordia.ca

Abstract—Until the recent updates to JavaScript specifications,
adding syntactical support for class and namespace declaration,
developers used custom solutions to emulate modular decompo-
sition (e.g., classes and namespaces) and other object-oriented
constructs, such as interfaces, and inheritance relationships.
However, the lack of standards for several years led to a
large variation and diversity of custom solutions for emulating
object-oriented constructs, making maintenance and comprehen-
sion activities rather difficult in JavaScript projects developed
based on the previous language specifications. In this paper, we
present JSDEODORANT, an Eclipse plug-in that enables class-
aware maintenance and comprehension for JavaScript programs.
(https://youtu.be/k4U2LwkL6JU)

I. INTRODUCTION

JavaScript is a dynamically-typed language, which supports
procedural, functional, and prototypical object-oriented pro-
gramming paradigms. Although having all these characteristics
in one language makes it undoubtedly powerful, JavaScript
programs are challenging to develop, debug, and maintain.
This could be partly because, despite its extensive popularity,
tool support for JavaScript is not comparable to that of
traditional languages, e.g., Java or C++ [1]. Popular tools
such as JSHint, JSLint, and ESLint, aid JavaScript developers
only in detecting coding style issues and syntax errors. The
state-of-the-art IDEs provide limited support for code devel-
opment and maintenance. For instance, the Eclipse JavaScript
Development Tools (JSDT) offer limited code navigation,
syntax highlighting, code completion, and trivial quick-fixes.
JetBrains WebStorm, one of the most well-known commercial
IDEs designed specially for JavaScript, additionally supports
some basic refactorings, such as Extract and Inline function.

However, there are still several opportunities for further en-
hancements in tool support. One such example is the automatic
detection of code fragments where developers emulate object-
oriented constructs in JavaScript projects. Indeed, prior to the
recent updates on the language’s specifications, developers had
to use custom solutions [2] to emulate modular decomposition
constructs (e.g., classes and namespaces), as well as native
OOP constructs, such as interfaces and inheritance relations.
This lack of standards led to a large variety of patterns and
practices, each one offering different advantages. As a matter
of fact, in a previous work [3], we documented 4 popular pat-
terns for emulating class declarations, 5 patterns for emulating
namespaces, and 3 module patterns for importing/exporting
classes and functions, which can all be used in combination.

Although the latest JavaScript specifications provide syntacti-
cal support for class and namespace declarations, there is still
a large number of programs developed and maintained in the
older versions of JavaScript, where object-oriented constructs
are inevitably emulated. Moreover, not all practitioners are
convinced to migrate their code to the latest ECMAScript
specifications (i.e., ES6). Indisputably, maintaining a program
without support for recognizing its building blocks (modules,
namespaces, classes, and interfaces) is extremely challenging.

In a recent work, Silva et al. [4] introduced JSClassFinder,
which detects class and inheritance emulations. However, it
suffers from several limitations related to scalability, accuracy
and usability. We discussed these limitations in our previ-
ous work [3], and introduced JSDEODORANT, an automatic
approach for detecting function constructors (i.e., class dec-
larations) with high precision and recall. In this work, we
extend JSDEODORANT, by adding support for the identi-
fication of inheritance relations, and implement an Eclipse
plug-in that brings several useful features, including class-
aware code navigation and visualization. We also provide a
comprehensive comparison of class-awareness related features
among JSDEODORANT, Eclipse JSDT, JetBrains WebStorm,
and JSClassFinder.

II. IMPLEMENTATION

JSDEODORANT has been developed as an IDE-independent
tool suite for analyzing JavaScript projects. In its core, it stores
a hierarchical object model representing the structure of a
given JavaScript project, built from the Abstract Syntax Trees
(AST) of the JavaScript files. The model obscures redundant
AST details, yet it is detailed enough to allow implementing
various analysis algorithms on top of it. At the highest level,
the model captures JavaScript module dependency informa-
tion. A module consists of a set of related JavaScript classes.
JSDEODORANT supports two common de facto standards for
defining modules in JavaScript (CommmonJS and Google
Closure Library) [3], and it is extensible enough to support
other standards (e.g., AMD). In a nutshell, to identify function
constructors (hereafter, classes), JSDEODORANT first analyzes
object creation expressions (i.e., usages of the new keyword)
and performs a lightweight data flow analysis to bind each
class instantiation expression to its corresponding class decla-
ration. This approach labels functions as classes when there is
an explicit class instantiation. JSDEODORANT then employs
an inference mechanism to identify classes which are not



instantiated in the project. For that, JSDEODORANT evaluates
the bodies of the remaining unlabeled function declarations, in
addition to their prototype objects to infer whether a function
actually mimics a class [3].

Identifying class hierarchies. The lack of syntactical support
for object-oriented constructs forces JavaScript developers to
emulate inheritance relations between classes using several
different patterns. JSDEODORANT currently detects the three
following popular patterns:
1) Initializing the prototype of the subtype with the prototype
of its super type:
subType.prototype = Object.create(superType.prototype);

2) Using user-defined functions, such as extends() or
inherits(), which internally implement the first pattern:

extends(subType, superType);
inherits(subType, superType);

3) Calling the constructor of the super type within the body
of the subtype, using the call or apply functions. In
JavaScript, these functions allow changing the context of a
function, i.e., the binding of the this object inside the body
of the function on which the call or apply is called. In the
following code snippet, for instance, the superType function
is called, and this points to the subType’s context:
function subType(arg1, agr2, ..){
superType.call(this, arg1, arg2, .. );
// some code

}

III. TOOL FEATURES
A. File Outline

In JavaScript, attributes and methods can be declared in the
body of an emulated class declaration, or added to its prototype
(see the example below).
helma.Color = function(R, G, B) {

var value = null;
// some code
this.getName = function() {

return helma.Color.COLORVALUES[value];
};
// some code

}
helma.Color.prototype.fromName = function(name) {

// some code
};

The advantages of adding a method to the prototype
(fromName in the example) are: 1) it is stored in the memory
once and shared among all instances of the class, and 2) it
is possible to override the method in the derived class, and
still invoke the method of the base class. However, methods
defined in the body of a class have full access to the private
members of the class, i.e., local variables and functions (e.g.,
function getName in the example has access to value).
Thus, depending on the situation, the developer may favor
one style over the other. To identify class members, JS-
DEODORANT evaluates the assignment statements within and
outside the body of the class. The identified class members are
displayed in the Modules View, which outlines the structure
of a JavaScript module (see Figure 1).

An overriding 
method, added to the

class prototype

A method added to the 
class prototype

An abstract 
method, added to 

the class prototype

An 
interface

P
added to the 

prototype

overriding

An abstract 
Class

Fig. 1. JSDEODORANT file outline structure.
As mentioned, interfaces, abstract classes/methods, inher-

itance, and polymorphism are also emulated in JavaScript.
An abstract method, for instance, is emulated by providing
an empty method, or a method that logs or throws a “not
implemented” error message [5], so that the subclasses are
forced to implement it. JSDEODORANT recognizes abstract,
overridden, and overriding methods, as shown in Figure 1.
Class/interface members are decorated with descriptive icons.

Maintenance Scenario: Consider a developer who needs
to perform a maintenance task on conditionaldelay.js
(Figure 1). She can see that the file contains a class, i.e.,
goog.async.ConditionalDelay. She can infer that
this is a derived class (from the overriding icon) with all its
methods added to the class’s prototype. The Modules View
enables her to have an abstract view of the JavaScript module
and easily navigate to the source code of the class/interface or
its members, by double clicking on the program elements.
B. Type Hierarchy

As mentioned, JavaScript developers apply various patterns
to emulate inheritance (Section II), and JSDEODORANT sup-
ports three of the most common ones. The developer can view
the type hierarchy of the class easily by a) right clicking
on the class in the Modules View and selecting “Show type
hierarchy” from the pop-up menu (Figure 1), or b) by hovering
on the class name in the editor and selecting “JSDeodorant:
open type hierarchy” from the pop-up menu (Figure 2). In both
cases, the type hierarchy will be presented to the developer in
the Modules View (Figure 3).

Fig. 2. JSDEODORANT type hierarchy from the editor view.
Maintenance Scenario: In the previous example, let us

assume that after inferring from the file outline that the class



ConditionalDelay has a supertype, the developer decides
to further inspect the type hierarchy of this particular class. By
using the aforementioned navigation mechanisms, she can find
the supertype class goog.Disposable, and navigate to its
declaration by double-clicking on the supertype. Moreover, the
Type Hierarchy View (Figure 3) facilitates the inspection of its
sibling subtypes, and viewing all type declarations (classes and
interfaces) in a tree structure for the entire JavaScript project.
Finally, this view can assist the developer to capture the depth
of the inheritance tree for a particular class.

The user selected
the type hierarchy

option for the entire
project

Fig. 3. JSDEODORANT type hierarchy view.
C. Class-aware Code Navigation

In [3] we presented our algorithm to detect class emulations
in JavaScript programs. JSDEODORANT identifies and binds
the class instance creation expressions to the class declaration,
and thus enables class-aware code navigation from a class dec-
laration to its instances and vice versa. Using JSDEODORANT,
the developer can easily find the instantiations by a) hovering
over the class name in the editor and selecting “JSDeodorant:
find instantiations” from the pop-up menu (Figure 2), or b)
right-clicking on the class in the Modules View and selecting
“Find instantiations” from the pop-up menu (Figure 1). In both
cases, JSDEODORANT provides the results in the Instantia-
tions View (Figure 4), where the developer can double click on
any of the expressions to navigate to the corresponding source
code fragment. Class-aware code navigation is also available
for navigating from an instantiation expression to the class
declaration (Figure 5).

Fig. 4. JSDEODORANT class instantiation results.
Maintenance Scenario: Let us assume that the developer

has to add (or remove) a parameter to the function con-
structor of class ConditionalDelay. Before modifying
the function constructor’s signature, she needs to identify all
instantiations of this particular class in the project to perform
the necessary changes in order to add (or remove) the argument
corresponding to the parameter.

D. Visualization

JSDEODORANT visualizes the module dependencies, as
well as the UML class diagram for a selected class. Module

Fig. 5. Navigation from an instantiation expression to the class declaration.

dependencies are visualized in a similar manner to UML
package diagrams to provide an architectural view of the
JavaScript project. The class diagram illustrates the class
structure (attributes, methods) and inheritance relations. The
developer can view the class diagram by right clicking on a
class name in the Modules View and selecting “Show Class
Diagram” from the pop-up menu. Figure 6 shows an example
of the class diagram for class Shape. The developer can
navigate to the source code where the elements are declared
by double clicking on a class, attribute, or method. Moreover,
the developer can easily navigate to the Type Hierarchy or
Instantiations views by clicking on the corresponding buttons.

View class
diagram for
Rectangle

Rectangle has
sub classes

Find all
instantiations
of Circle

Fig. 6. JSDEODORANT Class Diagram View.

IV. VALIDATION
A. Accuracy

We evaluated JSDEODORANT’s accuracy in the detection of
inheritance relations in two open-source JavaScript projects.
We selected the projects shown in Table I, since both use
JSDoc annotations, allowing to build an unbiased oracle by
finding all @extends JSDoc tags.

TABLE I
ACCURACY IN THE DETECTION OF INHERITANCE RELATIONS.

Program Size (KLOC) Identified relations TP FP FN Precision Recall

closure-library-v20160315 605.3 643 643 0 120 100% 97%
Helma-1.7.0 31.5 29 29 0 2 100% 93%

Note that some of the classes declared in the test files
of these projects were not annotated, and thus are not in
the oracle, while JSDEODORANT identified the inheritance
relations for them. Two authors of this paper independently
inspected the source code and labeled the detected relations as
true positives (TP) when they could infer an actual inheritance
relation. The final labels were determined unanimously, and
a third opinion was sought in case of conflicts. For the
false negatives (FN), we observed that although some classes
were annotated with @extends tags, the developers did not
implement the inheritance relation in the code. We refer the
reader to [3] for the accuracy of class detection.



B. Tool comparison

Table II summarizes a comparison of the class-awareness
features offered by JSDEODORANT, Eclipse JSDT, WebStorm,
and JSClassFinder.

TABLE II
TOOL COMPARISON.

Tool File outline Type hierarchy Visualization Class-to-instances Instance-to-class
navigation navigation

JSDT
WebStorm

JSClassFinder
JSDEODORANT

File outline: In WebStorm, the Structure View outlines the
program elements in a JavaScript source file, and decorates
them with icons (e.g., c for classes, f for fields, and m
for methods). However, WebStorm heavily depends on the
presence of JSDoc annotations for detecting code constructs,
and does not identify class emulations. For example, when
we removed the @constructor tag from the JSDoc of
a function constructor, the annotation in the structure view
changed from c to λ, denoting a normal function. Moreover,
the Structure View does not differentiate classes from inter-
faces, even when the @interface annotation is present.
JSDT also provides the Outline View for JavaScript files;
however, it does not recognize class emulations at all; thus, the
program elements are only annotated as variables or functions.
There is no outline view for JavaScript files in JSClassFinder,
instead, it provides a window where the user can see a list of
the detected classes and their members. JSDEODORANT, on
the other hand, annotates elements in its Module View based
on their functionality and regardless of the presence of JSDoc
annotations. It differentiates classes from interfaces, and also
identifies and annotates abstract classes/methods, as well as
overridden/overriding methods.

Type hierarchy: The extraction of module dependencies is
vital for the detection of type hierarchies, since the declara-
tions of the classes participating in a hierarchy are not always
located in the same file. WebStorm identifies type hierarchies
based on the initialization of the subtype’s prototype with its
supertype’s prototype (i.e., the first pattern in Section II). As
mentioned before, it also relies on the JSDoc tag @extends
for detecting type hierarchies. It is important to note that,
since WebStorm does not recognize module dependencies, it
identifies a list of candidate supertypes (or subtypes) when
multiple classes with the same name exist in the project. JSDT
does not detect class emulations, and therefore it does not
identify type hierarchies. Similar to WebStorm, JSClassFinder
supports only the first pattern of inheritance. Moreover, it fails
to correctly identity inheritance in the presence of duplicate
class names and module dependencies. JSDEODORANT iden-
tifies type hierarchies based on the three patterns discussed
in Section II. Because it identifies module dependencies, as
well as namespaces, unlike WebStorm, it identifies the exact
super/sub type even in the presence of duplicate class names.

Visualization: To the best of our knowledge, WebStorm
and JSDT do not provide any visualization for JavaScript
projects. JSClassFinder reverse-engineers the entire JavaScript

project to a class diagram where the generalization relations
are displayed. However, as mentioned, it fails to identify
class hierarchies in the presence of module dependencies.
JSDEODORANT visualizes the module dependencies as well
as class diagrams. However, our class diagram visualization is
now limited to a single class only. The class diagram illustrates
the class hierarchy if the selected class has a supertype or
subtypes. Therefore, reverse-engineering the whole project in
a single class diagram is left for future work.
Class-aware code navigation: WebStorm and JSDT both sup-
port code navigation. That is, from an invocation expression, it
is possible to navigate to the declaration of the function. For a
function declaration, both tools identify its invocations in a list,
where the developer can easily navigate to the actual statement
where the function is called. Since class emulation is achieved
via the definition of a function, both tools support class-aware
code navigation. However, the identification in both tools is
based on name matching, that is, in the case of uncertainty
due to name duplication, a list of potential candidates will
be presented to the developer. While JSClassFinder does
not support code navigation at all, JSDEODORANT supports
navigating from a class to its instances and vice versa, and
utilizes module dependencies to report exact matches for the
identified references or declarations.

V. CONCLUSIONS AND FUTURE WORK

In this demonstration, we presented JSDEODORANT, an
Eclipse plug-in that assists JavaScript developers in program
maintenance and comprehension. It provides an architectural
view of the entire project via its module dependency visualiza-
tion, and a detailed view of the OOP constructs and program
elements inside a file, at a glance. One of the advantages of
JSDEODORANT is that it recognizes classes, interfaces, and
inheritance relations being emulated via functions and object
literals, regardless of the presence of JSDoc annotations. It
also supports class-aware code navigation, as well as class
diagram visualization.

As future work, we plan to enhance JSDEODORANT code
navigation by resolving function and method calls in order
to build call graphs and enhance further code comprehension.
Finally, this work provides the foundations for adding code
smell detection and refactoring support in the future.

REFERENCES

[1] A. Mesbah, “Software Analysis for the Web: Achievements and
Prospects,” in Proceedings of the IEEE International Conference on
Software Analysis, Evolution, and Reengineering – FoSE Track, 2016.

[2] A. Osmani, Learning JavaScript Design Patterns - a JavaScript and
jQuery Developer’s Guide. O’Reilly Media, 2012.

[3] S. Rostami, L. Eshkevari, D. Mazinanian, and N. Tsantalis, “Detecting
Function Constructors in JavaScript,” in Proceedings of the 32nd IEEE
International Conference on Software Maintenance and Evolution (IC-
SME), 2016.

[4] L. H. Silva, D. Hovadick, M. T. Valente, A. Bergel, N. Anquetil,
and A. Etien, “JSClassFinder: A Tool to Detect Class-like Struc-
tures in JavaScript,” Computing Research Repository (CoRR), vol.
abs/1602.05891, 2016.

[5] Best Practices for Abstract functions in JavaScript?
[Online]. Available: http://stackoverflow.com/questions/7477453/
best-practices-for-abstract-functions-in-javascript


