
CSSDEV: Refactoring duplication in Cascading
Style Sheets

Davood Mazinanian, Nikolaos Tsantalis
Department of Computer Science and Software Engineering

Concordia University, Montréal, Canada
{d_mazina, tsantalis}@cse.concordia.ca

Abstract—Cascading Style Sheets (CSS) is a widely used lan-
guage for defining the presentation of structured documents and
user interfaces. Despite its popularity, CSS still lacks adequate
tool support for everyday maintenance tasks, such as debugging
and refactoring. In this paper, we present CSSDEV, a tool
suite for analyzing CSS code to detect refactoring opportunities.
(https://youtu.be/lu3oITi1XrQ)

Keywords-Cascading Style Sheets, Preprocessors, Refactoring

I. INTRODUCTION

Cascading Style Sheets (abbr. CSS) is a declarative,
domain-specific language, used for defining the presentation
of structured documents (e.g., HTML, SVG), as well as
desktop and mobile application user interfaces, across different
presentation media. Indeed, CSS is extensively used by a large
number of software developers [1], [2].

In CSS, developers define the presentation of UI elements
(e.g., HTML hyperlinks) by defining style rules. Each style
rule includes a CSS selector, which determines what elements
are styled (e.g., a selects all HTML hyperlinks). The desired
presentation for the selected elements is then achieved by
defining style declarations (e.g., border-color: red) in
the style rule. Each style declaration assigns some style values
(i.e., red) to a style property (i.e., border-color).

Despite this apparent syntactical simplicity [3], developing
and maintaining CSS can be challenging, due to several
reasons, including but not limited to:
• Some more complicated features of CSS, such as cascading,

specificity, value propagation through inheritance, and media
queries, make CSS code difficult to comprehend,

• The interplay of CSS with HTML, which can be manipu-
lated by JAVASCRIPT or a server-side language at runtime,
makes static analysis tools unable to spot problems at
development time,

• The lack of a comprehensive and reliable testing framework
for CSS makes regression testing difficult,

• The inherent shortcomings in the design of the language
(e.g., the lack of constructs enabling code reuse, such as
functions), lead to extensive code duplication. In a previous
work, we found that around 60% of style declarations are
duplicated in real-world CSS files [4],

• The lack of best practices has led to low quality CSS code
suffering from various CSS-specific smells [5], and,

• The standardization of CSS is a time-consuming process,
causing incompatible implementations in web browsers,

which result in inconsistent presentation (the so-called Cross
Browser Incompatibility or XBI [6], [7]).

This intricacy, however, can be diminished to a large extent,
in the presence of adequate tool and IDE support. Unfortu-
nately, for CSS development and maintenance, tooling is quite
immature and far from being satisfactory for the developers’
needs. While CSS is extensively used in the industry, the
predominant tool for CSS developers is the web browsers’
embedded development facilities (e.g., Firebug in Firefox,
Developer Tools in Chrome). In other words, the prevalent
workflow for a CSS developer includes 1) coding CSS, 2)
running the web application in one (or multiple) web browsers
and visually inspecting whether the design is acceptable, 3)
using the web browser’s development tool, which displays the
changes live in the browser, to manipulate CSS style rules
until the desired presentation is achieved, and propagating the
required changes back to the original CSS files.

While this workflow can definitely aid CSS developers, it
suffers from various shortcomings. For instance, the CSS code
which is used in development might not be the same code
processed by the web browser. For instance, the code could
be developed using a CSS preprocessor (i.e., a language that
generates CSS, like LESS [8] and SASS [9]). In that case,
propagating CSS changes from the web browser’s develop-
ment tool to the preprocessor code might not be trivial. More
importantly, the embedded tools in web browsers do not offer
any support for applying complex changes (e.g., safe refactor-
ings). State-of-the-art IDEs (e.g., Eclipse, JetBrain WebStorm)
simply offer syntax highlighting, limited coding assistance
with auto-completion, and trivial refactoring support, such as
renaming CSS class names. Consequently, there is certainly
a need for developing new tools and improving IDE support
for CSS development and maintenance.

In previous works, we proposed approaches for safely
refactoring duplicated code in CSS, by grouping duplicated
style declarations into new selectors [4], or by migrating CSS
code to a preprocessor language by extracting function-like
constructs (i.e., mixins) from duplicated style declarations [10].
The proposed approaches have been implemented in CSS-
DEV1, which is an IDE-agnostic CSS analysis and refactoring
infrastructure. CSSDEV provides a rich set of APIs that,
in addition to refactoring duplicated code, can be used for

1In addition to the abbreviation for "developer", Dev is the god of war, and
a demon with enormous power, in Persian mythology.

https://youtu.be/lu3oITi1XrQ


resolving many of the aforementioned challenges encountered
when developing and maintaining CSS code. As a proof of
concept, we have implemented some key features of CSSDEV
for refactoring duplicated code in an Eclipse plug-in, which
will be demonstrated in the next sections of the paper.

II. TOOL DESIGN

CSSDEV consists of the following main modules:

CSS Model generator module: It generates a lightweight,
hierarchical model of CSS, as described in [4]. This model
captures information about CSS code elements, which are
crucial for enabling CSS analysis. For instance, for each CSS
style declaration, the model captures the type and role of
each of the style values (e.g., in style declaration border:
dotted 1em #F0F, the value dotted is a CSS keyword
that defines the style of the border that appears around an
element). It also extracts “hidden” properties that are styled
in a style declaration; e.g., the aforementioned border dec-
laration implicitly defines style values for 12 individual style
properties in total, based on CSS language specifications [11].
Such information is used in detecting dependencies between
CSS style declarations. The lightweight model also enables
the separation of analysis algorithms from the ASTs generated
from CSS parsers. This is crucial, as CSS specifications
change rapidly and a parser might become obsolete. Our
model provides the necessary abstractions to make easy the
replacement of CSS parsers with different capabilities.

Duplication module: It detects different types of duplicated
style declarations in CSS, and identifies opportunities for
refactoring. In a nutshell, CSSDEV applies a frequent pat-
tern mining algorithm, namely FP-Growth [12], on the CSS
model to detect and group duplicated declarations [4], [10].
The excessive amount of duplication in real-world CSS files
warrants using such an algorithm for ensuring scalability.

Crawler module: It crawls HTML documents for which
the CSS file under analysis is used. We use CRAWLJAX
[13], a tool for crawling dynamic web applications relying
on JAVASCRIPT to handle user interactions.

Dependency module: It is responsible for generating a depen-
dency graph for CSS. The dependencies are extracted and used
when refactoring CSS, to make sure that the transformations
are safe to apply, i.e., the resulting CSS file produces the same
presentation after refactoring.

Preprocessor module: It deals with CSS preprocessor lan-
guages. CSS preprocessors are superset languages for CSS,
which support the features that are presently missing in
CSS (e.g., functions). The module allows safely migrating
existing CSS code to preprocessors by extracting duplicated
style declarations to function-like constructs [10] [14]. Several
preprocessors have been introduced in the industry, and they
have been extensively adopted by developers [15]. The im-
plementation of this module is mostly preprocessor-agnostic,
i.e., it can generate transformations for virtually any CSS
preprocessor language.

III. TOOL FEATURES

A. Clone Detection

Code duplication exists to a large extent in CSS code
[4]. This can result to larger CSS files that have to be
transmitted over the Internet, which definitely causes delays
in downloading CSS files and rendering web pages. At the
same time, excessive file size can hamper maintainability
and understandability of CSS code. CSSDEV provides the
functionality for detecting three types of equivalent style
declarations within CSS code:

Type I declarations that assign the exact same values to the
the same style property (e.g., the repetition of the style
declaration color: red),

Type II declarations that style the same property with equiv-
alent values (e.g., color: red and color: #f00),

Type III equivalent individual and shorthand style
declarations (e.g., margin: 0px 2px is a shorthand
style declaration for four individual style declarations
margin-left: 2px; margin-right: 2px;
margin-top: 0px; margin-bottom: 0px).

In addition, CSSDEV identifies duplicated style declarations
that are not equivalent, i.e., style declarations with the same
property, but with differences in style values. This type of
duplication can only be eliminated by extracting a function-
like construct, something that CSS currently does not support.
Instead, the tool is able to extract a mixin for this type of
duplication, i.e., a function in a preprocessor language.

The main plugin’s view is shown in Figure 1. The user
can initiate duplication detection by selecting a CSS file
in the workspace, and clicking on the "Detect" command
in the view (Figure 1 a ). This can also be done whenever
the user saves the CSS file (Figure 1 f ). In either case,
the duplicated style declarations are listed in a table, where
each of the rows is an opportunity for refactoring (Figure
1 d ). The developer can investigate any opportunity by double
clicking on it, which results in highlighting the duplicated style
declarations. For each opportunity, the view also shows the
type of the duplication, i.e., Type I through III, non-equivalent
declarations, or a combination of them (Figure 1 g ).

Moreover, for each refactoring opportunity, the user can see
the unique style property categories to which the involved style
declarations belong (Figure 1 h ). Each category consists of a
set of related style properties; for instance, the Text category
includes all CSS properties related to text manipulation, e.g.,
hyphens, text-align and word-wrap. The categories
are extracted from the CSS specifications. This information
can help the developer to pick the most relevant declarations
for refactoring. Intuitively, the opportunity with the smaller
number of style property categories is more coherent, and
should be favored for refactoring. We previously showed that
developers tend to group duplicated style declarations that
are somewhat coherent, e.g., the ones that style the same
properties for different web browsers [14]. Indeed, the plugin’s
view allows the developer to sort the detected opportunities



d

e f
hg

c ab

Fig. 1. Duplication View

based on different criteria, including the number of style
property categories associated with each opportunity.

The developer also has the option to filter out opportunities,
so that only the ones involving specific style declarations
and/or selectors are shown (Figure 1 c ). The developer may
also show/hide the opportunities that contain duplicated dec-
larations having differences in their style values (Figure 1 e ).

B. Extracting Order Dependencies

Normally, the relative order of declarations in a CSS file
does not matter, unless there exist order dependencies between
different selectors [4], which force certain constraints in the
selector positions within the CSS file. Order dependencies
exist with respect to some target documents (e.g., the HTML
documents on which the CSS file is applied). A refactoring
that changes the order of style declarations (e.g., extracting a
grouping selector for a set of selectors having duplicated style
declarations and appending it at the end of the CSS file) might
break the presentation of the target documents, if these order
dependencies are overlooked and not handled properly.

Order dependencies can be statically extracted from static
HTML files that are not manipulated at runtime. However,
real-world scenarios are usually much more complex. For
instance, in modern web applications, often JAVASCRIPT ma-
nipulates the elements of the HTML documents at runtime,
through the Document Object Model (i.e., DOM) API (e.g.,
by adding or removing HTML elements). Thus, a complete
CSS analysis tool should deal with this dynamism in order to
extract dependencies even from the hidden states of HTML
documents. Indeed, it has been shown that, on average, 62% of
the DOM states in modern web applications are hidden [16].

CSSDEV uses an automatic crawler, CRAWLJAX [13],
for exploring hidden DOM states in web applications. The
developer needs to define a starting point for crawling. This
could be the address of the first page of a web application
hosted locally, or on a web server. The crawler mimics
users’ behavior by firing events (e.g., mouse clicks) on the
HTML pages to explore new states. The developer can define,
through a configuration wizard, how the crawling should be
performed (e.g., which elements should not be clicked on, or

the maximum number of states that should be explored). By
default, the crawling is done blindly (i.e., the crawler clicks
on all elements, even if it does not yield a state change).
Thus, the crawling might take several minutes; however, the
developer’s knowledge of the web pages under analysis can
help in providing appropriate values for the crawling options to
significantly reduce the crawling time. Note that, the crawling
is done in background (i.e., using a headless browser), so that
the developer is able to continue working without interruption.
Whenever a new state is explored, or the crawling is finished,
the developer is notified. When the crawling is done, the
developer can apply safe refactorings.

C. Clone Refactoring

Once an opportunity is selected, the developer can initiate a
refactoring by right clicking on it. Two scenarios are possible:

1) If the opportunity contains declarations with non-equivalent
style values, as mentioned, the refactoring can be done only
by extracting a mixin in a preprocessor language.

2) Otherwise, the declarations can be grouped in a style
rule with a grouping selector (i.e., a selector that selects
multiple elements, e.g., table, img selects both tables
and images). Alternatively, a parameterless mixin can be
extracted from the duplicated declarations.

In the first case, a dialog will be shown (Figure 2), giving the
developer the freedom to change several options, including:

a The name of the extracted mixin,
b The name of each of the extracted mixin’s parameters,
c The selectors from which the mixin should be extracted,
d The declarations that the developer wants the mixin to

include. In other words, the user can select a sub-opportunity
to be applied, if she finds that some of the declarations sug-
gested by CSSDEV are not coherent enough to be extracted
together.

As it can be observed, this dialog also highlights the
differences existing between the corresponding style values.
Hovering on each style property and value also gives more
information about them. For instance, for a style value, the
tool displays the role of the value in the style declaration.



b

a

c

d

Fig. 2. Refactoring Options Wizard

In case of an opportunity with only equivalent declarations,
a similar dialog will be shown, if the developer selects to
extract a parameterless mixin. However, if she chooses to
extract a grouping selector, only options c and d will be
available, as the two first ones are not applicable for a grouping
selector (i.e., a grouping selector is automatically named by
separating the individual selectors that are grouped by comma,
and there are no parameters to name, because there are no
differences in style values).

After finalizing the options, CSSDEV checks the refactoring
preconditions [4], [10], and generates the actual source code
transformations. In some cases, CSSDEV needs to reorder
some of the style declarations or selectors, in order to make
sure that the changes will preserve the presentation semantics
of the resulting code [4], [10]. The developer gets a preview
of all the changes (Figure 3). This allows her to perform a
final investigation of the changes to be performed. In any
case, the IDE allows to undo the changes after a refactoring
is applied. We have also implemented the required code for
taking advantage of Eclipse Refactoring History feature, so
that the developer can keep track of the applied refactorings.

Fig. 3. Refactoring Preview

IV. VALIDATION, CONCLUSIONS AND FUTURE WORK

The soundness of the proposed refactorings has been already
validated in previous works [4], [10]. As an ongoing research,
we are investigating ways for helping developers in prioritizing

opportunities for refactoring, e.g., by ranking them based
on some criteria, and filtering out the ones that will be
unlikely to apply (i.e., those that might actually deteriorate
maintainability, rather than improving it). To this aim, we
are taking advantage of the knowledge obtained from an
empirical study that we conducted to find out how developers
use CSS preprocessor language features (e.g., mixins) [14].
To further complement this knowledge, we are aiming at
conducting a user study, to achieve a deeper understanding
of what developers really need when they refactor duplicated
code in CSS. This can be done, for instance, by asking the
developers to rate the refactoring opportunities proposed by
our approach, and seeking their reasoning behind the ratings.
We will then look into training statistical models for ranking
opportunities, based on the gained knowledge. The developers
will also provide feedback on the usability of the CSSDEV
Eclipse plug-in and suggest ways to improve it.

REFERENCES

[1] Web Technology Surveys. Usage of CSS for websites. http://w3techs.
com/technologies/details/ce-css/all/all.

[2] Mozilla Developer Network. Shorthand properties. https://developer.
mozilla.org/en-US/docs/Web/CSS/Shorthand_properties. Accessed: 26
Dec. 2015. [Online]. Available: https://developer.mozilla.org/en-US/
docs/Web/CSS/Shorthand_properties

[3] “CSS Syntax Module Level 3,” http://www.w3.org/TR/css-syntax-3/,
World Wide Web Consortium, Tech. Rep., November 2013.

[4] D. Mazinanian, N. Tsantalis, and A. Mesbah, “Discovering Refactoring
Opportunities in Cascading Style Sheets,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2014, pp. 496–506.

[5] G. Gharachorlu, “Code smells in Cascading Style Sheets: an empirical
study and a predictive model,” Master’s Thesis, University of British
Columbia, 2014.

[6] S. R. Choudhary, H. Versee, and A. Orso, “WEBDIFF: Automated iden-
tification of cross-browser issues in web applications,” in Proceedings
of the 26th IEEE International Conference on Software Maintenance
(ICSM), 2010, pp. 1–10.

[7] S. Roy Choudhary, M. R. Prasad, and A. Orso, “X-PERT: Accurate Iden-
tification of Cross-browser Issues in Web Applications,” in Proceedings
of the 2013 International Conference on Software Engineering (ICSE),
2013, pp. 702–711.

[8] A. Sellier. LESS - The dynamic stylesheet language. http://lesscss.org/.
[9] H. Catlin. SASS: Syntactically Awesome Style Sheets. http://sass-lang.

com/.
[10] D. Mazinanian and N. Tsantalis, “Migrating Cascading Style Sheets

to Preprocessors by Introducing Mixins,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2016, pp. 672–683.

[11] World Wide Web Consortium. CSS specifications. http://www.w3.org/
Style/CSS/current-work.

[12] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns Without Candidate
Generation,” SIGMOD Record, vol. 29, no. 2, pp. 1–12, 2000.

[13] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-based
web applications through dynamic analysis of user interface state
changes,” ACM Transactions on the Web, vol. 6, no. 1, pp. 3:1–3:30,
2012.

[14] D. Mazinanian and N. Tsantalis, “An Empirical Study on the Use of
CSS Preprocessors,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), 2016, pp.
168–178.

[15] C. Coyier. Popularity of CSS Preprocessors.
http://css-tricks.com/poll-results-popularity-of-css-preprocessors/.

[16] Z. Behfarshad and A. Mesbah, “Hidden-Web Induced by Client-side
Scripting: An Empirical Study,” in Proceedings of the 13th International
Conference on Web Engineering (ICWE), 2013, pp. 52–67.

http://w3techs.com/technologies/details/ce-css/all/all
http://w3techs.com/technologies/details/ce-css/all/all
https://developer.mozilla.org/en-US/docs/Web/CSS/Shorthand_properties
https://developer.mozilla.org/en-US/docs/Web/CSS/Shorthand_properties
https://developer.mozilla.org/en-US/docs/Web/CSS/Shorthand_properties
https://developer.mozilla.org/en-US/docs/Web/CSS/Shorthand_properties
http://www.w3.org/TR/css-syntax-3/
http://lesscss.org/
http://sass-lang.com/
http://sass-lang.com/
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work
http://css-tricks.com/poll-results-popularity-of-css-preprocessors/

	Introduction
	Tool Design
	Tool Features
	Clone Detection
	Extracting Order Dependencies
	Clone Refactoring

	Validation, Conclusions and Future Work
	References

