Refactoring Clones:

A New Perspective

Nikolaos Tsantalis, Giri Panamoottil Krishnan
Department of Computer Science and Software Engineering
Concordia University, Montreal, Quebec, Canada
nikolaos.tsantalis@concordia.ca, giri.krishnan@concordia.ca

Abstract—In this position paper we support that there is
still great potential for advancements in the research area
of software clone refactoring, and argue about some possible
research objectives and directions through illustrative examples.

I. INTRODUCTION

Software clone management comprises all activities of look-
ing after and making decisions about consequences of copying
and pasting [1]. According to Koschke [1], we can distinguish
three main lines of clone management: a) preventive, which
comprises activities to avoid new clones, b) compensative,
which encompasses activities aimed at limiting the negative
impact of existing clones that are to be left in the system,
and c) corrective, which covers activities to remove clones
from a system. Recent research work has focused more on the
preventive and compensative aspects by providing techniques
for clone tracking, incremental clone detection and clone
consistency analysis [2], and much less on the corrective
aspect of clone management.

A recent study by Tairas and Gray [3] on the clones detected
in 9 open-source projects using the Deckard clone detection
tool, revealed that only 10.6% of the detected clone groups
could be refactored by the Eclipse IDE, while their technique
(CeDAR) was able to refactor successfully 18.7% of them.
Clearly, there is still great space to improve the percentage
of clones that can be refactored. In this position paper, we
will present cases that cannot be handled by existing clone
refactoring techniques and suggest possible solutions as a
means to initiate new research directions on the refactoring
of software clones.

II. RELATED WORK

In this section we will briefly discuss the current state-
of-the-art in the refactoring of software clones. Higo et al.
[4] and Choi et al. [5] propose a metric-based approach to
examine whether a clone set can be refactored and suggest
appropriate refactoring strategies. Tairas and Gray [3] extend
the refactoring engine in Eclipse IDE, which supports only
the parameterization of differences in local variable identi-
fiers, with additional parameterized differences between field
accesses, method calls and literals. This enables the refactoring
of clones containing dissimilarities between different types
of AST nodes. Hotta et al. [6] detect isomorphic subgraphs
in the Program Dependence Graphs (PDGs) of two methods
containing Type-3 clones in order to extract their common
process that can be pulled up to a base class. The remaining

code fragments that do not belong to the detected isomorphic
subgraphs constitute the unique processes that should remain
in each derived class.

III. RESEARCH DIRECTIONS
A. Determining Valid Clone Regions

Most existing clone refactoring techniques [3], [4] recognize
that the presence of valid clone regions (i.e., the regions in
which the clones expand) is an important condition to enable
the refactoring of a clone group. A valid clone region is a re-
gion that does not contain incomplete statements. A statement
is considered as incomplete if part of its expression(s) or body
is not included in the clone region. Experience has shown that
text-based and token-based clone detection tools may return
invalid clone regions [3], [4]. To address this problem, Aries
[4] extracts a subset of syntactically valid units from token-
based clones, while CeDAR [3] employs AST-based clone
detection tools in order to get appropriate input for their clone
refactoring techniques. AST-based techniques return clones
which are sub-trees within the abstract syntax tree of the code,
and thus always form valid clone regions. However, a universal
clone refactoring technique should be able to process results
obtained from any clone detection tool.

Range range = getRange();
double vmin = range.getLowerBound();
| double vmax = range.getUpperBound();
double vp = getCycleBound();
if ((value < vmin) || (value > vmax)) {
return Double.NaN;

Type-2 clones

double vmax = range.getUpperBound();
double vp = getCycleBound();
double jmin = 0.0;
double jmax = 0.0;
if (RectangleEdge.isTopOrBottom(edge)) {
jmin = dataArea.getMinX();
jmax = dataArea.getMaxX();

Range range = getRange(); l

double jmin = @0.0;

double jmax = 0.0;

if (RectangleEdge.isTopOrBottom(edge)) {
jmin = dataArea.getMinX();
jmax = dataArea.getMaxX();

}
else if (RectangleEdge.isLeftOrRight(edge))

{
jmax |= dataArea.getMinY|);
[gmin|= dataArea.getMaxY();

3
else if (RectangleEdge.isLeftOrrRight(edge))
{

min| = dataArea.getMaxY[);
(%] = dataarea. getpin);
3 b

if (isInverted()) {
code fragment #2

if (isInverted()) {
code fragment #1
} }

Fig. 1. Example of invalid clone regions (highlighted in gray).

The example shown in Figure 1 is a typical case of invalid
clone regions (the last if statement is incomplete in both
clones). Block-based regions have been used in method de-
composition techniques [7] for determining alternative regions
in which a slice may expand (i.e., block-based slicing), and
therefore exploring alternative decomposition opportunities.
We believe that block-based regions could be extremely useful
for restricting software clones into valid regions that will
enable their refactoring.

978-1-4673-6445-4/13 © 2013 IEEE 12 IWSC 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

B. Intelligent Parameterization of Differences

Type-2 clones are syntactically identical code fragments that
differ in variable identifiers, method call identifiers, literals,
and types. Type-2 clones can be refactored by mapping the
differences among the clones of a clone group and introducing
a parameter of appropriate type in the extracted method for
each parameterized difference. After the extraction of the
duplicated code, the methods that originally contained the
clones call the extracted method by passing as arguments the
values corresponding to the parameterized differences. The
majority of clone refactoring tools support the parameteri-
zation of differences in local variable identifiers. Recently,
CeDAR [3] introduced the parameterization of differences
between different types of AST nodes (e.g., variables replaced
with method calls). However, even this approach would be
ineffective in the example of Figure 2, because an entire
expression (i.e., high — low) is replaced with a method
call. This example could be refactored only if parameterization
took place at argument level (i.e., a higher level in the AST)
and not at identifier level (i.e., AST leaves).

Rectangle2D rect = null;
if (orientation == HORIZONTAL) {
low = Math.max(low,dataArea.getMinY());
high = Math.min(high,dataArea.getMaxY());
rect = new Rectangle2D.Double(
dataArea [getMinX(),
dataArea.getWidth(), high - Tou);
} }

Rectangle2D rect = null;
if (orientation == HORIZONTAL) {
low = Math.max(low,dataArea.getMinX|());
high = Math.min(high,dataArea.getMaxX|());
rect = new Rectangle2D.Double(
[Low, dataArea.fgetMiny)(),
high - Tow] dataArea.getHeight());

Fig. 2. Example requiring a more advanced parameterization of differences.

C. Refactoring of Type-3 Clones

The refactoring of Type-3 clones is challenging due to
the presence of unmatched statements (i.e., replaced, added,
or removed statements). The PDG is the most appropriate
representation for the problem of Type-3 clone refactoring [8].
First, it can reduce the ambiguity of statement matching, since
statement similarity can be assessed not only based on textual
or AST-structure similarity, but also based on the matching
of incoming/outgoing control and data dependencies. Second,
the PDG can be used to determine whether the unmatched
statements between the clones (i.e., statements in gaps) can be
moved before or after the execution of the duplicated code by
examining whether this move alters the original dependencies
of the graph [7]. Therefore, the problem of finding the common
statements between Type-3 clones can be transformed into
finding the Maximum Common Subgraph (MCS) in their
PDGs. Previous techniques [8], [9] have applied backward
and forward slicing on PDGs to detect isomorphic subgraphs.
However, these approaches return a single mapping solution,
which might not be optimal. On the other hand, MCS tech-
niques create a search tree by exploring the entire solution
space. An optimal solution can be determined by finding the
subgraph in the search tree that has the maximum number of
mapped nodes/edges and the minimum number of structural
differences between the mapped nodes.

The clone on the left side of Figure 3 contains two additional
statements compared to the clone on the right side. These
statements define two variables, namely lineVisible

- duplicated code fragment #1 -
boolean lineVisible =
getItemLineVisible(series, 0);
boolean shapevisible =
getItemShapeVisible(series, 0);
LegendItem result = new LegendItem(
label, description, toolTipText,
urlText, shaéevisible, shape,
getItemShapeFilled(series, @),
fillPaint, shapeOutlinevisible,
outlinePaint, outlineStroke, |lineVisible
new Line2D.Double(-7.0, 0.0, 7.0, 0.0),
getItemStroke(series, @),
getItemPaint(series, 0));
- duplicated code fragment #2 -

- duplicated code fragment #1 -

GAP

LegendItem result = new LegendItem(
label, description, toolTipText,
urlText, truel shape,
getItemShapeFilled(series, @),
fillPaint, shapeOutlineVvisible,
outlinePaint, outlineStroke,
new Line2D.Double(-7.0, 0.0, 7.0, 0.0),
getItemStroke(series, @),
getItemPaint(series, 0));

- duplicated code fragment #2 -

Fig. 3. Example of Type-3 clones with a gap.

and shapeVisible, which are used as arguments in the
LegendItemn constructor call that follows. PDG analysis can
reveal that these two statements can be moved before the
beginning of the left-side clone, thus enabling the extraction
of the entire duplicated code fragment in a single method.

D. Refactoring Sub-clones

All existing approaches are unable to refactor clone frag-
ments that compute more than one variable, since the extracted
method in which the duplicated code will be moved may return
at most one variable (in Java programming language). In the
example of Figure 1, we can observe that both clones contain
the computation of two variables, namely jmin and jmax.
These clones can be refactored only by extracting separately
the computation of each variable. This can be achieved by
decomposing the original clones into sub-clones having a
distinct functionality [7]. In this particular example, the if
and else 1if conditional structures will have to be duplicated
in the two extracted methods, since they are required for the
computation of both jmin and jmax variables. However, the
number of duplicated statements will be significantly reduced
from 8 statements before refactoring to just 2 statements after
refactoring.

REFERENCES

[1] R. Koschke, “Frontiers of software clone management,” in Frontiers of
Software Maintenance, 2008, pp. 119-128.

[2] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen, “Clone management for evolving software,” IEEE Transactions
on Software Engineering, vol. 38, no. 5, pp. 1008-1026, 2012.

[3] R. Tairas and J. Gray, “Increasing clone maintenance support by unifying
clone detection and refactoring activities,” Inf. Softw. Technol., vol. 54,
no. 12, pp. 1297-1307, Dec. 2012.

[4] Y. Higo, S. Kusumoto, and K. Inoue, “A metric-based approach to identi-
fying refactoring opportunities for merging code clones in a java software
system,” Journal of Software Maintenance and Evolution: Research and
Practice, vol. 20, no. 6, pp. 435-461, 2008.

[5S] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano, “Extracting
code clones for refactoring using combinations of clone metrics,” in
Proceedings of the 5th International Workshop on Software Clones, 2011,
pp. 7-13.

[6] K. Hotta, Y. Higo, and S. Kusumoto, “Identifying, tailoring, and sug-
gesting form template method refactoring opportunities with program
dependence graph,” in Proceedings of the 16th European Conference on
Software Maintenance and Reengineering, 2012, pp. 53-62.

[7]1 N. Tsantalis and A. Chatzigeorgiou, “Identification of extract method
refactoring opportunities for the decomposition of methods,” J. Syst.
Softw., vol. 84, no. 10, pp. 1757-1782, Oct. 2011.

[8] R. Komondoor and S. Horwitz, “Using slicing to identify duplication in
source code,” in Proceedings of the Sth International Symposium on Static
Analysis, 2001, pp. 40-56.

[9] Y. Higo and S. Kusumoto, “Code clone detection on specialized PDGs
with heuristics,” in Proceedings of the 15th European Conference on
Software Maintenance and Reengineering, 2011, pp. 75-84.

13

