
Probabilistic Evaluation of Object-Oriented Systems

Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides and Ignatios Deligiannis
1

Department of Applied Informatics, University of Macedonia
1
Department of Informatics, Technological Education Institute of Thessaloniki

54006 Thessaloniki, Greece

E-mail: {it0157, achat, steph}@uom.gr, igndel@it.teithe.gr

Abstract

The goal of this study is the development of a

probabilistic model for the evaluation of flexibility of an

object-oriented design. In particular, the model estimates

the probability that a certain class of the system will be

affected when new functionality is added or when

existing functionality is modified. It is obvious that when

a system exhibits a large sensitivity to changes, the

corresponding design quality is questionable. Useful

conclusions can be drawn from this model regarding the

comparative evaluation of two or more object-oriented

systems or even the assessment of several generations of

the same system, in order to determine whether or not

good design principles have been applied. The proposed

model has been implemented in a Java program that can

automatically analyze the class diagram of a given

system.

1. Introduction

 Although the merits of object-orientation are

numerous and well-known, one fundamental property of

good object-oriented designs, namely flexibility [9], has

not been given considerable attention within the metrics

community. By flexibility it is meant that the principles

of encapsulation, information hiding, abstraction,

inheritance and polymorphism should be correctly

applied so as to remove any odors of fragility and rigidity

[9]. These properties characterize a design that is easy to

break or difficult to change, respectively.

 More specifically, the addition of new functionality in

a system should have as limited impact on existing

modules as possible. If the modification of a class

method imposes refactoring to a number of existing

classes, object-orientation is of limited value. This

feature has been successfully captured by the Open-

Closed Principle which states that software entities

should be open for extension but closed for modification.

There are many design principles [9], heuristics [12] and

patterns [4] that help to enforce good programming

practices in order to built more stable and flexible

systems.

 Numerous metrics are available for evaluating several

aspects of a software system [3] and since the initial

work of Chidamber & Kemerer [2] the field of software

metrics has been expanding to the object-oriented domain

as well. However, we believe that most of the existing

metrics evaluate the degree of object-orientation or

measure static characteristics of the design, which are not

always helpful in answering the question whether a

specific design is good or not [7]. When trying to answer

such a question, an expert would assess the conformance

of the design to well established rules of thumb,

heuristics and principles. This work attempts to

systematize this process, at least towards one desirable

property of object-oriented systems, namely flexibility.

 In this paper we attempt to estimate the potential

flexibility of a given system, employing a probabilistic

approach. In brief, the goal is to assess the probability

that a method, class or the system itself, will change in a

future generation. In order to calculate these

probabilities, axes of change, through which a change in

one module can affect another module of the design, are

identified. The analysis is based on simple probabilistic

analysis and can be easily automated. The extracted

probabilities can be refined by taking into account past

data for an evolving design, such as the ones developed

in the open source community.

 The rest of the paper is organized as follows: Section

2 briefly mentions the types of changes that have been

considered, while in section 3 the analysis process is

explained. Two sample applications are extensively

analyzed in section 4, while in the next section a software

tool that has been developed in order to automate the

proposed methodology is briefly described. In section 6

we discuss the limitations and our plans for future work.

Finally we conclude in section 7.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

2. Types of changes

According to the rules governing object-orientation

there are changes that affect in an absolute manner other

classes of the system and changes that do not affect other

portions. The following observations and terminology

focus mainly on systems developed using Java; However,

the conclusions can be easily ported to any object-

oriented programming language.

2.1 Changes with a definite impact

Interface: The addition of a new method in an interface

or a change in the signature of an existing method

enforces all classes implementing this interface to modify

themselves in order to be compliant with this change.

Instance: A change in the signature of the constructor of

one class implies that all classes that create instances of

this class, have to modify the constructor call.

Abstract class: The addition of a new abstract method or

a change in the declaration of an existing abstract method

enforces all classes that extend (inherit) this abstract class

to modify the corresponding implementing methods.

Non-abstract class: In case one class employs the

constructor of its superclass or explicitly uses a method

of the superclass (e.g. via the super identifier), any

change in the signature of the constructor or method

imposes the subclass to be modified, in order be

compliant with its superclass.

Methods: A change in the declaration of one method

(whether static or non-static) enforces all classes using

that method to modify the corresponding method calls.

2.2 Changes with no impact

Body changes: All changes in the body of the

constructor of one class or in the body of one method do

not affect classes that create instances of that class or

employ that method respectively (encapsulation).

The proposed model employs for the evaluation of

object-oriented systems changes with a definite impact

on other classes of the system, i.e. changes that can

propagate through the system. Such changes are assumed

to propagate to all possible target classes. Consequently,

our analysis can be described as a worst-case analysis of

the system under study.

3. Probability estimation

3.1 Axes of change

In order to emphasize the interference between the

classes of a system, the proposed model defines several

axes of change through which a change in a class can

affect other classes enforcing them to be modified. Each

class can change because of its involvement in one or

more axes of change.

In general, axes fall in two main categories, each one

containing two sub-axes of change:

Inheritance axis:

Interface: A class implements one or more

interfaces (inherits pure abstract classes for C++)

Class Inheritance: A class extends another class

and calls one of the super class methods or

constructors

Reference axis:

Direct instance: A class instantiates an object

(employing the new operation for example)

Reference: A class employs an object as a

parameter in its constructor or one of its methods.

(In order for a change in the class' object to affect

the using class, one of the object methods should

be called).

The above two axes are related to any possible

modification of a class' probability of change due to other

classes and therefore will be called external axes of

change.

However, since each class can also change due to

modifications to the class itself, we define also an

internal axis of change that summarizes all possible

causes of change: modification to method declarations,

addition of new methods/attributes, change of

implementation, etc. This axis, although not affecting

other classes, has to be taken into account, since a class

with a "bad" history of changes will contribute to the

overall system's probability of change.

At this point, it should be noted, that dependence on

library classes (such as STL in C++ or API's in Java) is

not considered a source of changes, since these classes

are not likely to change. Axes involving such classes are

not taken into account in the analysis.

3.2 Analysis

Given a class A in which a change can occur, the aim

is to calculate the probability that another class B that can

be affected, has to change.

The probability that a class C might change in the

next generation of the software will be denoted as CP .

Since the only possible events are a) that the class

changes and b) the class does not change (i.e. the sample

space is S = {“change”, “no change”}), the proposed

probability on the sample space of the two outcomes

satisfies the following properties:

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

1. Any probability is a number between 0 and 1:

0 1. (The probability is physically measured

in a class that undergoes a number of modifications

through successive generations, as the ratio of the

number of changes over the number of generation

upgrades. Since this number can be at least 0 and at

maximum 1, it follows that the range of the probability

function is [0..1].)

CP

Another issue that requires non-trivial handling

concerns mutually dependent classes. For example,

consider the following hypothetical design where classes

C1 and C2 are abstract:

2. The sample space, S, of all possible outcomes has a

probability of 1: = 1.)(SP

3. Since the two events are disjoint,
"""")"""(" changenoPchangePchangenochangeP

and thus P is a valid probability measure [11].

As already mentioned, every class is subject to

change due to its involvement in several axes of change.

Since, even one change will be a reason for editing the

code, the probability in which we are interested is given

by the joint probability of all events (i.e. change in any

axis), also known as probability of the OR of two or

more events. For example, if a class A can change due to

two axes of change, axisA and axisB, the probability that

A will change is given by [1]:

):():():():(

)::():():(

)::()(

axisBAPaxisAAPaxisBAPaxisAAP

axisBAaxisAAPaxisBAPaxisAAP

axisBAaxisAAPAP

This probability is always lower than one. P(A:axisX)

symbolizes the probability that class A will change due to

axisX.

Since the final goal is to be able to characterize a

system according to its probability of change in a future

generation, the probability of the system is calculated as

the mean value of the probabilities of all classes in the

system. The mean value has been selected since it

captures not only the probabilities of each class but takes

also into account whether the effect of change is

localized or not: For a good object oriented design,

change is expected to affect a limited number of classes,

while the majority will remain unaffected. This is

reasonably captured by the mean value. On the other

hand, for a badly designed system where all functionality

has been placed into one class, the mean value will reveal

the odors of rigidity and fragility [9].

One issue that has to be clarified before the

application of the proposed model is the order according

to which probabilities will be estimated. For any

inheritance tree, probabilities should be calculated

starting from the classes higher in the hierarchy, since the

probability of a superclass is required in order to extract

the probability of a subclass.

+methodA()

C1

+methodB()

C2

+methodA()

C3

+methodB()

C4

Figure 1: Circular dependencies of probabilities

In the above system, the probabilities of classes C3

and C4, have a mutual or circular dependence on each

other. The probability for class 3 is given by:

):3

:3:3()3(

axisernalntiC

axisreferenceCaxisextensionCPCP

where)4():3(CPaxisreferenceCP

The probability for class C4 is extracted in a similar

manner. However, the above probabilities lead always to

a set of first-order equations of the form:

)4()1()3(CPaaCP

)3()1()4(CPbbCP

where a and b are coefficients resulting from all other

probabilities. Unfortunately, no matter what the values of

a and b are, the solution to such a system is always equal

to 1 ()1)4()3(CPCP , as a result of the circularity in

the joint probabilities.

In order to cope with this problem without adding to

the complexity of the software, our implementation

initially considers the two or more classes as not

associated (their association is temporarily broken) and

proceeds to the estimation of probabilities as already

described. Once the probabilities are extracted, the

association is restored and the probabilities for each class

are calculated again as the joint probabilities of their

prior value and that of the associated classes.

To summarize the proposed methodology, for each

class the probability of change due to its involvement to

any axes of change is evaluated first. Next, the joint

probability due to all axes of change is extracted and as a

last step the system's probability of change is calculated

as a mean value.

3.3 Assumptions

In the previous analysis, it has been assumed that the

events associated with each axis of change (i.e. a change

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

due to axisA and a change due to axisB) are independent,

which is reasonable since the outcome of one event does

not affect in general the probability of the other.

In addition, in case of multiple axes of change

associating two classes (e.g. inheritance and

containment), these axes are counted as one. That is

because, under the worst-case analysis model, even one

axis is sufficient for propagating the change from one

class to another.

Initially, for a new design, since there are no

statistical data from past generations in order to estimate

the frequency of change in any part of the system, the

model assumes that for classes where changes originate,

the probability of change is 0.5 (this includes the

probability related to the internal axis of change).

Finally, since this is a worst-case analysis, if one class

changes, all classes to which the change can eventually

propagate, are assumed to be affected, regardless of the

nature of that particular change.

4. Application Results – Discussion

There is a general agreement on the fact that Design

Patterns improve the quality of an object-oriented design

by applying best practices for design for change [4].

Such a qualitative improvement should be measurable by

the applied metrics; in order to evaluate the efficiency of

the proposed model we have measured the system

probability of change for two designs that have the same

functionality: One "naïve" design which does not employ

any Design Patterns and a more sophisticated solution in

which a suitable Design Pattern has been used. The first

case tests the proposed model against the Decorator

Design Pattern while the second concerns a system that

exploits the Bridge Design Pattern [4].

4.1 Decorator

For the naïve design the system's basic functionality is

simply enhanced using inheritance and composition by

adding new subclasses that inherit a base functionality

and call the methods of contained objects [5]. The UML

diagram corresponding to this design is shown in Figure

2. All doIt() methods call the doIt() method of

their superclass, among with calling any specific methods

declared in that class or accessed through references.

The improved design has anticipated that future

classes with enhanced functionality might be added in the

system and therefore employs the Decorator pattern. The

corresponding UML class diagram is shown in Figure 3.

This time classes X, Y, Z call in their doIt() method the

corresponding method of the D class, while D class calls

in the doIt() method the corresponding method of its

contained core object.

+doIt()

A

+doIt()

+doX()

AwithX

+doIt()

+doY()

AwithY

+doIt()

+doZ()

AwithZ

+doIt()

AwithXY

+doIt()

AwithXYZ

Figure 2: Naïve design

+doIt()

I

+doIt()

A

+doIt()

D

core

+doIt()

+doX()

X

+doIt()

+doY()

Y

+doIt()

+doZ()

Z

1

1

Figure 3: Improved design using Decorator DP

The two systems vary dramatically in their need to

undergo modifications in case of a change. As an

example, a change in the signature of the doY() method

in the "naïve" design will affect classes AwithXY and

AwithXYZ through the corresponding reference axes as

displayed in Figure 4. Shadowed classes and methods

with a border will be affected.

The class diagram of the improved system will not

change at all in order to accommodate the new

functionality since each object can be dynamically

decorated with the functionality of subclasses of class D.

The difference in flexibility between the two designs is

even more intense if a new kind of functionality (e.g.

AZXY) is required, which demands the addition of a new

class in the naïve system, while the static structure of the

improved design need not be changed at all.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

Change in the

doY() signature
+doIt()

A

+doIt()

+doX()

AwithX

+doIt()

+doY()

AwithY

+doIt()

+doZ()

AwithZ

+doIt()

AwithXY

+doIt()

AwithXYZ

Figure 4: Propagation of changes

Analysis

Naïve Design: Classes AwithX, AwithY and AwithZ have

all one axis of change with regard to the extension of

class A and are also themselves subject to change

(internal axis). A change in the declaration of method

doIt() of superclass A will cause a change to the

subclasses with probability 1, because method doIt()

of the subclasses calls the doIt() method of the

superclass (through the super keyword). Therefore the

conditional probability is equal to one.

Assuming that a change in class A will occur with a

probability of 0.5, then

)|(AAwithXP

5.0)()|():(APAAwithXPaxisextensionAwithXP

The same holds for classes AwithY and AwithZ as well.

The probability of change for these classes is given

by the joint probabilities of the extension and the internal

axis:

75.05.05.05.05.0

)::(

)(

axisernalintAwithXaxisextensionAwithXP

AwithXP

 Class AwithXY is involved in two external axes, one

with respect to the extension of class AwithX and one

with respect to its reference to class AwithY. In a similar

manner:

75.075.01)()|(

):(

AwithXPAwithXAwithXYP

axisextensionAwithXYP

Concerning the reference axis, a change to class

AwithXY could be caused by two events: a change in the

declaration of the constructor of AwithY or by change in

the signature of the doIt() method in class AwithY.

Consequently, .1)|(AwithYAwithXYP

The probability of change for class AwithY has

already been calculated and finally:

75.075.01)()|(

):(

AwithYPAwithYAwithXYP

axisreferenceAwithXYP

The final probability that a change occurs in class

AwithXY is given by the OR of the probabilities with

respect to each axis (at this point the internal axis should

also be taken into account):

969.0

):

:

:()(

axisernalintAwithXY

axisreferenceAwithXY

axisextensionAwithXYPAwithXYP

 Similarly, class AwithXYZ is involved in four axes of

change (one extension axis with respect to class AwithX,

two reference axes with respect to AwithY and AwithZ

and the internal axis). The final propability is again

calculated as the OR of the probabilities for each axis,

resulting in: .992.0)(AwithXYZP

The system probability of change as already

explained, is estimated as the mean value of the

probabilities of all classes:

785.0
6

6

1i

i

s

CP

P

Improved Design: Abstract classes D and A participate in

only one external axis of change with respect to the

declaration of method doIt() in interface I. (Class D

appears to have a second axis due to the containment

relationship with class I. However, as already mentioned,

multiple axes of change from one class to another are

counted only once). Any change in the signature will

cause a change to the implementing classes with

probability 1, i.e. 1)|(IDP . Therefore, under the same

assumptions as previously:

5.05.01)()|():(IPIDPaxisextensionDP

Consequently, considering also the internal axis:

75.0)()(DPAP

 Classes X, Y, Z have only one external axis regarding

the extension of their superclass D. Any change in the

signature of method doIt(), will cause definite changes

to the subclasses, since the doIt() method of the

subclasses calls the doIt() method of the superclass.

Taking the joint probability due to this axis and that due

to internal changes, results in:

875.0)()()(ZPYPXP

The system probability is given by:

771.0
6

6

1i

i

s

CP

P

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

The system probabilities in the two designs might

seem very similar. However, it becomes clear that the

situation will get worse as new functionality is added: In

case AZXY functionality is required, the naïve design in

order to accommodate this change in the requirements

will have to add a new class AwithZXY worsening the

system probability of change (). On the other

hand the improved class design and its corresponding

probability will remain unchanged.

815.0sP

However, such a change favors the design pattern

solution which has been applied in anticipation of such

kind of changes. If another kind of change occurs (e.g.

the addition of a formal parameter in the declaration of

doIt() method) both systems will be affected to a

similar degree.

Discussion

The results from the probabilistic analysis validate well-

established rules of good object-oriented design:

Although "deep and narrow" inheritance hierarchies

should be preferred theoretically [12], in practice shallow

hierarchies prove to be more maintainable and extendible

[10], [13]. The complexity that deep hierarchies incur has

also been mentioned in the discussion of the DIT metric

[2].

Another well-known heuristic states that the number

of classes with which another class collaborates should

be kept minimal [12]. The same point is implied by the

Law of Demeter: "Each unit should only use a limited set

of other units" [8]. The proposed probability measure

reveals clearly any violation of this principle: For a

system where the number of associations between classes

becomes large, the axes of change through which

changes can propagate will also increase, resulting in a

high probability of change.

As a last example, the proposed measure also

validates the Interface Segregation Principle (ISP)

according to which clients should not be forced to

depend on methods that they do not use [9]. Stated

differently, a designer should avoid interface pollution,

i.e. the incorporation of methods solely for the benefit of

one of its subclasses. One solution to this problem is

achieved by separation of interfaces (or multiple

inheritance in C++), since in that case, only the interested

parties will inherit the required additional functionality.

This fact is also recognized by the probabilistic analysis:

A fat interface which is being implemented by all of its

subclasses will lead to a much higher probability of

change, than a design in which only some of the

subclasses implement additional interfaces. This might

not be clear in the preceding discussions where all

changes are assumed to have a probability of 0.5, but in a

real environment a fat interface that would have a worse

history of changes than a non-polluted one, would

unavoidably affect all of its implementing classes.

4.2 Bridge

The second example refers to a primitive application that

can draw rectangles and circles with either of two

drawing programs (DP1 and DP2). Since the rectangles

and circles know during instantiation which drawing

program to use, the straightforward solution is to have

two different kinds of each shape, one for each drawing

program. This novice designer's approach results in the

UML class diagram shown in Figure 5 that is based on

subclassing of an abstract base class to provide

alternative implementations.

+draw()

Shape

+draw()

#drawLine()

Rectangle

+draw()

#drawCircle()

Circle

#drawLine()

V1Rectangle

#drawLine()

V2Rectangle

#drawCircle()

V1Circle

#drawCircle()

V2Circle

+draw_a_line()

+draw_a_circle()

DP1

+drawline()

+drawcircle()

DP2

Figure 5: Naïve design for Drawing application

Clearly this solution suffers from combinatorial

explosion in case of new drawing programs or new

shapes and exposes the problem that arises from the

overuse of inheritance [13].

On the other hand, the improved design anticipates

that future requirements for further kind of shapes might

arise and attempts to "decouple an abstraction from its

implementation so that the two can vary independently"

[4]. Although for the design of a single shape the

development team would obviously come up with the

same solution as in the previous case, when more shapes

have to be drawn, the designers choose to encapsulate

what is varying (Shapes and Drawing programs) and to

favor composition over inheritance. This calls for the

application of the Bridge Pattern, which according to the

GoF [4] “allows the combination of different abstractions

and implementations and the extension of them

independently”. The resulting UML diagram is shown in

Figure 6.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

+draw()

#drawLine()

#drawCircle()

Shape

+draw()

Rectangle

+draw()

Circle

+drawLine()

+drawCircle()

V1Drawing

+drawLine()

+drawCircle()

V2Drawing

+draw_a_line()

+draw_a_circle()

DP1

+drawline()

+drawcircle()

DP2

+drawLine()

+drawCircle()

Drawing

1 *

Figure 6: Improved design for Drawing
application

Analysis

Naïve Design: Classes Rectangle and Circle are involved

in one extension axis plus their internal one. Each of the

concrete Shape classes is involved in one extension axis,

one reference axis to the corresponding drawing program

as well as their internal one. The final system probability

of change is equal to 0.75.

Improved Design: The inheritance tree has now a lower

depth resulting in lower theoretical values for the

probability of change. Classes Rectangle and Circle are

involved in three axes: one extension axis with regard to

Shape class, one reference axis with regard to the

Drawing class and their internal one. Each of the added

classes V1Drawing and V2Drawing is also involved in

two external and one internal axis. The system

probability of change is 0.734.

Again, this might not be a very distinct difference for

a system that is supposed to be better designed than the

initial one. However, as more requirements are

implemented, the stability of the improved design is

reflected in an increase of the difference between the two

probabilities of change: Consider for example the

addition of a new Shape (e.g. a Triangle), which can be

drawn by either of the two drawing programs. The

system probability of change in the naïve design becomes

0.781 while that of the improved design becomes 0.756.

5. Implementation

One of the goals of analyzing the probabilities of

change in a system, is to enable the automation of the

process by means of an appropriate parser and analyzer.

To this end, a Java program has been developed that

parses the complete hierarchy of directories that include

the project under study (or an input XML file containing

the description of the static structure of an object oriented

design. The XML file includes tags for annotating each

class with the required information concerning

associations and inheritance relationships). Next, the

program applies the aforementioned methodology by

calculating probabilities for each class, propagates these

probabilities to the affected classes and finally calculates

the system's probability of change.

The tool as well as sample XML files can be

downloaded from [6].

The developed software can also generate system

probabilities for various designs in order to enable a

comparative analysis of several alternatives. A sample

screenshot with estimated probabilities for the naïve and

improved designs shown in Figures 2, 3 is shown below.

The probabilities for each class can be either set freely by

the designer or extracted from previous data as already

mentioned in order to explore the evolution of a design.

Figure 7: Sample screenshot for the application

6. Future Work

So far, it has been assumed that for any unknown

change, the probability is 0.5. In case actual data can be

collected from several generations of the system, these

probabilities can be refined in order to extract more

realistic information. It is obvious that changes due to

new requirements or maintenance will not have a

uniform distribution among all components of the

system. To this end, experiments can be performed to

"tune" the proposed model to past data.

A rich source of information for such kind of past

data can be open source projects, which have evolved

through several generations. Our current goal is to apply

the proposed methodology to such kind of projects in

order to refine the class probabilities but more important

to assess the efficiency of probability estimations.

For such systems high class probabilities could

highlight modules of the design that have reached a level

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

of saturation, beyond which any attempt to enhance the

system functionality would cause severe changes to the

existing code. Such a threshold could possibly indicate

that appropriate refactoring is necessary.

7. Conclusions

One methodology for estimating the overall degree of

flexibility for an object-oriented design has been

proposed. The goal is to assess the probability that a

class/system will change in a future generation. For a

well-designed system, e.g. one that employs Design

Patterns where appropriate, this probability should be

low, while a system that can easily break is characterized

by large probability values. Apart from the probability

that a change occurs in a class itself, changes can

propagate through so-called axes of change, affecting the

overall probability value. The results confirm the

expectation that the application of good programming

principles helps to built a more flexible system, while the

proposed methodology can be easily automated and

applied to any object-oriented software system.

8. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

A. V. Aho and J. D. Ullman, Foundations of Computer

Science, 3rd ed., Computer Science Press, New York, 1995

S. R. Chidamber, C.F. Kemerer, “A Metrics Suite for

Object Oriented Design”, IEEE Transactions on Software

Engineering, vol. 20, no. 6, June 1994, pp. 476-493.

N. E. Fenton and S. L. Pfleeger, Software Metrics: A

Rigorous & Practical Approach, International Thompson

Publishing, Boston, MA, 1997.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, Boston, MA, 1995.

Huston Design Patterns

http://home.earthlink.net/~huston2/dp/patterns.html

http://java.uom.gr/~nikos/probabilistic-evaluation.html

C. Kirsopp, M. Shepperd, S. Webster, “An Empirical

Study into the Use of Measurement to Support OO Design

Evaluation”, Proc. 6th IEEE Int. Symposium on Software

Metrics, Boca Raton, FL, USA, Nov. 1999, pp. 230-241.

K. J. Lieberherr, I. M. Holland, "Assuring Good Style for

Object-Oriented Programs", IEEE Software, vol. 6, no. 5,

September 1989, pp. 38-48.

R. C. Martin, Agile Software Development: Principles,

Patterns and Practices, Prentice Hall, Upper Saddle River, NJ,

2003.

 B. K. Miller, P. Hsia, C. Kung, "Object-Oriented

Architecture Measures", Proc. 32nd Hawaii International

Conference on System Sciences (HICSS'99), January 1999.

 A. Papoulis, Probability, Random Variables, and

Stochastic Processes, 2nd ed. McGraw-Hill, New York, 1984.

 A. J. Riel, Object-Oriented Design Heuristics, Addison-

Wesley, Boston, MA, 1996.

 A. Shalloway, J. R. Trott, Design Patterns Explained,

Addison-Wesley, Boston MA, 2002.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

