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ABSTRACT 
In this paper, we propose a new scalable application-layer 
protocol, specifically designed for data streaming applications 
with large client sets. This is based upon a control hierarchy of 
successive levels for the clients, has minimal overhead with 
constant number of messages per client, and is robust to client and 
network failures, making it suitable for wireless environments. 
The video server bandwidth utilization is also significantly 
reduced. We present an analysis and simulation results, showing 
that LEMP is near optimum in terms of performance. 
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1. INTRODUCTION 
The advance of communication technology has spawned a large 
number of services, previously too expensive or impossible to 
access for the average user. 
However, there are still services that require a large amount of 
bandwidth and the associated cost has not allowed them to 
achieve widespread use. Video-on-Demand (VoD) is one such 
service, composed of at least three entities, namely the video 
server, the customer’s client computer and the intermediate 
network.  
There are several conflicting requirements: Less bandwidth per 
video means more video streams (virtual channels) available per 
video server. Also, due to the nature of the Internet, it is not easy 
to avoid jitters by establishing isochronous virtual channels 
between the server and the client. The memory space occupied by 
a single video is often larger than the available memory on the 
client. Moreover, in a typical video service the client expects 
additional capabilities, such as fast forward, pause and rewind, 
not to mention interactive video. 
Many researchers have worked on these issues the past few years 
and have proposed several interesting ideas, such as patching [1], 
skyscraper broadcasting [5], bandwidth skimming [6], SVD [7] 

and greedy disk-conserving broadcasting [11], all of which try to 
minimize the duration of broadcast or the number of additional 
server channels for the same video. Others try to utilize client 
memory in a simple but very hard to implement way (e.g. 
chaining [4]). 
Other proposals have slightly different goals or assumptions, such 
as Variable Bit Rate (VBR) broadcasting [10], [12], [13], [14], 
lossy network environments [2], or are extensions of existing 
techniques for distributed VoD service [8]. 

Due to the nature of the Internet, multicasting is not a realistic 
option in a large scale. Hence, the key problem we address in this 
paper is how to minimize overall video server network bandwidth, 
while simultaneously maintaining the latency of service to client 
requests minimal, for popular videos, using unicasting. We 
assume client bandwidth slightly higher than the playback rate for 
incoming traffic. The number of video channels per client is 
upwards bounded by b ≥ 1. 
The clients can be of any type in terms of computing power and 
buffer size. Furthermore, the clients can join or leave a broadcast 
at any time, either by choice or due to the problematic nature of 
the network. These assumptions are quite realistic both for 
workstations and mobile clients (e.g. PDAs). 

Based on these assumptions, we propose the use of clients both as 
passive receivers of videos, as well as partial video servers for 
other clients through the use of their buffers. This is not a novel 
approach [4], [9], [15], 16], but the organization of the underlying 
access control mechanism is, since we propose a semi-
hierarchical overlay, against the tree-like arrangements proposed 
by other researchers (e.g., [16]). We also propose a different 
mechanism for the join and departure of clients, with emphasis on 
fault-tolerance and self-recovery and the reduction of control 
overhead and simultaneous server channels. 
The rest of the paper is organized as follows. In section 2 we 
formulate the problem. In section 3 we present our proposal 
(LEMP). In section 4 we analyze its performance, showing that 
LEMP is near optimum, scalable and resistant to failures. Our 
conclusions follow in section 5. 

2. PROBLEM FORMULATION 
For simplicity we assume one video server S, containing a set of 
videos, with D the duration of each video. C is the set of all 
clients, with Cm the set of clients requesting the same video m up 
to a certain time point. The cardinality of these sets is nc and ncm, 
respectively. The buffer size available at each client, expressed in 
playing time, is d < D. 
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There is no limit on the amount of clients which can make 
requests, except that only one request per client may be 
outstanding or served at any moment. Client requests are denoted 
by rjm, where 1 < j ≤ ncm and may arrive at any time. The server 
tries to serve them at discrete successive time points, ti, ti+1, …, so 
that ti+1 - ti ≤ tw. The latter (tw) is a constant that depends on the 
amount of time a client is willing to wait for service, before it 
decides to withdraw its request. 
The goal is to utilize as much of the available memory and 
bandwidth of the clients that are already being served by the 
server. Therefore, if at least one client receives the same video at 
successive time points with time difference tw < d, it is possible to 
form a “chain” of successive video streams that serve all client 
requests up to the present time. Thus, at some time point ti, there 
are ncm clients for the same video grouped in i levels, namely L1, 
…, Li. The server is always at level L0 and broadcasts to the 
clients of level L1. 
Each client has only one channel for video reception and only b 
channels for video broadcasting at slightly larger than the 
playback rate. These are the data or video channels. 
All clients use unicasting to broadcast video; hence, b is some 
positive integer, depending on the upper limit of video channels 
per client. 
It is possible for clients to fail, withdraw or operate in a lossy 
network environment. Consequently, such pipelines would break 
and the system should somehow try to remedy the situation. 
Therefore, a solution must satisfy the following characteristics: 

• Be simple and fast to adapt quickly to the changing 
circumstances 

• Minimize simultaneous video server channels for the 
same video 

• No client must wait longer than tw for service 
• Manageable network traffic per client 
• Speedy recovery for client or network failures 
• Minimal requirements regarding client computing 

power 

3. PROPOSED SOLUTION 
3.1 The Control Hierarchy 
The LEMP protocol arranges clients into a hierarchy of i levels, 
where 0 < i ≤ D / tw. The main operation creates and maintains 
this hierarchy. 
Contrary to other proposals [16], the data and control paths are 
different: The data path follows a tree-like arrangement where a 
client at level Li provides a set of up to b unicast streams to a 
group of clients at level Li+1. These streams do not have to be 
synchronized; they may be transmitting different parts of the 
buffer content. 

The control path is twofold: All the clients at level Li are 
organized in a star-like structure. One of the clients at each level 
Li is the Local Representative (LRi). This client together with 
other LRs from the rest of the levels communicates with the video 
server forming a control topology of a star, keeping overall 
communication minimal. The rest of the clients at level Li 
maintain and exchange control information with their respective 
LRi. This arrangement allows quick response in the event of client 
failures. 

3.2 Arrangement of Clients 
From time ti to ti+tw the server receives client requests for the 
same video, which it groups into the level Li. The arrangement is 
not random; the end-to-end latency of the path between a client 
and the server is used as criterion to select the Local 
Representative for this level (LRi) and all other clients are placed 
closest to it. The second closest client is selected as the Backup 
Local Representative (BLRi). 

This happens because LRi is the only client for level Li 
communicating with the server under normal conditions; hence, 
an effort is made to select the one closest to the server in terms of 
end-to-end latency. Similarly, the BLR is selected in order to 
replace quickly a failed LR. 

 
Figure 1. Hierarchy under LEMP 

The LRs and the server form a star with the server at the center. 
The total communication load on the server for this set of clients 
is relative to maximum number of levels D /tw. This 
arrangement has the advantage that the server can detect LR 
problems quickly and is more reliable than any other scheme with 
message hopping from LR to LR until the server is reached [4], 
[15], [16]. After all, LRs are clients that can withdraw at any 
moment without notice. This hierarchy is depicted in Fig. 1, for 
the first two levels of clients. 
Assuming there are ni-1, ni and ni+1 clients at levels Li-1, Li and Li+1 
respectively, the server divides the clients at level Li in ni-1 equal-
sized subgroups, if possible, assigning each subgroup to a client at 
level Li-1. This, progressively, forms a tree structure, used for 
video streams. 

Finally, each client v at level Li communicates for control 
purposes with its respective LRi, requiring only one control 
message under normal conditions. 

3.3 Protocol Operations 
Under LEMP there are three phases for any client: Join, Work and 
Leave. 
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3.3.1 Join Phase 
Under Join, a client v requests a video from the server at some 
time tjv ∈ (ti-1, ti-1+tw) and 1 ≤ j ≤ ni. Each request includes a time-
stamp set by the server indicating tjv. The server gathers all 
requests Rj and calculates the end-to-end latency between each 
client and itself, forming an ascending sorted list of clients as 
follows: The server sends a special probe message to each of the 
above clients and uses the respective reply message from the 
client to calculate the latency. 

Procedure Join(ti) 
create a list li of all pending client requests Ri up to ti 
sort li in ascending order 
 if ∃ client v at level Li-1 then  
 calculate Li 
 send Li to LRi and BLRi 
 for client j=1 to ni 
 send to j the identity of 
  LRi, BLRi  LRi-1, BLRi-1, parent(j) 
 endfor 
 form up to ni-1 subgroups of the ni clients 
 for client k=1 to ni-1 
 send to k the members_id of the kth subgroup 
 endfor 
 else 
 schedule a new server channel for li 
 endif 
end 

Figure 2: Basic Form of the Join of Clients 

Next, the server determines whether there is already a broadcast 
to at least one client, currently receiving the first part of the video 
(level Li-1). If none exists, a new broadcast is scheduled by the 
server; otherwise, the new level Li and identity of LRi are 
determined. 

This information is sent to the LRi and BLRi of level Li. Each 
client vi only receives the identity of LRi, BLRi  LRi-1, BLRi-1 and 
its parent. Thus, the size of these messages is constant. 

Finally, the server divides the clients at the new level Li in up to 
ni-1 subgroups and sends this information to each parent at level 
Li-1, and its child at level Li. Thus, a forest of trees is formed, 
augments the data path (Fig. 2). If possible, LRi, BLRi and their 
neighbors are not assigned any children due to their additional 
administrative load. 

This step concludes the Join phase. By now, each client at level Li 
has the following information: 

• An identity in Li 
• The identity of LRi, BLRi  at its level 
• Its parent in the data path 
• It knows whether it is the LRi or BLRi for level Li 
• It knows the LRi-1 and BLRi-1 for its parent level 

In addition, each client at level Li-1 knows its children in Li. 

3.3.2 Work Phase 
During this phase, the clients at level Li-1 broadcast the video in 
their buffers to their respective children at level Li. Apart from 
data, control information is exchanged in order to detect any 
possible problems. 

First, all clients send periodically an Alive message to their 
respective LR. If no such message arrives to LR from any client v 
within a certain time interval tδ, then v is considered to have 
failed. Each of these Alive messages includes the client’s identity 
and load. Thus, a list of potential parents is formed, sorted 
according to their load, in case of regular parents fail. 

Finally, LRi periodically exchanges a special LRAlive message 
with the BLRi and the video server, containing all information 
updates regarding the state of clients at the particular level. This is 
sent so that either can detect potential failure of its peer and 
synchronize control information. 

3.3.3  Leave Phase 
There are two cases: Under the first case, a client v that wishes to 
withdraw sends a Quit message to LRi and also to its parent p and 
children. Under the second case, a client v no longer broadcasts 
video to its children and does not send Alive messages to its LR. 
In both cases the p removes v from the list of its children. 
Furthermore, p stops broadcasting video to v. The LR updates its 
information, accordingly. 

3.3.3.1 Orphans and Recovery 
There are two problems: The first is that the children (of parent v) 
at level Li+1 are now orphans. Since they know LRi, they send an 
OJoin (Orphan Join) message to LRi. LRi determines potential 
parents and replies by sending ODirect (Orphan Direct) 
messages, directing them to the appropriate new parents.  
If LRi has failed, the orphans try the same process with BLRi.  

If no new parent is found or both LRi and BLRi have failed at the 
same time, the orphans contact the server, which schedules a new 
broadcast to the orphans. Then the process continues as described 
above. 
3.3.3.2  Uncertainty of Client Failures 
The control communication pattern is fairly distributed and 
unreliable. It is possible that no Alive message by v reaches its 
respective LR within the time interval tδ/2.  This is a partial 
failure: One or more network links have failed to deliver the Alive 
message, but client v operates properly. 

In this case the LR simply deletes v from its list of potential 
parents, although it keeps waiting for Alive messages for another 
time interval tδ/2 (a total of tδ). It is, thus, hoped that the link with 
v will operate again soon, in which case v is re-instated as an 
potential parent by the LR; otherwise, v is permanently deleted 
from its list. 

4. PERFORMANCE ANALYSIS  
As described earlier, there are at most O(D/tw) possible time-
slots at which client requests may belong, requiring a separate 
video channel for their service. 
The criteria for good performance are: 

• Minimization of messages per client 
• Minimization of server channels for the same video 
• Minimization of the overhead for failure recovery 
• Minimization of time for error recovery 

Under LEMP, the number of video server channels for a video m 
range from one (optimal case when at least one client per time 
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slot) up to D/2s (worst case when client requests arrive every 
two time slots). The overhead to assign the respective subgroups 
of clients, LRs and BLRs, under normal conditions, is derived 
from procedure Join (Fig. 2).  
With ni clients at level Li, two messages of length O(ni) must be 
sent from the server to LRi and BLRi; another O(ni) messages of 
constant length must be sent to the ni clients; finally, O(ni-1) 
messages of length O(b) must be sent to the parents of these 
clients. Since b is usually very small and no immediate 
acknowledgement is required by the clients, the only overhead is 
the time to transmit these messages. On average, this overhead 
time must be smaller than tw plus the average time required for 
video streams to be transmitted from the parents to the new 
clients. The former is relatively easy to estimate, whereas the 
latter depends on the current state of the underlying network. If 
this condition is not met, failures are considered to take place. 
In case of any parent failure at level Li, the worst case for the 
amount of messages per orphan is 3, namely to LR, BLR and the 
server. This is exceptionally low compared to similar figures 
reported elsewhere [18].   
The only exception to the analysis above is the LR at each level i. 
This has a higher burden than the rest of the clients, since it has to 
receive the initial level information by the server. It also needs to 
select and propose new parents to orphans. In the worst case these 
messages (ODirect) are as many as the clients at the next level 
i+1, the BLR and the server, which adds up to O(ni+1+2)=O(ni+1) 
messages.  

All clients are ncm=∑
=

i

k
k

1
n  for i levels. In the worst case the 

clients at level Li are:  
ni ≤ b(i-1) * n1 

Hence, the messages for each LRi in the worst case are: 
 O(bi*n1) 
Finally, the new levels are initially calculated by the server and 
thereafter in two extreme cases: Either both LRi and BLRi or the 
complete level Li of clients have failed. 
In the first case the server selects two of the remaining clients of 
that level as the LRi and BLRi. In the second case the server 
assumes the responsibility of broadcasting the video to all the 
clients of level Li+1. 
Of course, if all parents at every second level fail, the server 
reverts to a batching strategy, with D/2tw channels to 
accommodate the orphans, although not for the full duration of 
the video [3]. 

Based on the discussion above, we see that for many clients, 
additional server channels are required only in the case of massive 
client faults at the same level. If only partial faults take place and 
the clients are evenly distributed at each level, only as many as n1 
(clients at level L1) video streams are required. 

In order to better evaluate LEMP’s performance we used the GT-
ITM generator [20] to create 10,000 node transit-stub as our 
underlying network topology. Routing is determined using the 
shortest path algorithm. We assumed that the video play-back rate 
was constant. Links were considered to have adequate bandwidth. 

 
Figure 3. Probability Distribution for b 

We performed a simulation with the following characteristics: 

• The popular video m has duration Dm=100 minutes, with 
tw=3 minutes. The assumption for tw is realistic and far 
better than in [19]. 

• The client requests arrive at the server, following a 
Poisson distribution with λ=10 for the duration of tw. 

• The total number of clients is ncm=1,000; each client is 
randomly placed in the network. 

• Each client has only one incoming link for video 
reception; the number b of outgoing links was 
determined according to four different scenarios: 1 ≤ b ≤ 
3 and b ∈ [0, 4] under the Gaussian probability 
distribution (see Fig. 3). 

• There is a probability 0 ≤ pf ≤ 0.5 that clients will quit 
or fail. 

The metrics used for LEMP evaluation are: 

• The number of maximum simultaneous server channels 
Ssim over constant and variable maximum values for b; 
this should be minimal. 

• The failure probability (pf) impact on the performance 
of LEMP, measured as a function of Ssim over pf. 

• The total network load in control messages. 
• The worst time tres for an orphan to resume video 

reception. 

The first three metrics are calculated by the simulation. The 
calculation for the last metric is straightforward: 

tres = tp + tLR + tBLR + tS, 
where tp is the time for a client to realize that it has become an 
orphan, tLR  the time to request a new parent from the LR and not 
get a reply, tBLR is the same for the BLR and tS the same for 
contacting the server and start receiving video from it. In our case 
tres < tw ≈ 3 minutes, which is a realistic value. 
From Fig. 4 we see that the maximum simultaneous server 
channels are, on average, very few compared to the total number 
of clients – approximately 50 for 1,000 clients. This holds even 
for a significant percentage of failures (pf = 50%) and improves as 
b increases. Such performance results in an exceptionally reduced 
load on the video server, which represents the only potential 
bottleneck in such systems. Comparing to pure unicasting (1,000 
streams) this represents a 20 times improvement and is quite 
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realistic, since 50 channels with an average of 150kbps/channel 
would require a total of 7.5Mbps. 
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Figure 4. Max. Simultaneous Server Channels (Ssim) over b 

Furthermore, if multicasting were applied on successive batches 
of client requests, we would need as many video channels as the 
batches. This is D/tw = 34 for our example and represents the 
optimal case. Our results compare favorably, with only 1.5 times 
the optimum number of channels. 

In addition, LEMP can operate with a very low number of 
broadcasting channels per client. This is emphasized in Fig. 4(d), 
where a high proportion of clients does not broadcast content to 
others at all. Such an assumption is realistic, given that there can 
be clients which cannot or do not wish to participate fully in such 
an arrangement. 
Furthermore, Fig. 4(d) answers one more question: What happens 
under realistic, varying values for b, as the number of failures 
increases either due to faults of the parents or due to increased 
delays appearing in the underlying network? The answer is that 
LEMP operates efficiently up to the point where these failures 
become very high (pf ≥ 70%). 

For such an evaluation to be complete one must measure the load 
imposed on the network by LEMP. This load is approximately the 
same for different values of b, when the percentage of failures pf 
is very small.  
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Figure 5. Control Messages over b with pf = 40% 

However, as can be seen in Fig. 5, the network load increases 
with b: When b is high, a client failure creates more orphans, 
which cause the generation of more messages until they are 
assigned to new parents. Therefore, we see that when b follows 
the distribution of Fig. 3, LEMP is both efficient in terms of 
network and server load, even with a significant percentage of 
failures. 

5. CONCLUSIONS AND FUTURE WORK 
We have proposed LEMP, a new multicast application layer 
protocol for VoD, utilizing the available buffer of clients, in a 
lossy environment, leading to better server and overall network 
utilization. LEMP imposes only one control message per client 
under normal operation and up to three messages per client when 
its parent fails.  
We ran a detailed simulation under different parameters, which 
showed that the maximum simultaneous number of server 
channels is very low, even under significant percentage of client 
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failures, at approximately 1.5 times the optimal case (pure 
multicasting). This is one of the most important metrics, since the 
video server represents a potential bottleneck. Furthermore, the 
network overhead in terms of recovery control is very low. 
Also, LEMP is scalable, quite robust and relatively easy to 
implement, since it is less complex or demanding for clients 
compared to other proposals. An added advantage is that 
operations such as Fast-Forward and Rewind can easily be 
included, due to the inherent nature of the protocol. Work is in 
progress to incorporate this feature as well as implement it in a 
real network environment. 
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