
LEMP: Lightweight Efficient Multicast Protocol for
Video on Demand

Panayotis Fouliras, Spiros Xanthos, Nikolaos Tsantalis, Athanasios Manitsaris
University of Macedonia

Egnatias 156,
540 06 Thessaloniki, Greece

{pfoul, it0187, it0157, manits} @uom.gr

ABSTRACT
In this paper, we propose a new scalable application-layer
protocol, specifically designed for data streaming applications
with large client sets. This is based upon a control hierarchy of
successive levels for the clients, has minimal overhead with
constant number of messages per client, and is robust to client and
network failures, making it suitable for wireless environments.
The video server bandwidth utilization is also significantly
reduced. We present an analysis and simulation results, showing
that LEMP is near optimum in terms of performance.

Keywords
Video-on-Demand, multimedia, application-layer, protocol,
chaining

1. INTRODUCTION
The advance of communication technology has spawned a large
number of services, previously too expensive or impossible to
access for the average user.
However, there are still services that require a large amount of
bandwidth and the associated cost has not allowed them to
achieve widespread use. Video-on-Demand (VoD) is one such
service, composed of at least three entities, namely the video
server, the customer’s client computer and the intermediate
network.
There are several conflicting requirements: Less bandwidth per
video means more video streams (virtual channels) available per
video server. Also, due to the nature of the Internet, it is not easy
to avoid jitters by establishing isochronous virtual channels
between the server and the client. The memory space occupied by
a single video is often larger than the available memory on the
client. Moreover, in a typical video service the client expects
additional capabilities, such as fast forward, pause and rewind,
not to mention interactive video.
Many researchers have worked on these issues the past few years
and have proposed several interesting ideas, such as patching [1],
skyscraper broadcasting [5], bandwidth skimming [6], SVD [7]

and greedy disk-conserving broadcasting [11], all of which try to
minimize the duration of broadcast or the number of additional
server channels for the same video. Others try to utilize client
memory in a simple but very hard to implement way (e.g.
chaining [4]).
Other proposals have slightly different goals or assumptions, such
as Variable Bit Rate (VBR) broadcasting [10], [12], [13], [14],
lossy network environments [2], or are extensions of existing
techniques for distributed VoD service [8].

Due to the nature of the Internet, multicasting is not a realistic
option in a large scale. Hence, the key problem we address in this
paper is how to minimize overall video server network bandwidth,
while simultaneously maintaining the latency of service to client
requests minimal, for popular videos, using unicasting. We
assume client bandwidth slightly higher than the playback rate for
incoming traffic. The number of video channels per client is
upwards bounded by b ≥ 1.
The clients can be of any type in terms of computing power and
buffer size. Furthermore, the clients can join or leave a broadcast
at any time, either by choice or due to the problematic nature of
the network. These assumptions are quite realistic both for
workstations and mobile clients (e.g. PDAs).

Based on these assumptions, we propose the use of clients both as
passive receivers of videos, as well as partial video servers for
other clients through the use of their buffers. This is not a novel
approach [4], [9], [15], 16], but the organization of the underlying
access control mechanism is, since we propose a semi-
hierarchical overlay, against the tree-like arrangements proposed
by other researchers (e.g., [16]). We also propose a different
mechanism for the join and departure of clients, with emphasis on
fault-tolerance and self-recovery and the reduction of control
overhead and simultaneous server channels.
The rest of the paper is organized as follows. In section 2 we
formulate the problem. In section 3 we present our proposal
(LEMP). In section 4 we analyze its performance, showing that
LEMP is near optimum, scalable and resistant to failures. Our
conclusions follow in section 5.

2. PROBLEM FORMULATION
For simplicity we assume one video server S, containing a set of
videos, with D the duration of each video. C is the set of all
clients, with Cm the set of clients requesting the same video m up
to a certain time point. The cardinality of these sets is nc and ncm,
respectively. The buffer size available at each client, expressed in
playing time, is d < D.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC ’04, March 14-17, 2004, Nicosia, Cyprus.
Copyright 2004 ACM 1-58113-812-1/03/2004…$5.00.

1226

2004 ACM Symposium on Applied Computing

There is no limit on the amount of clients which can make
requests, except that only one request per client may be
outstanding or served at any moment. Client requests are denoted
by rjm, where 1 < j ≤ ncm and may arrive at any time. The server
tries to serve them at discrete successive time points, ti, ti+1, …, so
that ti+1 - ti ≤ tw. The latter (tw) is a constant that depends on the
amount of time a client is willing to wait for service, before it
decides to withdraw its request.
The goal is to utilize as much of the available memory and
bandwidth of the clients that are already being served by the
server. Therefore, if at least one client receives the same video at
successive time points with time difference tw < d, it is possible to
form a “chain” of successive video streams that serve all client
requests up to the present time. Thus, at some time point ti, there
are ncm clients for the same video grouped in i levels, namely L1,
…, Li. The server is always at level L0 and broadcasts to the
clients of level L1.
Each client has only one channel for video reception and only b
channels for video broadcasting at slightly larger than the
playback rate. These are the data or video channels.
All clients use unicasting to broadcast video; hence, b is some
positive integer, depending on the upper limit of video channels
per client.
It is possible for clients to fail, withdraw or operate in a lossy
network environment. Consequently, such pipelines would break
and the system should somehow try to remedy the situation.
Therefore, a solution must satisfy the following characteristics:

• Be simple and fast to adapt quickly to the changing
circumstances

• Minimize simultaneous video server channels for the
same video

• No client must wait longer than tw for service
• Manageable network traffic per client
• Speedy recovery for client or network failures
• Minimal requirements regarding client computing

power

3. PROPOSED SOLUTION
3.1 The Control Hierarchy
The LEMP protocol arranges clients into a hierarchy of i levels,
where 0 < i ≤ D / tw. The main operation creates and maintains
this hierarchy.
Contrary to other proposals [16], the data and control paths are
different: The data path follows a tree-like arrangement where a
client at level Li provides a set of up to b unicast streams to a
group of clients at level Li+1. These streams do not have to be
synchronized; they may be transmitting different parts of the
buffer content.

The control path is twofold: All the clients at level Li are
organized in a star-like structure. One of the clients at each level
Li is the Local Representative (LRi). This client together with
other LRs from the rest of the levels communicates with the video
server forming a control topology of a star, keeping overall
communication minimal. The rest of the clients at level Li
maintain and exchange control information with their respective
LRi. This arrangement allows quick response in the event of client
failures.

3.2 Arrangement of Clients
From time ti to ti+tw the server receives client requests for the
same video, which it groups into the level Li. The arrangement is
not random; the end-to-end latency of the path between a client
and the server is used as criterion to select the Local
Representative for this level (LRi) and all other clients are placed
closest to it. The second closest client is selected as the Backup
Local Representative (BLRi).

This happens because LRi is the only client for level Li
communicating with the server under normal conditions; hence,
an effort is made to select the one closest to the server in terms of
end-to-end latency. Similarly, the BLR is selected in order to
replace quickly a failed LR.

Figure 1. Hierarchy under LEMP

The LRs and the server form a star with the server at the center.
The total communication load on the server for this set of clients
is relative to maximum number of levels D /tw. This
arrangement has the advantage that the server can detect LR
problems quickly and is more reliable than any other scheme with
message hopping from LR to LR until the server is reached [4],
[15], [16]. After all, LRs are clients that can withdraw at any
moment without notice. This hierarchy is depicted in Fig. 1, for
the first two levels of clients.
Assuming there are ni-1, ni and ni+1 clients at levels Li-1, Li and Li+1
respectively, the server divides the clients at level Li in ni-1 equal-
sized subgroups, if possible, assigning each subgroup to a client at
level Li-1. This, progressively, forms a tree structure, used for
video streams.

Finally, each client v at level Li communicates for control
purposes with its respective LRi, requiring only one control
message under normal conditions.

3.3 Protocol Operations
Under LEMP there are three phases for any client: Join, Work and
Leave.

1227

3.3.1 Join Phase
Under Join, a client v requests a video from the server at some
time tjv ∈ (ti-1, ti-1+tw) and 1 ≤ j ≤ ni. Each request includes a time-
stamp set by the server indicating tjv. The server gathers all
requests Rj and calculates the end-to-end latency between each
client and itself, forming an ascending sorted list of clients as
follows: The server sends a special probe message to each of the
above clients and uses the respective reply message from the
client to calculate the latency.

Procedure Join(ti)
create a list li of all pending client requests Ri up to ti
sort li in ascending order
 if ∃ client v at level Li-1 then
 calculate Li
 send Li to LRi and BLRi
 for client j=1 to ni
 send to j the identity of
 LRi, BLRi LRi-1, BLRi-1, parent(j)
 endfor
 form up to ni-1 subgroups of the ni clients
 for client k=1 to ni-1
 send to k the members_id of the kth subgroup
 endfor
 else
 schedule a new server channel for li
 endif
end

Figure 2: Basic Form of the Join of Clients

Next, the server determines whether there is already a broadcast
to at least one client, currently receiving the first part of the video
(level Li-1). If none exists, a new broadcast is scheduled by the
server; otherwise, the new level Li and identity of LRi are
determined.

This information is sent to the LRi and BLRi of level Li. Each
client vi only receives the identity of LRi, BLRi LRi-1, BLRi-1 and
its parent. Thus, the size of these messages is constant.

Finally, the server divides the clients at the new level Li in up to
ni-1 subgroups and sends this information to each parent at level
Li-1, and its child at level Li. Thus, a forest of trees is formed,
augments the data path (Fig. 2). If possible, LRi, BLRi and their
neighbors are not assigned any children due to their additional
administrative load.

This step concludes the Join phase. By now, each client at level Li
has the following information:

• An identity in Li
• The identity of LRi, BLRi at its level
• Its parent in the data path
• It knows whether it is the LRi or BLRi for level Li
• It knows the LRi-1 and BLRi-1 for its parent level

In addition, each client at level Li-1 knows its children in Li.

3.3.2 Work Phase
During this phase, the clients at level Li-1 broadcast the video in
their buffers to their respective children at level Li. Apart from
data, control information is exchanged in order to detect any
possible problems.

First, all clients send periodically an Alive message to their
respective LR. If no such message arrives to LR from any client v
within a certain time interval tδ, then v is considered to have
failed. Each of these Alive messages includes the client’s identity
and load. Thus, a list of potential parents is formed, sorted
according to their load, in case of regular parents fail.

Finally, LRi periodically exchanges a special LRAlive message
with the BLRi and the video server, containing all information
updates regarding the state of clients at the particular level. This is
sent so that either can detect potential failure of its peer and
synchronize control information.

3.3.3 Leave Phase
There are two cases: Under the first case, a client v that wishes to
withdraw sends a Quit message to LRi and also to its parent p and
children. Under the second case, a client v no longer broadcasts
video to its children and does not send Alive messages to its LR.
In both cases the p removes v from the list of its children.
Furthermore, p stops broadcasting video to v. The LR updates its
information, accordingly.

3.3.3.1 Orphans and Recovery
There are two problems: The first is that the children (of parent v)
at level Li+1 are now orphans. Since they know LRi, they send an
OJoin (Orphan Join) message to LRi. LRi determines potential
parents and replies by sending ODirect (Orphan Direct)
messages, directing them to the appropriate new parents.
If LRi has failed, the orphans try the same process with BLRi.

If no new parent is found or both LRi and BLRi have failed at the
same time, the orphans contact the server, which schedules a new
broadcast to the orphans. Then the process continues as described
above.
3.3.3.2 Uncertainty of Client Failures
The control communication pattern is fairly distributed and
unreliable. It is possible that no Alive message by v reaches its
respective LR within the time interval tδ/2. This is a partial
failure: One or more network links have failed to deliver the Alive
message, but client v operates properly.

In this case the LR simply deletes v from its list of potential
parents, although it keeps waiting for Alive messages for another
time interval tδ/2 (a total of tδ). It is, thus, hoped that the link with
v will operate again soon, in which case v is re-instated as an
potential parent by the LR; otherwise, v is permanently deleted
from its list.

4. PERFORMANCE ANALYSIS
As described earlier, there are at most O(D/tw) possible time-
slots at which client requests may belong, requiring a separate
video channel for their service.
The criteria for good performance are:

• Minimization of messages per client
• Minimization of server channels for the same video
• Minimization of the overhead for failure recovery
• Minimization of time for error recovery

Under LEMP, the number of video server channels for a video m
range from one (optimal case when at least one client per time

1228

slot) up to D/2s (worst case when client requests arrive every
two time slots). The overhead to assign the respective subgroups
of clients, LRs and BLRs, under normal conditions, is derived
from procedure Join (Fig. 2).
With ni clients at level Li, two messages of length O(ni) must be
sent from the server to LRi and BLRi; another O(ni) messages of
constant length must be sent to the ni clients; finally, O(ni-1)
messages of length O(b) must be sent to the parents of these
clients. Since b is usually very small and no immediate
acknowledgement is required by the clients, the only overhead is
the time to transmit these messages. On average, this overhead
time must be smaller than tw plus the average time required for
video streams to be transmitted from the parents to the new
clients. The former is relatively easy to estimate, whereas the
latter depends on the current state of the underlying network. If
this condition is not met, failures are considered to take place.
In case of any parent failure at level Li, the worst case for the
amount of messages per orphan is 3, namely to LR, BLR and the
server. This is exceptionally low compared to similar figures
reported elsewhere [18].
The only exception to the analysis above is the LR at each level i.
This has a higher burden than the rest of the clients, since it has to
receive the initial level information by the server. It also needs to
select and propose new parents to orphans. In the worst case these
messages (ODirect) are as many as the clients at the next level
i+1, the BLR and the server, which adds up to O(ni+1+2)=O(ni+1)
messages.

All clients are ncm=∑
=

i

k
k

1
n for i levels. In the worst case the

clients at level Li are:
ni ≤ b(i-1) * n1

Hence, the messages for each LRi in the worst case are:
 O(bi*n1)
Finally, the new levels are initially calculated by the server and
thereafter in two extreme cases: Either both LRi and BLRi or the
complete level Li of clients have failed.
In the first case the server selects two of the remaining clients of
that level as the LRi and BLRi. In the second case the server
assumes the responsibility of broadcasting the video to all the
clients of level Li+1.
Of course, if all parents at every second level fail, the server
reverts to a batching strategy, with D/2tw channels to
accommodate the orphans, although not for the full duration of
the video [3].

Based on the discussion above, we see that for many clients,
additional server channels are required only in the case of massive
client faults at the same level. If only partial faults take place and
the clients are evenly distributed at each level, only as many as n1
(clients at level L1) video streams are required.

In order to better evaluate LEMP’s performance we used the GT-
ITM generator [20] to create 10,000 node transit-stub as our
underlying network topology. Routing is determined using the
shortest path algorithm. We assumed that the video play-back rate
was constant. Links were considered to have adequate bandwidth.

Figure 3. Probability Distribution for b

We performed a simulation with the following characteristics:

• The popular video m has duration Dm=100 minutes, with
tw=3 minutes. The assumption for tw is realistic and far
better than in [19].

• The client requests arrive at the server, following a
Poisson distribution with λ=10 for the duration of tw.

• The total number of clients is ncm=1,000; each client is
randomly placed in the network.

• Each client has only one incoming link for video
reception; the number b of outgoing links was
determined according to four different scenarios: 1 ≤ b ≤
3 and b ∈ [0, 4] under the Gaussian probability
distribution (see Fig. 3).

• There is a probability 0 ≤ pf ≤ 0.5 that clients will quit
or fail.

The metrics used for LEMP evaluation are:

• The number of maximum simultaneous server channels
Ssim over constant and variable maximum values for b;
this should be minimal.

• The failure probability (pf) impact on the performance
of LEMP, measured as a function of Ssim over pf.

• The total network load in control messages.
• The worst time tres for an orphan to resume video

reception.

The first three metrics are calculated by the simulation. The
calculation for the last metric is straightforward:

tres = tp + tLR + tBLR + tS,
where tp is the time for a client to realize that it has become an
orphan, tLR the time to request a new parent from the LR and not
get a reply, tBLR is the same for the BLR and tS the same for
contacting the server and start receiving video from it. In our case
tres < tw ≈ 3 minutes, which is a realistic value.
From Fig. 4 we see that the maximum simultaneous server
channels are, on average, very few compared to the total number
of clients – approximately 50 for 1,000 clients. This holds even
for a significant percentage of failures (pf = 50%) and improves as
b increases. Such performance results in an exceptionally reduced
load on the video server, which represents the only potential
bottleneck in such systems. Comparing to pure unicasting (1,000
streams) this represents a 20 times improvement and is quite

1229

realistic, since 50 channels with an average of 150kbps/channel
would require a total of 7.5Mbps.

b = 1

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Pf

Ss
im Ssim

(a)

b = 2

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

Pf

S
si

m Ssim

(b)

b = 3

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Pf

Ss
im

Ssim

(c)

b = Fig. 3

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Pf

Ss
im

Ssim

(d)

Figure 4. Max. Simultaneous Server Channels (Ssim) over b

Furthermore, if multicasting were applied on successive batches
of client requests, we would need as many video channels as the
batches. This is D/tw = 34 for our example and represents the
optimal case. Our results compare favorably, with only 1.5 times
the optimum number of channels.

In addition, LEMP can operate with a very low number of
broadcasting channels per client. This is emphasized in Fig. 4(d),
where a high proportion of clients does not broadcast content to
others at all. Such an assumption is realistic, given that there can
be clients which cannot or do not wish to participate fully in such
an arrangement.
Furthermore, Fig. 4(d) answers one more question: What happens
under realistic, varying values for b, as the number of failures
increases either due to faults of the parents or due to increased
delays appearing in the underlying network? The answer is that
LEMP operates efficiently up to the point where these failures
become very high (pf ≥ 70%).

For such an evaluation to be complete one must measure the load
imposed on the network by LEMP. This load is approximately the
same for different values of b, when the percentage of failures pf
is very small.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 Fig 3

b

C
on

tr
ol

 M
es

sa
ge

s

Figure 5. Control Messages over b with pf = 40%

However, as can be seen in Fig. 5, the network load increases
with b: When b is high, a client failure creates more orphans,
which cause the generation of more messages until they are
assigned to new parents. Therefore, we see that when b follows
the distribution of Fig. 3, LEMP is both efficient in terms of
network and server load, even with a significant percentage of
failures.

5. CONCLUSIONS AND FUTURE WORK
We have proposed LEMP, a new multicast application layer
protocol for VoD, utilizing the available buffer of clients, in a
lossy environment, leading to better server and overall network
utilization. LEMP imposes only one control message per client
under normal operation and up to three messages per client when
its parent fails.
We ran a detailed simulation under different parameters, which
showed that the maximum simultaneous number of server
channels is very low, even under significant percentage of client

1230

failures, at approximately 1.5 times the optimal case (pure
multicasting). This is one of the most important metrics, since the
video server represents a potential bottleneck. Furthermore, the
network overhead in terms of recovery control is very low.
Also, LEMP is scalable, quite robust and relatively easy to
implement, since it is less complex or demanding for clients
compared to other proposals. An added advantage is that
operations such as Fast-Forward and Rewind can easily be
included, due to the inherent nature of the protocol. Work is in
progress to incorporate this feature as well as implement it in a
real network environment.

6. REFERENCES
[1] Kien A. Hua et al, Patching: A Multicast Technique for True

Video-on-Demand Services. ACM Multimedia 1998, 191-
200.

[2] A. Mahanti et al, Scalable On-Demand Media Streaming
with Packet Loss Recovery. SIGCOMM’01, August 2001,
97-108.

[3] Jack Y. B. Lee, UVoD: An Unified Architecure for Video-
on-Demand Services. IEEE Communications Letters, Vol. 3,
No. 9, September 1999, 277-279.

[4] S. Sheu, K. Hua, W. Tavanapong, Chaining: A Generalized
Batching Technique for Video-On-Demand Systems.
Proceedings of ICMCS’97, 1997, 110-117.

[5] K. Hua, S. Sheu, Skyscraper Broadcasting: A New
Broadcasting Scheme for Metropolitan Video-on-Demand
Systems. ACM SIGCOMM’97, 1997, 89-99.

[6] K. Hua, Y. Cai, S. Sheu, Patching: A Multicast Technique
for True Video-on-Demand Services. ACM Multimedia’98,
1998, 191-200.

[7] D. Eager et al, Optimal and Efficient Merging Schedules for
Video-on-Demand Servers. ACM Multimedia’99, 1999,
199-202.

[8] Min-You Wu et al, Scheduled Video Delivery for Scalable
on-Demand Service. ACM NOSDAV’02, 2002, 167-175.

[9] James Z. Wang, Ratan K. Guha, Data Allocation Algorithms
for Distributed Video Servers. ACM Multimedia 2000,
456-458.

[10] C. Loser et al, Distributed Video on Demand Services on
Peer to Peer Basis. Intl. Workshop on Real-Time LANS in
the Internet Age (RTLIA 2002).

[11] D. Saparilla, K. Ross, Periodic Broadcasting with VBR-
Encoded Video. Proceedings of the IEEE Infocom, 1999,
464-471.

[12] Lixin Gao et al, Efficient schemes for broadcasting popular
videos. Multimedia Systems, Springer-Verlag, Vol. 8, 2002,
284-294.

[13] M. Tantaoui et al, Interaction with Broadcast Video. ACM
Conference on Multimedia (SIGMM 2002).

[14] Yanping Zhao et al, Efficient Delivery Techniques for
Variable Bit Rate Multimedia. Proceedings of the MMCN
2002.

[15] Kien Hua, JungHwan Oh, Khanh Vu, An adaptive video
multicast scheme for varying workloads, Multimedia
Systems. Springer Verlag 2002, Vol. 8, 258-269.

[16] Kien Hua et al, Overlay Multicast for Video on Demand on
the Internet, ACM SIGAPP (SAC), 2003.

[17] S. Banerjee et al, Scalable Application Layer Multicast,
ACM SIGCOMM, 2002.

[18] D. A. Tran et al, ZIGZAG: An Efficient Peer-to-Peer
Scheme for Media Streaming, IEEE INFOCOM, 2003.

[19] Yang Guo et al, P2Cast: Peer-to-peer Patching Scheme for
VoD Service, ACM WWW, 2003.

[20] E. Zegura et al, How to model an internetwork, Proc. IEEE
Infocom, April 1996.

1231

