IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.5, NO.3, JULY-SEPTEMBER 2008

129

Architectural Risk Analysis of Software Systems
Based on Security Patterns

Spyros T. Halkidis, Nikolaos Tsantalis, Student Member, IEEE,
Alexander Chatzigeorgiou, Member, IEEE, and George Stephanides, Member, IEEE

Abstract—The importance of software security has been profound, since most attacks to software systems are based on
vulnerabilities caused by poorly designed and developed software. Furthermore, the enforcement of security in software systems at
the design phase can reduce the high cost and effort associated with the introduction of security during implementation. For this
purpose, security patterns that offer security at the architectural level have been proposed in analogy to the well-known design
patterns. The main goal of this paper is to perform risk analysis of software systems based on the security patterns that they contain.
The first step is to determine to what extent specific security patterns shield from known attacks. This information is fed to a
mathematical model based on the fuzzy-set theory and fuzzy fault trees in order to compute the risk for each category of attacks. The
whole process has been automated using a methodology that extracts the risk of a software system by reading the class diagram of the

system under study.

Index Terms—Security patterns, fuzzy risk analysis, dependability analysis, software security, design patterns, security architecture,

software architecture.

1 INTRODUCTION

THE importance of software security has been evident
since the discovery that most attacks to real software
systems are initiated by poorly designed and developed
software [49], [47], [20], [21]. Furthermore, it has been
shown that the earlier we incorporate security in a software
system, the better this would be in terms of effort and cost
[49], [34]. Therefore, in analogy to design patterns [17],
which aim at making software well structured and reusable,
Security Patterns [48], [4] have been proposed, targeting at
imposing some level of security already at the design phase.

One reasonable research aim would be to estimate the
security imposed in a software system by examining which
security patterns are used and where they reside in the
design. To achieve this, we first determine to what extent
several security patterns are robust to known categories of
attacks [21]. In order to determine this kind of information,
we have built two Web applications and studied them under
known attacks [43]. Having made this study, we propose
estimates for the resistance of the examined security patterns
to Spoofing, Tampering-with-Data, Repudiation, Informa-
tion Disclosure, Denial-of-Service, and Elevation-of-Privi-
lege (STRIDE) [21] attacks. Additionally, we propose a new
security pattern based on our findings for an attack not
covered by existing security patterns. Then, we use results
from fuzzy reliability [8] and fault trees [1], [7] to propose a
mathematical model that examines the proper use of the

o The authors are with the Computational Systems and Software Engineer-
ing Laboratory, Department of Applied Informatics, University of
Macedonia, GR-54006 Thessaloniki, Greece.

E-mail: {halkidis, nikos}@java.uom.gr, {achat, steph}@uom.gr.
Manuscript received 31 Aug. 2006; revised 11 June 2007; accepted 22 Oct.
2007; published online 2 Nov. 2007.

For information on obtaining reprints of this article, please send e-mail to:

tdsc@computer.org, and reference IEEECS Log Number TDSC-0121-0806.

Digital Object Identifier no. 10.1109/TDSC.2007.70240.

1545-5971/08/$25.00 © 2008 |IEEE

security patterns and calculates risk for each category of
STRIDE [21] attacks. We have automated the process of
determining risk based on this model by building software
that takes as input the XML file of the class diagram that
corresponds to the system under consideration and pro-
duces the calculated risk for each category of STRIDE
attacks. This methodology can be a part of a larger risk
management framework [34]. Finally, we measure the
change in calculated risk when gradually adding security
patterns in order to estimate the impact of each pattern on
the security level of the system.

1.1 Related Work

Existing approaches for quantifying the security of software
systems can be divided into two categories: dependability-
based approaches and risk-analysis-based approaches. The
former, in general, aim at calculating security measures
such as the mean time to security failure employing Markov
models. The latter aim at calculating the total risk for a
system based on the analysis of fault trees, considering the
likelihood and impact of events. However, both approaches
extract risk or security measures and thus can be considered
very similar, at least within the context of software
engineering.

The dependability community [38] tried addressing the
problem of quantifying the security of software systems by
finding analogies between security and reliability problems.
The first investigation into mathematical models for the
security of systems was done by Littlewood et al. [29]. In
their work, analogies between notions used in reliability
with notions used in security have been examined. Since
then, various mathematical models have appeared in the
literature. Madan et al. proposed a mathematical model
applicable to fully implemented systems based on
Markov Chains [32]. Goseva-Popstojanova and Trivedi

Published by the IEEE Computer Society

130 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5,

proposed a component-based approach. In their approach,
the mathematical model for a software system is derived
based on the components that it contains, and the
parameters of the Markov Chain model corresponding to
these components are assumed to be known [18].

In risk analysis methodologies the likelihood, exposure
and consequences for events related to security are
determined, and then, through mathematical techniques,
the risk for the system is calculated [1]. Our technique
belongs to this category. The need for risk analysis at design
level has been particularly emphasized by McGraw [34].
According to him, “Design flaws account for 50 percent of
security problems, and architectural risk analysis plays an
essential role in any solid security program.”

The importance of security patterns to secure software
systems has been recently illustrated [48], [4]. The pioneer-
ing work on security patterns was by Yoder and Barcalow
[54] in 1997. Since then, various security patterns have been
introduced: patterns for enterprise applications [41], pat-
terns for authentication and authorization [27], [13],
patterns for Web applications [25], [51], patterns for mobile
Java code [33], patterns for cryptographic software [6], and
patterns for agent systems [36]. However, all these efforts
did not share some common terminology.

The first effort to provide a comprehensive review of
existing security patterns was done by the OpenGroup
Security Forum [4]. In this work, security patterns are
divided into Available System Patterns, which are related to
fault tolerance [39] and Protected System Patterns, which
aim at protecting resources.

In an earlier work [19], we have performed a qualitative
evaluation of these security patterns.

Recently, a summary of security patterns has appeared
in the literature [48]. In this text, security patterns were
divided into Web-tier security patterns, business-tier
security patterns, security patterns for Web services,
security patterns for identity management, and security
patterns for service provisioning. In this paper, we focus on
Web-tier and business-tier security patterns.

1.2 Contribution

To the best of our knowledge, this paper is the first to
experimentally examine the resistance of several security
patterns to known categories of attacks. The main contribu-
tion of this paper is to propose a complete methodology for
calculating the risk of STRIDE [21] attacks on a software
system composed of security patterns already from its design.
Additionally, we make use of a fuzzy risk analysis frame-
work. Using fuzzy terms is more appropriate when
examining the design of a system for security. We cannot
apply exact numbers due to the lack of exact information
about the security of the system [20]. We note here that we
make use of nine levels of risk, which leads to better
granularity compared to using fewer levels. Additionally,
our approach is security pattern centric. All security
estimates are based on used and missing security patterns
in places where they are needed. Finally, in this paper, we
propose a new security pattern against an attack that we
discovered during our experiments and that existing
security patterns do not protect against.

NO. 3, JULY-SEPTEMBER 2008

1.3 Organization

The rest of this paper is organized as follows: Section 2
describes the systems that we used to experimentally
determine the resistance of several security patterns to
known categories of attacks. Section 3 contains preliminaries
on the fuzzy-set theory and calculations on fuzzy fault trees.
In Section 4, the methodology for constructing fuzzy fault
trees from UML-class diagrams is described. In Section 5,
experimental results are presented, concerning the resis-
tance of security patterns to known attacks, risk evaluation
of a nonsecure and a secure system, and the risk evolution
when patterns are introduced in different orders. In
Section 6, we propose and evaluate a new security pattern
named “Secure GET Parameters.” Finally, in Section 7, we
draw some final conclusions and propose future work.

2 SUBJECT SYSTEMS FOR THE EXPERIMENTS

In order to experimentally examine the robustness of
various security patterns to known attacks, we have
developed two systems. The first system, hereafter
denoted as nonsecure application, is a typical e-commerce
application with no usage of security patterns, except for
Protected System [4], where various sources for attacks
were deliberately included. The second system, hereafter
denoted as secure application, is a variant of the
nonsecure application, where the sources for attacks were
not removed, but security patterns have been used to
protect against the attacks.
The criteria for selecting the specific systems were

1. containment of most common sources for attacks,

2. knowledge of the exact location of each security

hole,

accessibility to the source code, and

4. selection of a typical Web application such as an
e-commerce system.

hed

Moreover, there is no widely accepted benchmark system
for assessing software security.

Both applications under examination are typical Java 2
Enterprise Edition (J2EE; now referred to as Java EE) [40].
We have chosen J2EE as a platform for both applications,
since J2EE is widely used for business applications and
offers a wide variety of security features [48], [3].

The architecture of a typical J2EE system is shown in
Fig. 1. The client, typically a Web browser, accesses the
Web Tier where servlets reside. Servlets can forward
requests to Enterprise Java Beans (E]JBs) residing in the
Business Tier, some of which provide access to the
database. We have used JBoss 4.0.3 [23] as an application
server for the Web and business tiers and MySQL 5.0 [37]
for the database tier.

The nonsecure system consists of 46 classes. It has
16 servlets and seven E]JBs, where one EJB serves as a
Web service end point [40].

First, three sources for SQL injection attacks were
included in this application. An SQL injection attack [43],
[2], [46], [15] occurs when an attacker is able to insert a series
of SQL statements in a query formed in an application by
exploiting nonexisting or improper validation of data [2]. An

HALKIDIS ET AL.: ARCHITECTURAL RISK ANALYSIS OF SOFTWARE SYSTEMS BASED ON SECURITY PATTERNS

131

Web Tier

Business Tier

Client

Fig. 1. A typical J2EE architecture.

SQL injection attack can cause unauthorized viewing of
database data and database modification.

Additionally, 11 sources for cross-site scripting (XSS)
have been included. An XSS attack [43], [11], [45], [22]
occurs when not properly validated data input in one page
is shown in another. In this case, script code can be input in
the former page to be consequently executed in the latter.
This way, it is easy to perform an Information Disclosure
attack [21], for example, by inserting Javascript code in the
former page, that shows cookie values containing sensitive
information such as credit card numbers in the latter.

Furthermore, a source for HTTP Response Splitting [26]
was included. HTTP Response Splitting attacks occur when
user data that was not properly validated is included in the
redirection URL of a redirection response or when
improperly validated data is included in the cookie value
or name when the response sets a cookie. In both cases, it is
easy to create two responses, instead of one, by manipulat-
ing headers. In the second response, an XSS attack can be

performed [26].

Moreover, there was no SSL connection used in the
nonsecure application, and as a result, crucial information
such as credentials and cookie values containing credit card
information could be eavesdropped.

Finally, six servlet member variables race conditions
were included, which could be exploited by having a
number of users acting simultaneously. A summary of the
security vulnerabilities present in the nonsecure application
is shown in Table 1.

The secure application consists of 62 classes. It has
17 Servlets and nine EJBs, where, again, one E]JB serves as a
Web service end point [40]. The security patterns that were
added in this system are the Secure Proxy (Login Tunnel
variant) [4], the Secure Pipe [48], the Secure Logger (Secure
Log Store Strategy variant) [48], and the Intercepting
Validator [48] (Where a white listing approach for validation
of input was used [20]).

MySCOL Database

3 Fuzzy ANALYSIS OF THE SUBJECT SYSTEMS

The main target in our research was to build a
mathematical model for systems that use security
patterns based on our findings for the level of security
that each pattern offers (as explained in Section 5.1). The
most appropriate models for our purpose seem to be risk
analysis models [1]. We have chosen to avoid the use of
deterministic numbers, because it is impractical to specify
security characteristics of software systems using exact
values. As Hoglund and McGraw [20] note, in software
risk analysis, exact numbers as parameters work worse
than having values such as high, medium, and low.
These kinds of values can be termed as fuzzy. Addition-
ally, the inapplicability of exact numbers is more
prominent when we try applying a mathematical model
already at the design phase, where less information is
available.

Concerning the use of a probabilistic or fuzzy uncer-
tainty model for describing selected system design proper-
ties, the choice depends on the characteristics of the
available information [35]. Employing a probabilistic model
assumes the knowledge of sufficient statistical information
to extract the required probability distribution functions. In
our case, this information is not available, since it requires
results from a large number and variety of attacks to
systems with and without the considered security patterns.

Within the context of our methodology, the engineer has
no access to such large amount of information and has to
quantify risk on the basis of few data, which is additionally
characterized by vagueness. In other words, he/she has
only a rough idea concerning the value of likelihood,
exposure, and consequences for each attack. To this end, the
fuzzy-set theory provides a plausible alternative to prob-
abilistic models, taking into account that it is convenient to
employ linguistic terms for assessing risk.

Furthermore, the applicability of fuzzy techniques to
security problems has already been proposed [9], and the
use of fault trees for secure system design has also been
suggested [1], [7]. In this paper, we perform an analysis of
the security of systems employing security patterns by

TABLE 1
Summary of Vulnerabilities Present in the Nonsecure Application
Type of vulnerability Number of sources for attack

SQL Injection 3
Cross-Site Scripting 11
HTTP Response Splitting 1
Servlet member variable race conditions 6
Eavesdropping 3

132 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5,

a a a a
1 2 3 4

Fig. 2. Example of a trapezoidal fuzzy number membership function.

using results from the fuzzy-set theory [55] and fuzzy fault
trees [8].

3.1 Preliminaries on the Fuzzy-Set Theory

Commonly used types of fuzzy numbers are triangular and
trapezoidal fuzzy numbers. Trapezoidal fuzzy numbers are
more appropriate when there is a higher degree of
uncertainty in the variable values [55].

A is referred to as a trapezoidal fuzzy number, denoted
A = (ay,as,a3,a4) if its membership function ps(z) is
determined by [8]

Loa) g <z < ay,

(az—ay)’
. az < < a
pa(T) =S (a-h) - = 3
(as—a3)’ a3 = T % da,
0, otherwise.

In Fig. 2, an example of a trapezoidal fuzzy number
membership function is depicted.

Another tool in our analysis is fuzzy fault trees [8]. The
root node of fault trees represents an undesirable top event
[7], which, in our case, is a successful security breach, and
the other nodes represent either primary events, which, in
our case, initiate an attack, or intermediate events, which
are described by the logical composition of primary and/or
other intermediate events. In fuzzy fault trees, all events are
represented by fuzzy variables [8].

Additionally, we use results from risk analysis. When
performing risk analysis for a system, a common formula
used by the risk engineering community is the following [9]:

R=L-E-C,

where L is the likelihood of occurrence of a risky event, E is
the exposure of the system to the event, C is the
consequences of the event, and R is the computed risk.
Examining this equation in comparison to the risk analysis
performed by Hoglund and McGraw [20], in our case, the
likelihood L is the likelihood of a successful attack, the
exposure E is a measure of how easy it is to carry out
the attack, and C is the impact of the attack.

3.2 Fuzzification, Fuzzy Calculations, and
Defuzzification

The proposed analysis differs from a general fuzzy
inference system in the sense that no Rule base and
Inference Engine exists [28]. Instead, the risk of the system
under study is obtained explicitly by fuzzy calculations. The
primary inputs to our analysis are the values corresponding
to Likelihood, Exposure, and Consequences for each

NO. 3, JULY-SEPTEMBER 2008

TABLE 2
Mapping of Linguistic Terms to Fuzzy Numbers
Linguistic Term Fuzzy Number
absolutely-low (0.0, 0.0, 0.0, 0.0)
very-low (0.0, 0.0, 0.02, 0.07)
low (0.04, 0.1, 0.18, 0.23)
fairly-low (0.17,0.22, 0.36, 0.42)
medium (0.32,0.41, 0.58, 0.65)
fairly-high (0.58, 0.63, 0.80, 0.86)
high (0.72,0.78, 0.92, 0.97)
very-high (0.93,0.98, 1.0, 1.0)
absolutely-high (1.0, 1.0, 1.0, 1.0)

malicious event that can take place in the examined system.
These values can be described by appropriate linguistic
terms [12], as shown in the left column of Table 2.
Fuzzification is performed according to the mapping
proposed by Chen and Chen [12], as shown in Table 2. It
should be mentioned that at all steps, simple fuzzy
numbers, instead of generalized fuzzy numbers, are used;
that is, all the weights in the generalized fuzzy numbers and
in the formulas are equal to 1.0. For each category of
STRIDE attacks, a separate fault tree is constructed. Each
gate in the tree corresponds to a fuzzy calculation, meaning
that based on the fuzzy values of the input variables, a
fuzzy value for the output variable is obtained. Input
variables correspond to the risk of each event, calculated by
the fuzzy multiplication of likelihood, exposure, and
consequences. For the AND and OR gates of the fault tree,
the output is obtained by the classical set operators of the
fuzzy-set theory, namely, the min and max of the input
fuzzy values, respectively [28]. Obviously, the value
corresponding to the top event of the fault tree is the risk
of the entire system under study.

The defuzzification process consists of finding the
linguistic level corresponding to the fuzzy risk value.
This is achieved by employing a similarity metric [12]
based on a center-of-gravity technique. Eventually, a
linguistic term representing the risk level of the entire
system with regard to each category of STRIDE attacks is
extracted.

4 DESCRIPTION OF THE METHODOLOGY

As already mentioned, the methodology proposed can be
applied already at the design phase. However, in order to
appropriately perform our analysis, the information present
in a plain UML [14] diagram is not sufficient. We have
considered using UMLSec [24] in our analysis, but we have
concluded that a much smaller extension to UML is
sufficient. A Java tool applying the proposed methodology
can be found in [16].

4.1 Annotation of the Unified Modeling Language

Class Diagram

An important piece of information for our analysis is which
security patterns exist in the design and where they reside.
We have used a commercial software engineering tool [5]
for defining templates of all security patterns. For example,
the Intercepting Validator [48] security pattern annotated

HALKIDIS ET AL.: ARCHITECTURAL RISK ANALYSIS OF SOFTWARE SYSTEMS BASED ON SECURITY PATTERNS

133

<<creates=x

< <InterceptingValidator: Interceptingvalidator ==
Intercepting¥alidator

Interceptingyalidator
validate

g
< <validates parameters=>

<<InterceptingValidator: SecureBaseAction >
SecureBasefction

W
< <Interceptingvalidator:validator ==
< <validates == ¥alidator
Walidator
validate
==

< <InterceptingValidator: Target ==

<<invokes=> Target

SecureBasedction
request

invoke

Fig. 3. Annotated class diagram of the Intercepting Validator security pattern.

with the appropriate information in stereotypes is depicted
in Fig. 3. The annotations required in our extension are
summarized by the following conventions, which are
relatively easy to apply:

1. For each class that is part of a security pattern, the
class stereotype should contain the name of the
security pattern and the role of the class in this
pattern. This requirement is automatically satisfied
through the use of templates.

For each class where data is entered, the stereotype
should contain the word “Input.”

For each class that accesses a resource (for example, a
database) or displays input data, the stereotype
should contain the general word “accessesResource.”
For each class acting as an application entry point
(where users should be authenticated before logging
in to the system), the stereotype should contain the
word “ApplicationEntryPoint.”

For each class that performs logging, the stereotype
should contain the word “performsLogging.”

For each class that sends parameters in the URL
through a GET request to another class, the
association/dependency between these classes
should contain in the stereotype the phrase
“parametersThroughGET.”

In the case that a class or association or dependency
should contain multiple words/phrases in its stereo-

n

type, these are separated by a “:
After having designed the annotated class diagram of the
system, the information present in this diagram has to be
extracted in a form that can be automatically processed. We
have chosen to export the class diagram in the form of XML,
specifically in XMI for the UML 1.4 (OMG) format [53]. An
XMI parser that we have developed extracts all the required
information for our analysis such as classes, associations,
dependencies, generalizations, and stereotypes.

4.2 Generation of Fault Trees

For each category of STRIDE attacks, a separate fault tree
is constructed. A fault tree is represented as an expres-
sion, where a “+” corresponds to an AND gate, and a “+”
corresponds to an OR gate. The factors of the fault trees

are added gradually by examining one by one the

implemented /missing security patterns of the design.
Each factor represents a possible attack to the system
under study. For each factor, the values for likelihood,
exposure, and consequences are as shown in the
corresponding cases in Tables 4, 5, and 6, respectively
(Section 5.1). Specifically.

4.2.1 Intercepting Validator (Case 1)

A graph is built, where the classes are the vertices, and the
associations and dependencies are the edges. Then, all
paths from classes, which serve as input forms to classes
that access resources, are examined. For each such path
where no association or dependency from a vertex of the
path to an Intercepting Validator pattern instance exists, a
factor to the fault trees for Information Disclosure and
Tampering with data attacks is added (as an input to the
OR gate leading to the top event).

4.2.2 Protected System/Secure Proxy (Cases 2-5)

For each class acting as an application entry point, we
examine whether there exists an association or dependency
to a Protected System or Secure Proxy pattern. If no
authentication mechanism exists, a factor corresponding
to case 2 is added to the fault trees for Spoofing Identity,
Elevation of Privilege, and Information Disclosure. If
Protected System is used as an authentication mechanism,
a factor corresponding to case 3 is added to the same fault
trees for the case that the guard is compromised. Finally, if
Secure Proxy is used as an authentication mechanism, both
guards must be compromised for an attack to succeed, and
therefore, an AND gate (whose output serves as input to the
OR gate leading to the top event) having as input the
factors corresponding to cases 4 and 5 is added to the same
fault trees.

4.2.3 Secure Pipe (Case 6)

The system is examined for the existence of an
SSL connection. If no Secure Pipe pattern is present in the
system, a factor to the fault trees for Spoofing Identity,
Information Disclosure, and Elevation of Privilege is added,
since information could be eavesdropped.

4.2.4 Secure Logger (Case 7)

For each class that logs messages and is not part of a
Secure Logger pattern instance, a factor to the fault trees

134 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5,

for Tampering-with-Data, Information Disclosure, and
Repudiation attacks is added.

4.2.5 Secure Get Parameters (Case 8)

The system is examined for associations or dependencies,
where parameters are sent through a GET request. If the
communicating classes are not part of a “Secure GET
Parameters” pattern instance (see Section 6), a factor to the
fault tree for Information Disclosure attacks is added.

4.2.6 Servlet Member Variable Race Conditions
Exploited (Case 9)

Since there is no security pattern at the architectural level to
avoid servlet member variable race conditions, a factor is
always added to the fault tree for Information Disclosure
attacks.

5 EXPERIMENTS AND RESULTS

To evaluate the usefulness of security patterns to the
remediation of risk, three experiments have been carried
out: the first aims at estimating the resistance of each
security pattern to known attacks, the second quantifies the
difference in risk level between the secure and nonsecure
systems, and the third investigates the impact on risk when
introducing patterns in different orders to the nonsecure
system.

According to Sjeberg et al. [44], the above experiments
do not fall in the category of controlled experiments in
software engineering, since the subjects are projects, where
data is collected at several levels rather than individuals or
teams conducting one or more software engineering tasks.
Particularly, within the context of software reliability
analysis [10], the above experiments belong to empirical
studies, since data of interest concerning software artifacts
is collected and analyzed, with the purpose of testing a
known theory (that is, investigating whether Security
Patterns can fortify software systems). Essentially, the
difference between the two approaches is that according
to Sjeberg et al. [44], several subjects are analyzed within
the context of the same experimental study, whereas
according to Cai [10], a single project (possibly with
variations) is subjected to several trials of testing. Conse-
quently, our experimental methodology is closer to the
approach of Cai [10], since a single-subject program is
employed (and variants of it), which is subjected to several
kinds of attacks.

5.1 Evaluation of Likelihood, Exposure, and
Consequences for Attacks Corresponding to
Missing Security Patterns

The first experiment consists of subjecting the two systems

described in Section 2 to known attacks employing

two different approaches. First, we have used a commercial

Web application penetration testing tool [50]. Second, we

have employed a static analysis tool [30], [31] that won a

contest initiated in various newsgroups, where the partici-

pants performed attacks to the systems that we described

in Section 2.

Both approaches found the major security flaws of the
nonsecure application, that is, the three SQL Injection and

NO. 3, JULY-SEPTEMBER 2008

the 11 XSS vulnerabilities. Denial-of-Service attacks and the
HTTP response-splitting source in the nonsecure applica-
tion were found by neither approach.

The Web Application Penetration Testing tool found
minor application errors that pose no threat to security, not
found by the static approach (like the lack of checking for
proper session variable value ranges). It also found the
unencrypted login request flaw in the nonsecure applica-
tion that did not use SSL. Furthermore, it found unen-
crypted GET parameter flaws in the secure application. This
approach had several false positives by finding sources for
buffer overflows when Java was used.

Race conditions for servlet member variables were found
only by the static analysis approach. This approach had also
several false positives by finding sources for SQL Injection
in the secure application by examining the code for the
E]Bs, whereas proper input validation was done by patterns
in the Web Tier.

The analysis of the attack results for the secure
application shows that proper use of the security patterns
leads either to the total remediation or to a high level of
remediation of all major security flaws. The flaws that are
not totally eliminated are related to the authentication
mechanism. Specifically, dictionary attacks can succeed
[52], [42], even when a proper authentication pattern is
used. Moreover, attacks can also exploit servlet member
variable race conditions, which cannot be confronted at the
design level.

What follows is an evaluation of the resistance of security
patterns to STRIDE attacks. Additionally, we perform a
likelihood-exposure-consequences analysis of attacks on
security patterns or more commonly attacks based on the
lack of a specific security pattern in a place where it is
needed. The analysis is based on the results of the attacks to
the nonsecure and the secure system described in Section 2,
as well as on subjective judgment. However, the proposed
methodology is not affected from the particular values for
likelihood, exposure, and consequences, which are actually
input parameters to our approach and can be set freely
according to personal estimates.

The Intercepting Validator pattern [48], when used for all
kinds of input, including session variables that are not
entered by the user but are still posted, protects from
SQL Injection, XSS, and HTTP Response-Splitting attacks.
Therefore, it offers good protection against Tampering-
with-Data and Information Disclosure attacks [21]. We
consider the resistance of this pattern as very high and not
absolutely high, although it offers absolute protection from
these attacks when used properly. We lower the estimate of
its resistance in order to account for the improper
implementation of the pattern during development. We
make conservative estimates for the other security patterns
as well.

The Secure Proxy pattern Login Tunnel variant [4] has
two levels of authentication in order to protect from
Spoofing Identity, Elevation-of-Privilege, and Information
Disclosure attacks. Its resistance to the related attacks can be
estimated by considering it to be equivalent to the existence
of two guards [4] connected in a series. The resistance of this
pattern to attacks is dependent upon the resistance of each

HALKIDIS ET AL.: ARCHITECTURAL RISK ANALYSIS OF SOFTWARE SYSTEMS BASED ON SECURITY PATTERNS 135

TABLE 3
Resistance of the Security Patterns Examined against STRIDE Attacks

Security Pattern S T R 1 E

Intercepting . .

Validator very high very high

Protected System . . .
with Secure Pipe high high high

Secure Proxy . . .
with Secure Pipe very high very high very high

Secure Logger very high very high very high

guard to dictionary attacks. Specifically, in order for both
guards to be compromised, two consecutive dictionary
attacks to the authentication mechanism of a guard must
succeed. Recent studies [52], [42] have shown that dictionary
attacks with a usual distribution of the complexity of the
passwords selected succeed 15 percent to 20 percent of the
times. The authentication mechanism of a guard can still be
marked as of high security.

All authentication patterns and, consequently, the
Protected System [4] and the Secure Proxy pattern should
be resistant to eavesdropping attacks to serve their purpose.
Thus, they should always be used together with the Secure
Pipe pattern that enforces the use of the SSL protocol [48].
The Secure Pipe pattern offers protection from Information
Disclosure attacks.

Finally, the Secure Logger [48] pattern offers a strong
protection mechanism from reading/tampering the logs,
preventing from Tampering-with-Data, Repudiation, and
Information Disclosure attacks.

Based on the above analysis, we can make conclusions
about the resistance of the security patterns under considera-
tion to known categories of attacks [21]. The results are
summarized in Table 3. Irrelevant entries to the specific
security pattern are left blank. Since we have not considered
security patterns that can confront Denial-of-Service attacks,
the corresponding category has been eliminated from our
analysis.

Next, we perform alikelihood-exposure-consequences [1],
[9] investigation for attacks that occur in cases where specific
security patterns are missing and cases where the security
patterns used do not offer total protection. Our investigation
is based on the previous analysis, together with knowledge
on possible attacks on Web Applications [43].

We note that the likelihood and the exposure (ease) of an
attack are the same, regardless of the application, whereas the
consequences depend on the data affected and, thus, on the
specific application. Although in our investigation, conse-
quences for the specific applications could be considered, we
examined the worst case scenario for the consequences,
considering that all system data is of crucial importance.

Regarding the authentication mechanism, the categories of
attacks affected when the authentication mechanism is
broken are Spoofing, Information Disclosure, and Elevation
of Privilege (if someone gets administrator rights) [21]. The
most trivial case is when no authentication is used at an
application entry point. In this case, the likelihood of an attack
is very high, the ease of performing an attack is very high, and
the consequences are damaging (very high). When the

Protected System pattern is used, the likelihood of success-
fully attacking a guard of this pattern is low, the ease
(exposure) of a dictionary attack can be regarded high, and
the consequences are very high. When the Secure Proxy
pattern is used, two guards must be compromised for an
attack to succeed. The likelihood and exposure of compro-
mising the first guard are the same as in the case of a guard of
Protected System. The consequences of attacking the first
guard are very low, since the first guard only acts as a front
end to the second guard, and no resources are compromised
yet when the first guard is compromised. The likelihood,
exposure, and consequences of attacking the second guard
are the same as in the case of a guard of Protected System. The
consequences of attacking the second guard of Secure Proxy
are very high, because if the second guard is compromised,
then all the protected resources are compromised.

In case the Secure Logger pattern is not used in a place
where logging is performed, the categories of attacks
affected are Tampering with Data, Repudiation, and
Information Disclosure. If the server where the logs reside
is compromised, the log data can be read and changed,
letting a user deny having performed an action. The
likelihood of such an attack and the ease of such an attack
are low, since generally, it is not easy to compromise the
server where the logs reside. The consequences regarding
Tampering with Data and Information Disclosure are low,
since the data kept in the logs is not usually of high
importance. The importance of the logs is, however, very
high when considering Repudiation (someone could deny
having performed an action that he/she performed, or
conversely, someone could accuse someone else of having
performed an action that he/she did not), and therefore, the
consequences are also very high.

When the Secure Pipe pattern is not used, the application
may not be configured to work with an SSL connection. In
this case, important data could be eavesdropped, leading to
an Information Disclosure attack, and additionally, if the
credentials are eavesdropped, this would lead to Spoofing
and Elevation of Privilege. The likelihood of an eavesdrop-
ping attack in this case can be considered high, the ease of
such an attack is high, and the consequences for all
categories affected are very high.

When no Intercepting Validator is used in a path from a
class where data is input to a class where this data is shown
or a resource (for example, a database) is accessed, having
this data as a parameter, then an SQL Injection and/or an
XSS attack could occur. The categories of attacks affected
are Information Disclosure, which can occur in both types
of attacks, and Tampering with Data, which can occur in an

136 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.5, NO.3, JULY-SEPTEMBER 2008
TABLE 4
Likelihood of an Attack in All Examined Cases
Case S T R | E
1. Missing Intercepting . .
Validator high high
2. No Authentication very high very high very high
3. Protected System
. low low low
compromised
4. First Guard of Secure
. low low low
Proxy compromised
5. Second Guard of Secure
. low low low
Proxy compromised
6. Missing Secure Pipe high high high
7. Missing Secure Logger low low low
8. Missing “Secure GET |
v ow
parameters
9. Servlet member variable
o . low
race conditions exploited
TABLE 5
Exposure of an Attack in All Examined Cases
Case S T R)| E
1. Missing Intercepting . .
Validator high high
2. No Authentication very high very high very high
3. Protected System . . .
compromised high high high
4. First Guard of Secure . . .
Proxy compromised high bigh high
5. Second Guard of Secure . . .
Proxy compromised high high high
6. Missing Secure Pipe high high high
7. Missing Secure Logger low low low
8. Missing “Secure GET very hish
parameters” g
9. Servlet member variable |
coc : ow
race conditions exploited

SQL Injection attack, where the database is modified. When
an Intercepting Validator is missing, the likelihood of such
an attack is high, the ease of such an attack is high, and the
consequences are damaging (very high).

When information entered by wusers is transferred
through the GET method, the corresponding variable
values are encoded in the URL (independent of whether
the Web Application uses an HTTPS protocol or not). In
this case, attacks that can exploit (locally or remotely) the
history of visited URLs in the client’s browser by
harvesting GET request parameter values might occur.
One way of confronting this kind of attacks is to use the
proposed “Secure GET Parameters” pattern described in
Section 6. The category of attacks affected is Information
Disclosure attacks. The likelihood of such attacks is low
(since in general, it is more difficult to access directly
sensitive data in the client than packets across a net-
work), the ease is very high (since the parameters are
easily accessible through the URL), and the consequences
are very high (considering the worst case scenario, where
the parameters are crucial).

Finally, there exists no pattern yet that provides a proper
synchronization and locking mechanism ensuring that no
servlet member variable race conditions can be exploited.
Thus, there is always the possibility of such an attack with
low likelihood, low ease, and very high consequences.

The results about the likelihood, exposure, and con-
sequences of an attack are summarized in Tables 4, 5, and 6,
respectively.

5.2 Risk Quantification for the Systems under Study
The second experiment consists of evaluating the risk level
for all kinds of STRIDE attacks for the secure and the
nonsecure applications. Based on the likelihood-exposure-
consequences results in Tables 4, 5, and 6, we derive tables
of all primary events and the STRIDE categories of attacks
that they belong to for the nonsecure and secure applica-
tions. The primary events for the nonsecure system are
shown in Table 7. We note here that many events can
correspond to the same case, as what happens for
events 4-14, which correspond to 11 missing uses of the

HALKIDIS ET AL.: ARCHITECTURAL RISK ANALYSIS OF SOFTWARE SYSTEMS BASED ON SECURITY PATTERNS

137

TABLE 6
Consequences of an Attack in All Examined Cases
Case S T R 1 E
1. Missing Intercepting very .
Validator high vory high
2. No Authentication very high very high very high
3. Protected System . . .
compromis); d very high very high very high
4. First Guard of Secure very low very low very low
Proxy compromised i vy Y
5. Second Guard of Secure . . .
Proxy compromised very high very high very high
6. Missing Secure Pipe very high very high very high
. very
7. Missing Secure Logger low high low
8. Missing “Secure GET verv hih
parameters” Y g
9. Servlet member variable very high
race conditions exploited g
TABLE 7

Primary Attack Events for the Nonsecure System

Likelihood of
Occurrence

Primary Event

Exposure

Consequences Categories of

Attacks

Event 1. Dictionary
attack to the guard of
Protected System is
Successful

low

high very high S,LLE

Event 2. POST/GET
Parameters are eavesdropped
because of missing Secure
Pipe

high

high very high S,LLE

Event 3. Exploitation of
Servlet member variables race
conditions

low

low very high I

Events 4-14. Attacker reads
and/or tampers logs because
of missing Secure Logger

low

T, I: low

R: very high LRI

PR]

low

Events 15-25. No input
validation because of missing
Intercepting Validator

high

high very high T,1

Event 26. Exploitation of
unencrypted GET parameters
because of missing "Secure
Get Parameters"

(see section 6)

low

very high very high 1

Secure Logger pattern, and events 15-25, which correspond
to 11 missing instances of the Intercepting Validator
pattern, in several places of the design.

The resulting fault tree for Information Disclosure attacks
is shown for illustration in Fig. 4. We performed a similar
analysis for the secure system. The primary-attack events for
the secure system are shown in Table 8. (In the secure system,
the Protected System pattern, which essentially consists of
one level of authentication, has been replaced by the Secure
Proxy pattern, which consists of two levels of authentication.
These two levels can still be compromised by a successful
dictionary attack.)

The outputs of the fuzzy fault trees for the nonsecure and
secure systems are summarized in Table 9. These results
show the calculated risk of the entire systems based on the
security patterns contained and security patterns missing in
places where they are needed. We therefore have managed
to quantify the difference between the two systems under
STRIDE [21] attacks, which is prominent in all categories,
except for Repudiation attacks.

5.3 Risk Evolution for Different Pattern Sequences
The third experiment consists of gradually employing
security patterns in the nonsecure system in order to
evaluate whether the order of patterns affects the evolu-

138

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5,

Information Disclosure attack
succeeds

Event 1. Dictionary attack to|
the guard of Protected
System is successful
Likelihood: low
Exposure: high
Consequences: very high

Event 2. POST/GET
Parameters are
eavesdropped
Likelihood: high
Exposure: high

Consequences: very high

Event 3. Exploitation of
Servlet member variables
race conditions
Likelihood: low
Exposure: low
Consequences: very high

Events 4-14. Attacker
reads and/or tampers

Likelihood: low
Exposure: low
Consequences: low

Events 15-25. No input
validation
Likelihood: high
Exposure: high
Consequences: very high

logs

NO. 3, JULY-SEPTEMBER 2008

Event 26. Exploitation of
unencrypted GET
parameters
Likelihood: low
Exposure: very high
Consequences: very high

Fig. 4. Fault tree for Information Disclosure attacks when considering the nonsecure system.

TABLE 8
Primary Attack Events for the Secure System

Primary Event Likelihood of Exposure Consequences Categories of
Occurrence Attacks
Event 1. Dictionary
attack to the first guard .
of Secure Proxy is low high very low S,LE
successful
Event 2. Dictionary
attack to the second . .
guard of Secure Proxy low high very high S,LE
is successful
Event 3. Exploitation
of Servlet member .
variables race B . very high I
conditions.
TABLE 9
Calculated Risk for the Two Systems under Examination
S T R I E
Non-secure system fairly high fairly high very low fairly high fairly high
Secure system very low absﬁ)l?;ely absolutely low very low very low
Difference in
number of 4 5 1 4 4
linguistic levels

tion of risk. In particular, we have studied the changes in
the calculated risk when employing security patterns in
two different sequences. For the sake of brevity, we will
present the results for Information Disclosure attacks.

The first sequence consists of gradually employing the
security patterns, as shown in Table 10.

The diagram shown in Fig. 5 depicts graphically the
evolution of the calculated risk for the first sequence. The
risk remains at the level “fairly high” during steps 1-23 and
drops to “low” at step 24 when the last Intercepting
Validator is employed. The drastic reduction of risk after
the employment of the last Intercepting Validator happens,
because it eliminates the last source of attacks that has high

values for likelihood, exposure, and consequences (other
sources for attacks remain, such as attacks that exploit
servlet member variables race conditions and dictionary
attacks that succeed in compromising the two levels of

TABLE 10
First Sequence of Employed Security Patterns
1 Secure Proxy
2 Secure Pipe
3-13 Secure Logger
14-24 Intercepting Validator

HALKIDIS ET AL.: ARCHITECTURAL RISK ANALYSIS OF SOFTWARE SYSTEMS BASED ON SECURITY PATTERNS

absolutely high -+

139

very high —
high +
< fairlyhigh ¢ © © © © © © © © © © © © 0 0 06 0 0 0 0 0 00O
S
= medium —+
X
2
& fairly low +
low —+ o
very low —+
absolutely low | | I | |
5 10 15 20 24

Patterns Employed

Fig. 5. Evolution of the calculated risk for the first sequence (Information Disclosure attacks).

protection of Secure Proxy, but these attacks correspond to
lower values for likelihood, exposure, and consequences).
Since the output of the OR gate leading to the top event of
the fault tree depends on the highest input (that is,
corresponds to a max operation), we have a relatively high
risk for the resulting system up to the employment of the
last Intercepting Validator pattern. The same behavior
would be observed in case any other source of attack with
high values for likelihood, exposure, and consequences
remained until the last steps.

The second sequence consists of gradually introducing
the security patterns, as shown in Table 11. In this sequence,
the Intercepting Validator patterns are employed earlier.
This evolution of the calculated risk is depicted graphically
in Fig. 6. The risk level is “fairly high” during steps 1-12 and
drops to “low” at step 13, where the Secure Pipe pattern is
employed (after the employment of Intercepting Validator
in all required places), eliminating all major sources for
attacks that correspond to high values for likelihood,
exposure, and consequences.

Based on Fig. 6, we can conclude that when we employ
Intercepting Validator and Secure Pipe at an early stage, the
calculated risk declines earlier compared to when we
employ them at the last steps of our experiments. This
happens, because the Intercepting Validator and the
Secure Pipe patterns are important when regarding
Information Disclosure attacks.

TABLE 11
Second Sequence of Employed Security Patterns
1 Secure Proxy
2-12 Intercepting Validator
13 Secure Pipe
14-24 Secure Logger

6 INTRODUCTION AND EVALUATION OF THE
“SECURE GET PARAMETERS” PATTERN

6.1 Pattern Description

The analysis of attacks performed in the first experiment
shows that even when existing security patterns are used
properly, unencrypted parameters might be used in a
GET request. This means that even when an SSL connection
is used throughout the whole application, parameters that
are sent unencrypted via a GET request could be eaves-
dropped if someone obtains access to the client’s browser
history of visited URLs. Taking this into account, we propose
a new security pattern, named “Secure GET Parameters,”
that provides resistance to this attack. The class diagram of
the proposed security pattern is shown in Fig. 7.

In an actual application, the Client can be any servlet that
sends parameters through a GET request to any other servlet
that can play the role of a Target. The corresponding sequence
diagram is shown in Fig. 8. The Client that wants to send
encrypted parameters through a GET request to the Target
sets an Encryptor object for self use and a Decryptor object
for use by the Target through the use of appropriate methods
of the SecureBaseAction object. Then, the Client invokes
the method encryptParameters () of SecureBaseAction,
which is delegated to encryptParameters() of the
Encryptor object. A collection of the encrypted parameters is
returned to the SecureBaseAction object and, consequently, to
the Client. The Client then sends these encrypted parameters
through the GET request to the Target. Consequently, in the
browser history of visited URLs, these parameters will
appear encrypted, eliminating this source of possible attacks.
The Target should then decrypt these parameters to get
their original values. Thus, the Target invokes method
decryptParameters () of SecureBaseAction, which is
delegated to decryptParameters of the Decryptor object.
The Decryptor object returns a collection of the decrypted

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5,

absolutely high
very high

high
fairly high

medium

Risk Level

fairly low

low

very low

absolutely low

NO. 3, JULY-SEPTEMBER 2008

T T T
10 13 15

20

Patterns Employed

Fig. 6. Evolution of the calculated risk for the second sequence (Information Disclosure attacks).

«SecureGETParameters:SecureBaseAction»
«SecureGETParameters:AbstractDecryptor» SecureBaseAction
AbstractDecryptor

+decryptParameters()

+encryptParameters()
"

-decryptParameters() +setDecryptor()
+setEncryptor()

«SecureGETParameters:Decryptor»

24

«SecureGETParameters:AbstractEncryptor»
AbstractEncryptor

<<sends parameters in URL
through GET request>>

|
Decryptor \l/ 1 Encryptor
«SecureGETParameters: Target» «SecureGETParameters:Client»
Target Client
+decryptParameters() +encryptParameters()
/:\ +parseURL() :
T T
! I I :
[| o |
<<creates>> <<creates>>
Fig. 7. Class diagram of the Secure GET Parameters security pattern.
‘ :Client

‘ :Target

1: setEncryptor

:SecureBaseAction |

|
] |
u

»
o
@
5]
<
=
Y
o
]
3
@
5}
7]

+encryptParameters()

«SecureGETParameters:Encryptor»

‘ :Encryptor

‘ :Decryptor

3.1: encryptParameters \

©
>
o
<
=
8
o
o
S
3
o
©
3

|

g

encryptedParameters ‘

4.1: decryptParameters ‘

decryptedParameters ‘

|

Fig. 8. Sequence diagram of the Secure GET Parameters security pattern.

decryltedParameters

HALKIDIS ET AL.: ARCHITECTURAL RISK ANALYSIS OF SOFTWARE SYSTEMS BASED ON SECURITY PATTERNS 141

absolutely high -
very high —+

high
fairly high <

medium —+

Risk Level

fairly low -+

low + @

very low — o

absolutely low
24 25

Fig. 9. Evolution of the calculated risk after the introduction of the
“Secure GET Parameters” pattern (Information Disclosure attacks).

parameters to the SecureBaseAction object, which is conse-
quently returned to the Target.

In the above pattern, the Client is able to choose any
encrypting and decrypting algorithm among available
implementations, as represented by the concrete classes in
the design. The abstractions for the Encryptor and the
Decryptor allow for the use of different implementations of
encrypting and decrypting algorithms, without affecting
both the Target and the Client.

6.2 Experimental Evaluation

To evaluate the impact of the proposed “Secure GET
Parameters” pattern on risk mitigation, we have introduced
this pattern as a last step in the two sequences of patterns
employed to improve the nonsecure system, described in
Section 5.3. The introduction of the proposed pattern in
both cases (that is, the sequence in Tables 10 and 11,
respectively) reduced the risk concerning Information
Disclosure attacks from “low” to “very low,” which
corresponds to one linguistic level (see Fig. 9). This further
reduction occurs, because the introduction of the “Secure
GET Parameters” pattern eliminates the possibility of such
an eavesdropping attack, which, according to Tables 4, 5,
and 6 for Information Disclosure, corresponds to values
“low,” “very high,” and “very high” for likelihood,
exposure, and consequences, respectively. These values
are significantly higher than those corresponding to the
remaining sources of attacks that cannot be eliminated
(attacks that exploit servlet member variable race conditions
and dictionary attacks that succeed in compromising the
two levels of protection of Secure Proxy).

7 CoNCLUSIONS AND FUTURE WORK

In this paper, we have proposed a methodology for
quantifying the security level of a software system based

on the implemented/missing security patterns. Moreover,
the estimation can be performed already at the design
phase. Thus, security problems can be detected at an early
stage, which reduces the cost compared to the introduction
of security during implementation. The comparison of
two e-commerce systems having the same functionality,
one without and one with security patterns, has shown that
the nonsecure application has a high risk of being affected
by each category of STRIDE attacks, whereas the secure
application has a significantly lower risk.

An interesting extension to this work would be the
automatic introduction of missing security patterns either at
the design phase of a system being developed or in already-
implemented software systems.

ACKNOWLEDGMENTS

The authors would like to thank the Web Application
Security Mailing List of SecurityFocus and the comp.
lang java.security Mailing List for letting them organize
a contest, Benjamin Livshits of Stanford University,
the winner of the contest, and Watchfire Corp. for
providing an evaluation license for AppScan, and the
anonymous reviewers for their constructive comments.

REFERENCES
[1] E. Amoroso, Fundamentals of Computer Security Technology. Prentice
Hall, 1994.

[2] C. Anley, “Advanced SQL Injection in SQL Server Applications,”
white paper, NGSSoftware, 2002.

[3] C.A.Berry, J. Carnell, M.B. Juric, M.M. Kunnumpurath, N. Nashi,
and S. Romanosky, J2EE Design Patterns Applied. Wrox Press, 2002.

[4] B. Blakley, C. Heath, and Members of the Open Group Security
Forum, Security Design Patterns: Open Group Technical Guide, 2004.

[5S] Borland Together Architect Home Page, http://www.borland.com/
together, 2007.

[6] A.Braga, C. Rubira, and R. Dahab, “Tropyc: A Pattern Language
for Cryptographic Software,” Proc. Fifth Conf. Pattern Languages of
Programming (PLoP), 1998.

[71 P.J. Brooke and R.F. Paige, “Fault Trees for Security System
Design and Analysis,” Computers and Security, vol. 22, no. 3,
pp. 256-264, Apr. 2003.

[8] K.-Y. Cai, Introduction to Fuzzy Reliability. Kluwer Academic
Publishers, 1996.

[9] K.-Y. Cai, “System Failure Engineering and Fuzzy Methodology:
An Introductory Overview,” Fuzzy Sets and Systems, vol. 83, no. 2,
pp. 113-133, Oct. 1996.

[10] K.-Y. Cai, “Software Reliability Experimentation and Control,”
J. Computer Science and Technology, vol. 21, no. 5, pp. 697-707,
Sept. 2006.

[11] Cross Site Scripting (XSS) Questions and Answers, Cgisecurity.com,
http:/ /www.cgisecurity.com/articles /xss-faq.shtml, 2007.

[12] S.-J. Chen and S.-M. Chen, “Fuzzy Risk Analysis Based on
Similarity Measures of Generalized Fuzzy Numbers,” IEEE Trans.
Fuzzy Sets and Systems, vol. 11, no. 1, pp. 45-56, Feb. 2003.

[13] E. Fernandez, Metadata and Authorization Patterns, http://
www.cse.fau.edu/~ed/MetadataPatterns.pdf, 2007.

[14] M. Fowler, UML Distilled: A Brief Guide to the Standard Modeling
Language. Addison Wesley, 2003.

[15] S. Friedl, SQL Injection Attacks by Example, http://www.unixwiz.
net/techtips/sql-injection.html, 2007.

[16] Fuzzy Risk Analysis Framework, http://java.uom.gr/~halkidis/
fuzzyrisk, 2007.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley,
1995.

[18] K. Goseva-Popstojanova and K.S. Trivedi, “Architecture-Based
Approach to Reliability Assessment of Software Systems,”
Performance Evaluation, vol. 45, nos. 2-3, pp. 179-204, July 2001.

142

(19]

[20]
(21]
(22]

[23]
[24]

(23]

[20]

(27]

(28]

[29]

(30]

B1]

(32]

(33]

[34]

(35]

(30]

(37]
(38]
[39]
[40]
[41]

(42]

[43]

(44]

[43]
[40]
(47]

(48]

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.5, NO. 3, JULY-SEPTEMBER 2008

S.T. Halkidis, A. Chatzigeorgiou, and G. Stephanides,
“A Qualitative Evaluation of Security Patterns,” Proc. Sixth Int’l
Conf. Information and Comm. Security (ICICS), 2004.

G. Hoglund and G. McGraw, Exploiting Software: How to Break
Code. Addison Wesley, 2004.

M. Howard and D. LeBlanc, Writing Secure Code. Microsoft Press,
2002.

D. Hu, “Preventing Cross-Site Scripting Vulnerability,” white
paper, SANS Inst., 2004.

JBoss Home Page, http:/ /www .jboss.com, 2007.

J. Jurjens, Secure Systems Development with UML. Springer-Verlag,
2005.

D. Kienzle and M. Elder, “Security Patterns for Web Application
Development,” technical report, Univ. of Virginia, 2002.

A. Klein, “Divide and Conquer: HTTP Response Splitting,
Web Cache Poisoning Attacks and Related Topics,” white paper,
Sanctum, 2004.

F. Lee Brown, J. Di Vietri, G. Diaz de Villegas, and E. Fernandez,
“The Authenticator Pattern,” Proc. Sixth Conf. Pattern Languages of
Programming (PLoP), 1999.

H.W. Lewis III, The Foundations of Fuzzy Control. Plenum Press,
1997.

B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page,
D. Wright, J. Dobson,]J. McDermid, and D. Gollman,
“Towards Operational Measures of Computer Security,”
J. Computer Security, vol. 2, no. 3, pp. 211-229, 1993.

B. Livshits and M.S. Lam, “Finding Security Vulnerabilities in Java
Applications with Static Analysis,” Proc. 14th Usenix Security
Symp., Aug. 2005.

B. Livshits and M.S. Lam, “Finding Security Vulnerabilities in Java
Applications with Static Analysis,” technical report, Stanford
Univ., 2005.

B.B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, and
K.S. Trivedi, “A Method for Modeling and Quantifying the
Security Attributes of Intrusion Tolerant Systems,” Performance
Ewvaluation, vol. 56, nos. 1-4, pp. 167-186, Mar. 2004.

Q. Mahmoud, “Security Policy: A Design Pattern for Mobile Java
Code,” Proc. Seventh Conf. Pattern Languages of Programming
(PLoP), 2000.

G. McGraw, Software Security: Building Security In. Addison
Wesley, 2006.

B. Moller, M. Beer, and M. Liebscher, “Fuzzy Analysis as
Alternative to Stochastic Methods: Theoretical Aspects,”
Proc. Fourth German LS-DYNA Forum ‘05, pp. D-1-29-D-1-43,
2005.

H. Mouratidis, P. Giorgini, and M. Schumacher, “Security Patterns
for Agent Systems,” Proc. Eighth European Conf. Pattern Languages
of Programs (EuroPLoP), 2003.

MySQL Home Page, http://www.mysql.com, 2007.

D.M. Nicol, W.H. Sanders, and K.S. Trivedi, “Model-Based
Evaluation: From Dependability to Security,” IEEE Trans. Depend-
able and Secure Computing, vol. 1, no. 1, pp. 48-65, Jan.-Mar. 2004.
L.L. Pullum, Software Fault Tolerance Techniques and Implementation.
Artech House, 2001.

E. Roman, RP. Sriganesh, and G. Brose, Mastering Enterprise
JavaBeans. Wiley Publishing, 2005.

S. Romanosky, “Enterprise Security Patterns,” Information Systems
Security Assoc. J., Mar. 2003.

B. Ross, C. Jackson, N. Miyake, D. Boneh, and J.C. Mitchell,
“Stronger Password Authentication Using Browser Extensions,”
Proc. 14th Usenix Security Symp., 2005.

J. Scambray and M. Shema, Hacking Exposed Web Applications.
McGraw-Hill, 2002.

DIK. Sjeberg, J.E. Hannay, O. Hansen, V. By Kampenes,
A. Karahasanovi¢, N.-K. Liborg, and A.C. Rekdal, “A Survey of
Controlled Experiments in Software Engineering,” IEEE Trans.
Software Eng., vol. 31, no. 9, pp. 733-753, Sept. 2005.

K. Spett, “Cross-Site Scripting: Are Your Web Applications
Vulnerable?” white paper, SPI Laboratories, 2005.

K. Spett, “SQL Injection: Are Your Web Applications Vulnerable?”
white paper, SPI Laboratories, 2005.

D. Spinnelis, Code Quality: The Open Source Perspective. Addison
Wesley, 2006.

C. Steel, R. Nagappan, and R. Lai, Core Security Patterns: Best
Practices and Strategies for [2EE, Web Services, and Identity Manage-
ment. Prentice Hall, 2006.

[49]

[50]
(51]

(52]
(53]

(54]

(53]

J. Viega and G. McGraw, Building Secure Software: How to Avoid
Security Problems the Right Way. Addison Wesley, 2002.

Watchfire Home Page, http://www.watchfire.com, 2007.

M. Weiss, “Patterns for Web Applications,” Proc. 10th Conf. Pattern
Languages of Programming (PLoP), 2003.

T. Wu, “A Real-World Analysis of Kerberos Password Security,”
Proc. Network and Distributed System Symp. (NDSS), 1999.

XML Metadata Interchange, http://www.omg.org/technology/
documents/formal/xmi.htm, 2007.

J. Yoder and J. Barcalow, “Architectural Patterns for Enabling
Application Security,” Proc. Fourth Conf. Pattern Languages of
Programming (PLoP), 1997.

H.-J. Zimmerman, Fuzzy Set Theory and Its Applications. Kluwer
Academic Publishers, 1996.

Spyros T. Halkidis received the BS and
MS degrees in computer science from the
University of Crete, Crete, Greece, in 1996 and
1998, respectively, the MBA degree from the
University of Macedonia, Thessaloniki, Greece,
in 2000. He is currently working toward the
PhD degree in the Computational Systems and
Software Engineering Laboratory, Department
of Applied Informatics, University of Macedonia.
His research interests include software engi-

neering, secure software, and security patterns.

Nikolaos Tsantalis received the BS and
MS degrees in applied informatics from the
University of Macedonia in 2004 and 2006,
respectively. He is currently working toward
the PhD degree in the Computational Systems
and Software Engineering Laboratory, Depart-
ment of Applied Informatics, University of
Macedonia, Thessaloniki, Greece. His research
interests include design patterns, refactorings,
and object-oriented quality metrics. He is a

student member of the IEEE.

Alexander Chatzigeorgiou received the
diploma in electrical engineering and the PhD
degree in computer science from the Aristotle
University of Thessaloniki, Thessaloniki, Greece,
in 1996 and 2000, respectively. From 1997 to
1999, he was with Intracom, Greece, as a
telecommunications software designer. He is
currently an assistant professor of software
engineering in the Computational Systems and
Software Engineering Laboratory, Department of

Applied Informatics, University of Macedonia, Thessaloniki, Greece. His
research interests include software metrics, object-oriented design, and
software maintenance. He is a member of the IEEE and the IEEE
Computer Society.

George Stephanides received the PhD degree
in applied mathematics from the University of
Macedonia, Thessaloniki, Greece. He is cur-
rently an associate professor in the Computa-
tional Systems and Software Engineering
Laboratory, Department of Applied Informatics,
University of Macedonia. His current research
and development activities include the applica-
tions of mathematical programming, security
and cryptography, and application-specific

software. He is a member of the IEEE and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

