
A Novel Refactoring and Semantic Aware Abstract Syntax Tree Differencing Tool
and a Benchmark for Evaluating the Accuracy of Diff Tools

POURIA ALIKHANIFARD and NIKOLAOS TSANTALIS, Concordia University, Canada

Software undergoes constant changes to support new requirements, address bugs, enhance performance, and ensure maintainability.
Thus, developers spend a great portion of their workday trying to understand and review the code changes of their teammates.
Abstract Syntax Tree (AST) diff tools were developed to overcome the limitations of line-based diff tools, which are used by the
majority of developers. Despite the notable improvements brought by AST diff tools in understanding complex changes, they still suffer
from serious limitations, such as (1) lacking multi-mapping support, (2) matching semantically incompatible AST nodes, (3) ignoring
language clues to guide the matching process, (4) lacking refactoring awareness, and (5) lacking commit-level diff support. We propose
a novel AST diff tool based on RefactoringMiner that resolves all aforementioned limitations. First, we improved RefactoringMiner to
increase its statement mapping accuracy, and then we developed an algorithm that generates AST diff for a given commit or pull
request based on the refactoring instances and pairs of matched program element declarations provided by RefactoringMiner. To
evaluate the accuracy of our tool and compare it with the state-of-the-art tools, we created the first benchmark of AST node mappings,
including 800 bug-fixing commits and 188 refactoring commits. Our evaluation showed that our tool achieved a considerably higher
precision and recall, especially for refactoring commits, with an execution time that is comparable with that of the faster tools.
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1 INTRODUCTION

Source code differencing is an important functionality for both software engineering practitioners and researchers, as
software is changing constantly and there is a need to understand how and why it changed. Software developers spend
a significant portion of their workday trying to understand and review the code changes of their teammates. Based on
data collected from over 250 thousand developers [42], developers spend 41 minutes per day on code reviewing and
understanding code changes, which is almost as much time as they spend on coding (52 minutes per day). MacLeod et
al. [40] surveyed 911 developers at Microsoft and found that the major challenge faced by code reviewers is finding
time to perform all the code reviews requested of them, as well as understanding the code’s purpose, the motivations
for the change, and how the change was implemented. Ebert et al. [9] found that long or complex code change is the
most frequently experienced reason causing confusion in code reviews according to developers. Regarding research,
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source code differencing is utilized to extract change patterns that can be used for automated program repair [38, 48],
automated library migration [26, 49, 50] and automated type/API migration [32–34].

The majority of the diff tools used for code reviews including GitHub Pull Request [25], Gerrit [24], as well as
in-house tools used by companies (e.g., the DiffTool used at Meta [55]) are applying the Myers algorithm [45] at the text
line granularity [48]. However, according to Falleri et al. [14] line-based diff has major limitations, as it only computes
additions and deletions, it does not consider other kinds of edit actions, such as update and move, and it works at a
coarse-grained granularity (i.e., text line) that is not aligned with the source code structure (i.e., the abstract syntax
tree). These limitations make it more difficult for code reviewers to understand the changes intended by the commit
authors when inspecting a pull request, especially when the changes are complex and involve refactoring operations,
which tend to move code to new locations relatively far from the original code locations (e.g., Extract Method [18]).

To overcome these limitations Abstract Syntax Tree (AST) diff tools have been developed. AST differencing aims at
computing a sequence of edit actions (called an edit script) that transform an AST into another [14]. The typical edit
actions supported by most tools are AST node updates, additions, deletions, and moves. The most prominent AST diff
tools are ChangeDistiller [17], GumTree [14], IJM (Iterative Java Matcher) [22], MTDiff [8], and CLDiff [28]. Despite the
notable improvements brought by AST diff in understanding complex code changes, as shown in experiments with
professional developers [12], AST diff tools have some constraints, which make them generate edit scripts that are not
ideal or optimal from the change comprehension point of view, because they do not reflect the actual changes intended
by the commit author. Fan et al. [15] proposed a differential testing approach that automatically compares the similarity
of mapped program elements by different AST mapping algorithms, and found that GumTree, MTDiff and IJM generate
inaccurate mappings for 20%–29%, 25%–36% and 21%–30% of the file revisions, respectively. Fan et al. concluded that
based on their experimental results, the state-of-the-art AST mapping algorithms still need improvements.

1.1 Motivation

The current AST diff tools are based on constraints that limit their ability to generate accurate edit scripts, i.e., edit
actions accurately reflecting the changes intended by the commit author.

Constraint 1: “A given node can only belong to one mapping” [14]. This constraint makes impossible for an AST diff
algorithm to generate multi-mappings (i.e., a node from the left AST having more than one corresponding node in
the right AST and vice versa). However, in reality developers tend to merge duplicated code fragments into a single
one to avoid redundancy (i.e., many-to-one multi-mapping) or duplicate a code fragment in multiple places to reuse
it (i.e., one-to-many multi-mapping). Currently, there is not even a single AST diff tool in the literature supporting
multi-mappings.
Constraint 2: “Mappings involve two nodes with identical labels” [14]. Although this constraint seems sensible as
it requires two AST nodes to have the same AST type to be matched, it ignores the semantic role that an AST node
plays in the program. For example, type references, variable identifiers and method call names are three semantically
different groups of AST nodes, which are all represented with the same AST type (i.e., SimpleName in the Eclipse JDT
parser). However, it makes no semantic sense to match nodes between these three different groups.
Constraint 3: “The AST differencing problem inputs two ASTs and aims at identifying a short edit script 𝜎 of edit
actions (including move) that transforms a first AST (named 𝑡1) into a second one (named 𝑡2)” [14]. This constraint
restricts the AST diff problem to a pair of files, while in reality a commit (or pull request) may include code being moved
between different files.
Manuscript submitted to ACM
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Constraint 4: “The algorithm is independent of any language specificity” [14]. Although being language-independent
may be considered a desirable feature as it makes the algorithm easily extensible to other programming languages, at
the same time it hinders the ability of the algorithm to utilize language-specific information (i.e., language clues), such
as method signatures, method calls, field accesses and refactorings, to guide more effectively the AST matching process.

Some of these constraints were never addressed in the literature (i.e., Constraint 1: multi-mappings), while others
were only partially addressed with incomplete or non-evaluated solutions. For instance, IJM [22] is a language-aware
solution that attempted to address Constraint 2 and Constraint 4. With respect to Constraint 2, IJM modifies the AST
structure by merging the value of name nodes (i.e., SimpleName AST nodes) with their respective parent nodes and
deleting the name nodes with redundant information. Although this approach reduced the number of semantically
incompatible mapping (as shown in our experiments in Section 5.2), the solution is incomplete, as there are other
AST node types playing multiple semantic roles that were not covered. Moreover, modifying the structure of AST or
using more fine-grained labels for leaf nodes caused some unwanted side-effects, discussed in Sections 5.1 and 5.6,
respectively. With respect to Constraint 4, IJM applies partial matching by restricting the scope of the matching process
to selected parts of the source code (e.g., when matching method declarations with identical signatures). Although
this approach improved the matching accuracy for method declarations (as shown in our experiments in Section 5.3),
the solution is incomplete, as more language clues, such as method calls and field accesses, can be utilized to further
guide the matching process to more accurate mappings. With respect to Constraint 3, Staged Tree Matching (STM)
[23] is a GumTree extension that first applies the standard GumTree algorithm on the pairs of files modified in a
project. Then, it constructs a project-level AST for each version by connecting the AST roots corresponding to each file
to a pseudo-project-root node, and runs another matching phase on the project-level ASTs by considering only the
remaining unmatched AST subtrees. Since the authors of Staged Tree Matching [23] did not provide any experimental
results regarding its accuracy, we implemented this algorithm and conducted our own experiments in Section 5.5, which
show that STM cannot achieve the same level of accuracy as a move-refactoring-aware approach does.

Through extensive experimentation and testing of various AST diff tools with real case studies (i.e., commits) from
open-source projects, we compiled a catalogue with their limitations (Section 2) to demonstrate the negative impact
of these constraints on the accuracy and comprehensibility of the generated edit scripts. The root cause behind all
these limitations is language independence. To overcome each one of these limitations requires some level of language
awareness:

(1) Lack of support for multi-mappings (Section 2.1): The mechanisms of how code can be merged (i.e., multi-
mappings) are language specific and even framework specific. For example, in Java, duplicated code can be merged by
extracting it into a method, by moving it into test fixtures (JUnit5), by replacing duplicated tests with a parameterized
test (JUnit5), by merging two methods with similar code into a new one, by pulling up duplicated methods within
subclasses to their common superclass, by moving repeated code within if-else-if branches or switch cases
outside of the conditionals (i.e., Consolidate Duplicate Conditional Fragments refactoring). Different languages
and frameworks provide different mechanisms to merge code and eliminate duplication. For example, mixins and
object composition can be used in other programming languages to enable code reuse.

(2) Incorrect matching of program declarations (Section 2.2): Determining the corresponding declarations (i.e.,
methods, attributes) between two versions of a program requires language specific information. For example, in
Java, the signature of a method can be uniquely identified based on its name and list of parameter types. However,
in weakly typed programming languages, the signature of a function can be determined by its name and the number
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of parameters. Moreover, language specific clues in the code (i.e., method calls, field references) can help guide and
speed-up the matching process by allowing to reason about the potential location of moved code. For example,
if part of a method is found as deleted and in its place there is a call to a newly added method (i.e., implying the
potential application of an Extract Method refactoring), the matching process can be guided to match the deleted
code with the body of the newly added method without searching for matches in the rest of files. However, inferring
the function declaration corresponding to a function call also requires language specific information, as some
programming languages allow optional arguments, while others do not.

(3) Lack of refactoring awareness (Section 2.3): Refactoring operations are language specific, as the types of
refactorings that can be applied to a program depend on the features provided by the programming language.
For example, certain refactoring types are applicable only in programming languages that support inheritance.
Moreover, statically-typed languages have a richer and more reliable refactoring support in IDEs compared to
dynamically-typed languages [65], and thus refactoring operations are more prevalent in the former languages.

(4) Matching semantically incompatible AST nodes (Section 2.4): Determining the semantic role of an AST node
in a program requires knowing the language specifications, and how the AST parser that is used to parse the
program represents each program element. As shown in Section 5.2, some AST types can play multiple different
semantic roles in Java programs.

(5) Commit-level change ignorance (Section 2.5): The mechanisms of how code can be moved between files are
language specific. Some languages support inheritance and code can be moved by Pull Up or Push Down operations
in the inheritance hierarchy, while other languages do not support inheritance. Static methods (i.e., methods that do
not access the state of an object) have a different move mechanism compared to instance methods (i.e., methods
that access the state of an object).

Our work is a language-aware solution attempting to overcome all aforementioned constraints and limitations with
the goal of generating highly accurate edit scripts at commit (or pull request) level, and thus reduce the time and effort
it takes to perform code reviews and change comprehension tasks, especially in complex change scenarios involving
refactorings.

Regarding the evaluation methods, the majority of AST diff tools have been evaluated based on the number of
generated mappings and the size of the resulting edit script, without validating whether the mappings and edit actions
are correct and reflect the actual changes intended by the commit author. The assumption behind this evaluation
approach, as explained by Falleri et al. [14] is that “the length of the edit script is a proxy to the cognitive load for a
developer to understand the essence of a commit”. Thus, shorter edit scripts should be easier to understand. However,
in Section 2 we demonstrate through real examples from open-source projects that shorter edit scripts may confuse
and mislead the code reviewers with edit actions that are inconsistent with the actual changes applied by the commit
author. We believe that the most reliable way to evaluate AST diff tools is based on an established ground truth of AST
node mappings, which would make it possible to assess the correctness of the mappings generated by the tools, and
thus compute their respective precision and recall. To this end, we created the first benchmark of AST node mappings
with commits from open-source projects.

1.2 Approach overview

To overcome all these limitations we propose and implement a refactoring, semantic, and language-aware solution by
extending RefactoringMiner [63, 64] to generate AST diff at the commit level. RefactoringMiner [62] is a mature tool
maintained over a period of 8 years by members of our Refactoring Research Group at Concordia University. It currently
Manuscript submitted to ACM
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supports the detection of 60 different refactoring types and 40 kinds of API changes and has been established as the
tool with the highest accuracy and fastest execution time among competitive tools [57, 61]. RefactoringMiner has been
used in numerous empirical studies to extract refactoring datasets from the commit history of open-source projects.
Moreover, the tool was used in solving various software evolution analysis problems, such as automatic refactoring-
aware commit merging [10], automatic decomposition of commits into distinct activities [56], automatic source code
comment updating [39], refactoring-aware implementation of the SZZ algorithm for identifying bug-inducing changes
[54], automatic extraction of complete and concise bug-fixing patches cleaned-up from overlapping refactoring edits
[29], and refactoring-aware commit change history extraction for methods and variables [30], just to name a few.
Finally, RefactoringMiner is used by tools visualizing refactoring information in IDEs, such as the RefactorInsight [36]
(developed and maintained by JetBrains Research) and Spike [12] plug-ins for IntelliJ IDEA.

Under the hood, RefactoringMiner applies a statement mapping process [63]. The mapped statements and the AST
node replacements found within the mapped statements are then used to infer refactoring operations. Despite its high
accuracy in refactoring detection, RefactoringMiner needed some significant and novel extensions (Section 3.2) to
be able to generate surgically accurate mappings at statement-level. Furthermore, we developed an algorithm that
generates AST diff (Section 3.3) using the output of RefactoringMiner (i.e., the detected refactoring instances and the
pairs of matched program element declarations). As explained in Section 3.4, the combination of RefactoringMiner’s
output with our AST diff generation algorithm overcomes all constraints discussed in Section 1.1

1.3 Contributions

(1) We extend RefactoringMiner to generate AST diff at the commit level.
(2) We create the first benchmark of AST node mappings from two popular datasets, namely Defects4J [31], which

includes 835 bug fixes from 17 open-source projects, and Refactoring Oracle [63], which includes over 11K refactor-
ings and code changes found in 546 commits from 187 open-source projects. Both datasets have become the de
facto standard for evaluating automated program repair and refactoring mining tools, respectively. Our benchmark
includes bug-fixing and refactoring commits, to highlight the fact that most AST diff tools perform reasonably well
in bug-fixing commits as the changes are small, while their accuracy deteriorates in commits involving larger and
more complex changes, such as refactorings.

(3) We propose a novel framework for the evaluation of AST diff tools covering multiple diff quality dimensions,
including multi-mappings, semantically compatible mappings, program element mappings, refactoring-related
mappings, and inter-file mappings. Moreover, we utilize our benchmark to compute precision, recall and F-score, as
objective metrics to measure the quality of the AST diff generated by each tool.

(4) We develop an infrastructure to execute multiple AST diff tools, including RefactoringMiner, GumTree 3.0 (greedy
and simple), IJM, MTDiff, GumTree 2.1.0, and compute the aforementioned metrics.

(5) We evaluate the precision, recall and execution time of the aforementioned tools on our benchmark.

2 MOTIVATING EXAMPLES DEMONSTRATING THE LIMITATIONS OF CURRENT AST DIFF TOOLS

In this section, we demonstrate the limitations of the current state-of-the-art AST diff tools with illustrative examples
found in open-source project commits.

2.1 Lack of support for multi-mappings

Multi-mapping is the case where a node from the left AST has more than one corresponding node in the right AST, and
vice versa. None of the current state-of-the-art AST diff tools supports multi-mappings. However, multi-mappings are
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quite common in various change scenarios involving duplicated code. For example, developers tend to extract duplicated
code from multiple methods into a newly added method, eliminate duplicate code within if-else-if or switch-case
control structures by merging the duplicated statements and moving them out of the conditionals, eliminate duplicate
code within catch blocks handling different exception types by merging the exception handling code into a single
catch block using the Union type (i.e., catch(Exception1 | Exception2)). Of course, the reverse scenarios can
also occur, e.g., by inlining a method being called by multiple different methods. Another example of one-to-many
multi-mapping is the common case where a variable declaration with an initialization expression is split to a variable
declaration initialized with a default value, and the initialization is moved to a separate variable assignment statement.
Higo et al. [27] partially addressed this issue by introducing copy-and-paste as a new kind of edit action. However, their
solution is uni-directional as it supports only scenarios in which developers duplicate existing code, but not scenarios
in which developers eliminate duplicate code. Aalizadeh [1] studied 346K instances of Extract Method refactorings
mined from 132,897 commits of 325 open-source repositories, and found that 41% of them were intended for reusing
the extracted code within the same commit (i.e., avoiding the duplication of pre-existing code), and 25% of them were
intended for eliminating pre-existing duplicate code.

@Override

public TempBlockMeta allocateBlock(long userId, long blockId, long blo

    BlockStoreLocation location) throws IOException {

  StorageDir candidateDir = null;

long maxFreeBytes = blockSize;

  if (location.equals(BlockStoreLocation.anyTier())) {

    for (StorageTier tier : mMetaManager.getTiers()) {

for ( StorageDir dir : tier.getStorageDirs()) {

if ( dir.getAvailableBytes() >= maxFreeBytes) {

maxFreeBytes = dir.getAvailableBytes();

candidateDir = dir;

        }

      }

    }

  } else if (location.equals(BlockStoreLocation.anyDirInTier(location.

StorageTier tier = mMetaManager.getTier(location.tierAlias());

    for (StorageDir dir : tier.getStorageDirs()) {

      if (dir.getAvailableBytes() >= maxFreeBytes) {

        maxFreeBytes = dir.getAvailableBytes();

        candidateDir = dir;

      }

    }

  }

  return candidateDir != null ?

  new TempBlockMeta(userId, blockId, blockSize, candidateDir) : null;

}

@Override

public TempBlockMeta allocateBlock(long userId, long blockId, long blo

    BlockStoreLocation location) throws IOException {

  StorageDir candidateDir = null;

  if (location.equals(BlockStoreLocation.anyTier())) {

    for (StorageTier tier : mMetaManager.getTiers()) {

candidateDir = getCandidateDirInTier(tier, blockSize);

if (candidateDir != null) {

return new TempBlockMeta(userId, blockId, blockSize, candidat

      }

    }

  } else if (location.equals(BlockStoreLocation.anyDirInTier(location.

StorageTier tier = mMetaManager.getTier(location.tierAlias());

candidateDir = getCandidateDirInTier(tier, blockSize);

  }

  return candidateDir != null ?

  new TempBlockMeta(userId, blockId, blockSize, candidateDir) : null;

}

private StorageDir getCandidateDirInTier(StorageTier tier, long block

StorageDir candidateDir = null;

long maxFreeBytes = blockSize - 1;

  for (StorageDir dir : tier.getStorageDirs()) {

    if (dir.getAvailableBytes() > maxFreeBytes) {

      maxFreeBytes = dir.getAvailableBytes();

      candidateDir = dir;

    }

  }

return candidateDir;

}

Moved to the extracted method

Forcefully matched within the original method

Fig. 1. AST diff generated by GumTree 3.0 (greedy) for commit https://github.com/Alluxio/alluxio/commit/9aeefcd.

Figure 1 shows the AST diff generated by GumTree (greedy) for a commit in which duplicated code within the
method allocateBlock() has been extracted to getCandidateDirInTier(). As GumTree does not support multi-
mappings, it matches correctly one of the duplicated code fragments with the code inside the body of the extracted
method getCandidateDirInTier(). However, the other duplicated code fragment is forcefully matched with some
newly added code in method allocateBlock() on the right side of the diff. This side-effect is a result of the lack of
Manuscript submitted to ACM
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multi-mapping support and can cause great confusion to the code reviewers as it makes it very hard to understand that
the actual intention of the commit author was to extract duplicated code into a single reusable method.

@Override

public TempBlockMeta allocateBlock(long userId, long blockId, long blo

    BlockStoreLocation location) throws IOException {

  StorageDir candidateDir = null;

long maxFreeBytes = blockSize;

  if (location.equals(BlockStoreLocation.anyTier())) {

    for (StorageTier tier : mMetaManager.getTiers()) {

for (StorageDir dir : tier.getStorageDirs()) {

        if (dir.getAvailableBytes() >= maxFreeBytes) {

          maxFreeBytes = dir.getAvailableBytes();

          candidateDir = dir;

        }

      }

    }

  } else if (location.equals(BlockStoreLocation.anyDirInTier(location.

    StorageTier tier = mMetaManager.getTier(location.tierAlias());

for (StorageDir dir : tier.getStorageDirs()) {

      if (dir.getAvailableBytes() >= maxFreeBytes) {

        maxFreeBytes = dir.getAvailableBytes();

        candidateDir = dir;

      }

    }

  }

  return candidateDir != null ?

  new TempBlockMeta(userId, blockId, blockSize, candidateDir) : null;

}

@Override

public TempBlockMeta allocateBlock(long userId, long blockId, long blo

    BlockStoreLocation location) throws IOException {

  StorageDir candidateDir = null;

  if (location.equals(BlockStoreLocation.anyTier())) {

    for (StorageTier tier : mMetaManager.getTiers()) {

candidateDir = getCandidateDirInTier(tier, blockSize);

if (candidateDir != null) {

        return new TempBlockMeta(userId, blockId, blockSize, candidate

      }

    }

  } else if (location.equals(BlockStoreLocation.anyDirInTier(location.

    StorageTier tier = mMetaManager.getTier(location.tierAlias());

candidateDir = getCandidateDirInTier(tier, blockSize);

  }

  return candidateDir != null ?

  new TempBlockMeta(userId, blockId, blockSize, candidateDir) : null;

}

private StorageDir getCandidateDirInTier(StorageTier tier, long block

StorageDir candidateDir = null;

long maxFreeBytes = blockSize - 1;

for (StorageDir dir : tier.getStorageDirs()) {

    if (dir.getAvailableBytes() > maxFreeBytes) {

      maxFreeBytes = dir.getAvailableBytes();

      candidateDir = dir;

    }

  }

return candidateDir;

}

Call to the extracted method

Moved to the extracted method

Parent block mapping

Fig. 2. AST diff generated by RefactoringMiner for commit https://github.com/Alluxio/alluxio/commit/9aeefcd.

Figure 2 shows the AST diff generated by RefactoringMiner for the same commit. In contrast to the diff generated by
GumTree (Figure 1), the intention of the commit author to extract duplicated code into a single reusable method is
clearly expressed in the diff. Moreover, this AST diff is more aesthetically pleasing, less chaotic, and thus less confusing.
RefactoringMiner was able to discover the multi-mappings, because there exist two calls to the extracted method
getCandidateDirInTier() within the body of allocateBlock() on the right side of the diff. By taking advantage
of this language clue, it executes twice the process of mapping the statements within the body of allocateBlock()
on the left side with the statements within the body of getCandidateDirInTier() on the right side. Moreover, in
each execution the location of the call to the extracted method is utilized to restrict the scope of the left-side statement
mappings within the parent block mapping under which each call is nested.

2.2 Incorrect matching of program declarations

Most AST diff tools are language-agnostic. The premise is that being language-agnostic, it is possible to devise a solution
that can support any programming language (silver bullet). Therefore, GumTree and its extensions try to “blindly” find
the largest identical (or similar) AST sub-trees in a pair of files without relying on language clues to guide the matching
process. This approach has negative implications on both the accuracy of the mappings and the overall execution time.
For example, if a relatively large portion of the code in the body of a method on the left is extracted to a new method
on the right, GumTree erroneously matches the left method declaration with the extracted method declaration, because
the left method shares a larger common AST subtree with the extracted method compared to the code remaining in the
original method (after extraction) on the right side. However, this gives the code reviewers the wrong impression that
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the left method is “renamed” to the extracted method, which makes it more difficult to understand the actual change
intended by the commit authors (i.e., Extract Method refactoring).

Some examples of language clues that can be used to guide the matching process are method signatures and method
calls. If a method with the same signature can be found in both the left and right ASTs, the matching process can
be narrowed down to the bodies of these two methods without searching for matches in the rest of the files. If after
matching the bodies of the methods, a portion of the left method is found as deleted and in its place in the right method
there is a call to a newly added method (i.e., implying the potential application of an Extract Method refactoring),
the matching process can be guided to match the deleted code from the left with the body of the newly added method
from the right without searching for matches in the rest of the right file. The only AST diff tool that considers some
language clues is IJM [22], which applies partial matching by restricting the scope of the matching process to selected
parts of the source code (e.g., when matching method declarations with identical signatures). However, IJM does not
utilize method calls to further guide the matching process.

Figure 3 shows the AST diff generated by GumTree (greedy) for a commit in which almost the entire body of method
getAllPaths() has been extracted to getAllPathsWork(). The vast majority of AST diff tools have been designed
under the assumption that the shortest edit script is the most beneficial to grasp the nature of a change [8, 14], as the
length of the edit script is a proxy to the cognitive load for a developer to understand the source code changes. For this
reason, GumTree matches getAllPaths() method declaration with getAllPathsWork() method declaration, as this
match minimizes the move edit operations (highlighted in gray background color), and results in an overall shorter edit
script. However, the diff visualization gives the code reviewers the wrong impression that getAllPaths() has been
renamed to getAllPathsWork(), which makes it almost impossible to understand that the actual change intended
by the commit author was to extract method getAllPathsWork() in order to provide the same functionality with a
different input parameter type (i.e., Path instead of Optional<Path>). However, this kind of method extractions are
quite common and Silva et al. [58] found that the second most common motivation for Extract Method refactoring is
to introduce an alternative signature for an existing method (e.g., with additional or different parameters) and make the
original method delegate to the extracted one, as happened in this particular example.

private ImmutableBiMap<Path,Path> getAllPaths(Optional<Path> workingDi

  ImmutableBiMap.Builder<Path,Path> builder=ImmutableBiMap.builder();

if (workingDir.isPresent()) {

builder.put(workingDir.get(), compilationDirectory);

  }

  builder.putAll(other);

  return builder.build();

}

private ImmutableBiMap<Path, Path> getAllPaths(Optional<Path> workingD

if (!workingDir.isPresent()) {

    return other;

  }

try {

return pathCache.get(workingDir.get());

  } catch (ExecutionException e) {

    Logger.get(DebugPathSanitizer.class).error(

        "Problem loading paths into cache", e);

    return getAllPathsWork(workingDir.get());

  }

}

private ImmutableBiMap<Path,Path> getAllPathsWork(Path workingDir) {

  ImmutableBiMap.Builder<Path,Path> builder=ImmutableBiMap.builder();

builder.put(workingDir, compilationDirectory);

  builder.putAll(other);

  return builder.build();

}Original method declara�on matched with the extracted method declara�on

Statement sub-expressions matched within the extracted method

Statement sub-expressions matched within the original method

Fig. 3. AST diff generated by GumTree 3.0 (greedy) for commit https://github.com/facebook/buck/commit/a1525ac.

By taking advantage of language clues, such as method signatures and method calls, RefactoringMiner generates the
AST diff shown in Figure 4. The edit script corresponding to this diff is actually longer, because the majority of statements
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private ImmutableBiMap<Path,Path> getAllPaths(Optional<Path> workingDi

ImmutableBiMap.Builder<Path,Path> builder=ImmutableBiMap.builder();

  if (workingDir.isPresent()) {

builder.put(workingDir.get(), compilationDirectory);

  }

builder.putAll(other);

return builder.build();

}

private ImmutableBiMap<Path,Path> getAllPaths(Optional<Path> workingDi

  if (!workingDir.isPresent()) {

return other;

  }

try {

    return pathCache.get(workingDir.get());

  } catch (ExecutionException e) {

Logger.get(DebugPathSanitizer.class).error(

        "Problem loading paths into cache", e);

return getAllPathsWork(workingDir.get());

  }

}

private ImmutableBiMap<Path,Path> getAllPathsWork(Path workingDir) {

ImmutableBiMap.Builder<Path,Path> builder=ImmutableBiMap.builder();

builder.put(workingDir, compilationDirectory);

builder.putAll(other);

return builder.build();

}

Call to the extracted method

Moved to the extracted method

Moved within the original method

Fig. 4. AST diff generated by RefactoringMiner for commit https://github.com/facebook/buck/commit/a1525ac.

within the body of method getAllPaths() are shown as moved (highlighted in gray background color) to method
getAllPathsWork(). However, this diff depicts more accurately the intention of the commit author to extract method
getAllPathsWork() in order to provide the same functionality with a parameter of type Path. Moreover, the mapping
for sub-expression workingDir.get(), which is matched with the argument passed to the getAllPathsWork() call,
accurately reflects the intention of the developer to change the parameter type from Optional<Path> to Path, as
workingDir.get() returns the value (i.e., Path) present in workingDir (i.e., Optional<Path>). This example is the
proof that a shorter edit script is not necessarily the best way to convey the intention behind the changes made by a
developer, and may actually confuse and mislead the code reviewers. Moreover, this example demonstrates that AST
diff cannot be properly addressed in a language-agnostic manner, as language clues (e.g., method signatures, method
calls, field references) are of vital importance for guiding the matching process.

2.3 Lack of refactoring awareness

Refactoring is quite common in software evolution, as it facilitates multiple maintenance activities, such as reusing
code, fixing bugs, adding new features, improving code design, improving testability, improving code understandability
and readability [51, 58]. Despite its benefits on software maintainability, refactoring may introduce “noise” in the diff, as
refactoring-related edits tend to overlap with other non-behavior-preserving changes. Negara et al. [47] found that 46%
of refactored program entities are also edited or further refactored in the same commit, a practice commonly referred to
as floss refactoring [44].

Refactoring information can help to improve the quality of source code diff. For example, knowing that a variable,
field, or method is renamed can help to improve the mapping of sub-expressions within the statements referencing
them. Knowing that a sub-expression is extracted from a left-side statement and assigned to a newly added right-side
variable declaration (i.e., Extract Variable refactoring) can help to properly match the pair of statements from which
the variable was extracted, despite any major structural differences caused by the sub-expression extraction. None of
the current state-of-the-art AST diff tools leverages refactoring information in order to improve the accuracy of the
generated AST node mappings.

Figure 5 shows the AST diff generated by GumTree (simple) for a piece of code in which two low-level refactorings
were applied by the developer. The first refactoring is the renaming of the enhanced-for loop formal parameter object
to item (i.e., Rename Variable). The second refactoring is the move of the expression "[" + (count++) + "]" to
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the initializer of the newly introduced variable itemKey (i.e., Extract Variable). GumTree correctly matches the
SimpleName AST nodes with values object and item in the enhanced-for loop formal parameter, but mismatches the
SimpleName AST nodes with values object and itemKey in the argument list of the Collections.singletonMap()
invocation. The reason behind the mismatch is that GumTree tries to find the longest common subsequence with
isomorphic structure and itemKey is the first AST node having the same AST type (i.e., SimpleName) with object. The
resulting diff visualization might confuse the code reviewers about whether variable object is actually renamed to
item, as there are two inconsistent variable identifier mappings for object.
int count = 0;

for (Object object : collection) {

  flatten(properties,

  Collections.singletonMap("[" + (count++) + "]", object), key);

}

int count = 0;

for (Object item : collection) {

String itemKey = "[" + (count++) + "]";

  flatten(properties, Collections.singletonMap(itemKey, item), key);

}

Inconsistent variable iden�fier match

Fig. 5. AST diff generated by GumTree 3.0 (simple) for commit https://github.com/spring-projects/spring-boot/commit/20d39f7.

int count = 0;

for (Object object : collection) {

  flatten(properties,

  Collections.singletonMap("[" + (count++) + "]", object), key);

}

int count = 0;

for (Object item : collection) {

String itemKey = "[" + (count++) + "]";

  flatten(properties, Collections.singletonMap(itemKey, item), key);

}

Consistent variable iden�fier match

Fig. 6. AST diff generated by RefactoringMiner for commit https://github.com/spring-projects/spring-boot/commit/20d39f7.

Figure 6 shows the AST diff generated by RefactoringMiner, which takes advantage of the detected Rename Variable
and Extract Variable refactorings to optimize the SimpleName AST node mappings within the argument list of the
Collections.singletonMap() invocation in a post-processing phase. The resulting diff visualization has no ambiguity
regarding the renaming of variable object to item, and thus makes easier the understanding of the actual changes
applied by the commit author.

2.4 Matching semantically incompatible AST nodes (i.e., semantic ignorance)

As most AST diff tools are language agnostic [14], they can match any pair of AST nodes, as long as they have the same
AST type, ignoring completely the semantic role these AST nodes play in the program. For example, a method parameter,
the formal parameter of an enhanced-for loop, the exception declaration of a catch block, and the formal parameter
of a lambda expression, all share the same AST type, which is the SingleVariableDeclaration type in the AST
representation of the Eclipse JDT parser. GumTree can match any combination of AST nodes from the aforementioned
semantic groups, just because they have the same AST type. However, such matches make no semantic sense, make the
resulting diff look “unnatural”, may confuse the code reviewers, or even mislead the code reviewers in comprehending
the actual changes intended by the commit authors in a wrong way. Another example of a semantically incompatible
match allowed by GumTree is the matching of a type reference (i.e., SimpleType AST node with a nested SimpleName

AST node) with a variable reference (i.e., SimpleName AST node), or the matching of a method name reference (i.e.,
SimpleName AST node) with a variable reference. Again, although the AST nodes from the aforementioned semantic
groups share the same AST type (SimpleName), they serve a completely different semantic purpose in the program. In
order to prevent the latter semantically incompatible matches, IJM [22] modifies the AST structure by merging the
value of name nodes (i.e., SimpleName AST nodes) with their respective parent nodes and deleting the name nodes
with redundant information. The last example occurs when there is a change in the block structure of a method (i.e.,
control flow statements being added or deleted). In such case, GumTree may match the block corresponding to the
method body with a control structure block (e.g., the block corresponding to the body of an if or for statement). The
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block corresponding to the method body has a unique semantic purpose (i.e., enclose the functionality of a method),
and thus should be matched only with a method body block.

Figure 7 shows the AST diff generated by GumTree (greedy) for a piece of code in which an enhanced-for loop
has been migrated to a semantically equivalent Java Stream API call chain. Although GumTree correctly matched the
condition of the if statement with the lambda expression within the filter method call, and the statement within
the body of the if statement with the lambda expression within the forEach method call, it incorrectly matches
four semantically incompatible AST nodes: a) the enhanced-for loop body block with the method body block, b)
the type of the enhanced-for loop formal parameter ExternalResource with variable externalResources, c) the
variable resource with the method call stream, and d) the variable externalResources with the lambda parameter
resource. Semantically incompatible AST node mappings may cause great confusion to the code reviewers, and in this
particular case make it more difficult to assess whether the migration to a new language feature (i.e., Stream API) is
behavior-preserving.

private void fillCache(Set<ExternalResource> externalResources) {

for ( ExternalResource resource : externalResources) {

if (!isResourceLocationInCache(resource.location)) {

details.setProperty(resource.location, resource.contentHash);

    }

  }

}

private void fillCache(Set<ExternalResource> externalResources) {

externalResources.stream()

  .filter( resource->!isResourceLocationInCache(resource.location))

  .forEach(resource->

details.setProperty(resource.location, resource.contentHash));

}

b) Type matched with variable c) Variable matched with method call d) Variable matched with lambda parametera) Enhanced-for body matched with method body

Fig. 7. AST diff generated by GumTree 3.0 (greedy) for commit https://github.com/checkstyle/checkstyle/commit/de022d2.

private void fillCache(Set<ExternalResource> externalResources) {

for (ExternalResource resource : externalResources) {

if (!isResourceLocationInCache(resource.location)) {

details.setProperty(resource.location, resource.contentHash);

    }

  }

}

private void fillCache(Set<ExternalResource> externalResources) {

externalResources.stream()

  .filter( resource->!isResourceLocationInCache(resource.location))

  .forEach( resource->

details.setProperty(resource.location, resource.contentHash));

}
Enhanced-for formal parameter matched with lambda parameters

Fig. 8. AST diff generated by RefactoringMiner for commit https://github.com/checkstyle/checkstyle/commit/de022d2.

Figure 8 shows the AST diff generated by RefactoringMiner, which is fully semantic-aware and shows that the
enhanced-for loop formal parameter resource corresponds to the lambda parameters of the filter and forEach

method calls (i.e., multi-mapping). The resulting diff visualization shows clearly that the applied migration is behavior-
preserving and helps the code reviewers to understand (and possibly learn) the transformation mechanism.

2.5 Lack of diff support at the commit level (i.e., commit-level change ignorance)

All current state-of-the-art AST diff tools accept as input a pair of files, and thus cannot detect the move of a code
fragment to another file modified in the same commit. This limitation has a further side-effect. It is possible that a
code fragment from the left AST that has not been properly marked as moved to another file to be forcefully and
incorrectly matched with some newly added code in the right AST. Such incorrect code fragment matches may mislead
code reviewers about the actual code re-organization and design changes applied by the commit authors. A notable
exception is Staged Tree Matching [23], which is a GumTree extension. Staged Tree Matching first applies the standard
GumTree algorithm on the pairs of files modified in a project. Then, it constructs a project-level AST for each version by
connecting the AST roots corresponding to each file to a pseudo-project-root node, and runs another matching phase on
the project-level ASTs by considering only the remaining unmatched AST subtrees. However, this is an Early Research
Achievements work and the authors do not provide any experimental results regarding the accuracy and execution time
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public class NestedLoopNode extends AbstractDQLPlanNode {

public void executionNodes(Set<String> executionNodes) {

    this.executionNodes = executionNodes;

  }

@Override

public List<String> downstreamNodes() {

return downstreamNodes;

}

public void downstreamNodes(Set<String> nodes) {

downstreamNodes = ImmutableList.copyOf(nodes);

}

@Override

public int downstreamExecutionNodeId() {

return downstreamExecutionNodeId;

}

public void downstreamExecutionNodeId(int nodeId) {

    this.downstreamExecutionNodeId = nodeId;

  }

}

public class NestedLoopNode extends AbstractDQLPlanNode {

public void leftMergeNode(MergeNode leftMergeNode) {

    this.leftMergeNode = leftMergeNode;

  }

@Nullable

public MergeNode leftMergeNode() {

return leftMergeNode;

}

public void rightMergeNode(MergeNode rightMergeNode) {

this.rightMergeNode = rightMergeNode;

}

@Nullable

public MergeNode rightMergeNode() {

return rightMergeNode;

}

public void executionNodes(Set<String> executionNodes) {

    this.executionNodes = executionNodes;

  }

}Forcefully matched within the original file

Fig. 9. AST diff generated by GumTree 3.0 (greedy) for commit https://github.com/crate/crate/commit/72b5348.

public class NestedLoopNode extends AbstractDQLPlanNode {

  public void executionNodes(Set<String> executionNodes) {

      this.executionNodes = executionNodes;

  }

@Override

public List<String> downstreamNodes () {

return downstreamNodes;

}

public void downstreamNodes (Set<String> nodes) {

downstreamNodes = ImmutableList.copyOf(nodes);

}

@Override

public int downstreamExecutionNodeId() {

return downstreamExecutionNodeId;

}

public void downstreamExecutionNodeId(int nodeId) {

    this.downstreamExecutionNodeId = nodeId;

  }

}

public class NestedLoopNode extends AbstractDQLPlanNode {

public void leftMergeNode(MergeNode leftMergeNode) {

    this.leftMergeNode = leftMergeNode;

  }

@Nullable

public MergeNode leftMergeNode() {

return leftMergeNode;

}

public void rightMergeNode(MergeNode rightMergeNode) {

this.rightMergeNode = rightMergeNode;

}

@Nullable

public MergeNode rightMergeNode() {

return rightMergeNode;

}

  public void executionNodes(Set<String> executionNodes) {

    this.executionNodes = executionNodes;

  }

}Pulled up to superclass AbstractDQLPlanNode Moved from class NestedLoop

Fig. 10. AST diff generated by RefactoringMiner for commit https://github.com/crate/crate/commit/72b5348.

of the proposed approach. Figure 9 shows the AST diff generated by GumTree (greedy) for a commit in which some
methods are moved to other classes. As GumTree can perform a diff between pairs of files, it is not aware of the changes
taking place in other files modified in the same commit. As a result GumTree forcefully matches the deleted methods
downstreamNodes and downstreamExecutionNodeId (actually pulled up to superclass AbstractDQLPlanNode) to the
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added methods leftMergeNode and rightMergeNode (actually moved from class NestedLoop). The resulting diff
visualization will definitely mislead the code reviewers to think that the corresponding methods have been renamed.

On the other hand, RefactoringMiner analyzes the changes within all files modified in a commit and is capable of
detecting method moves between files. As shown in Figure 10, moved methods are specially highlighted with a purple
border, and by hovering over them a tooltip appears showing where each method is moved from/to.

3 APPROACH

In Section 3.1, we provide a quick overview of how RefactoringMiner 2.0 [63] works, as background information
needed to understand the changes we performed in version 3.0 (Section 3.2) to improve statement mapping accuracy. In
Section 3.3, we explain how we utilize the information provided by RefactoringMiner 3.0 to generate AST diff.

3.1 Background on how RefactoringMiner 2.0 works

1st Phase (top-down)
Match pairs of Type declara�ons

with iden�cal signature

Match pairs of Field declara�ons
with iden�cal signature

Match pairs of Method declara�ons
with iden�cal signature

compute statement mappings

modified
+ deleted
files in

version 1

modified
+ added
files in

version 2

2nd Phase (bo�om-up)

Unmatched
elements

from
version 1

Unmatched
elements

from
version 2

For each pair combina�on of 
unmatched Method declara�ons

compute statement mappings

Find Best
MatchMethod pairs with signature changes

Use replacements in statement 
mappings to infer method-body-
level and local Field refactorings

Field pairs 
with 

signature
changes

Unmatched type decl. 
from version 1

Unmatched type decl. 
from version 2

3rd Phase (class-level refactorings)
For each pair combina�on of 
unmatched Type declara�ons
compute the intersec�on of
Method and Field signatures

Find Best
Match Type decl. pairs with signature changes

For each pair of matched
Type declara�ons

execute 1st and 2nd Phase

Unmatched
elements

from
version 1

Unmatched
elements

from
version 2

4th Phase (moves between files)

For each pair combina�on of 
unmatched Method declara�ons

compute statement mappings

Find Best
MatchMoved Method pairs

Use field references in statement 
mappings to infer moved Fields

Moved
Field pairs 

Fig. 11. Overview of RefactoringMiner’s workflow.

Figure 11 shows the overall workflow of RefactoringMiner. Although this workflow remained unchanged, since
version 2.0 [63], we decided to include it for the sake of completeness, as it will make it easier for readers who are
not familiar with RefactoringMiner to understand better how it works. RefactoringMiner accepts as input two sets of
files from two versions. It provides APIs that can extract this input from a repository commit, from two directories
containing Java files, or even from raw file contents provided as strings. The matching process consists of four phases:

Phase 1. In the first phase, all program elements (i.e., type, method, field declarations) with identical signatures are
getting matched in a top-down fashion, starting from classes having an identical signature (i.e., package and class
name), and moving on to the fields and methods declared in them.
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Phase 2. For each pair of type declarations that were matched in Phase 1, we collect any remaining unmatched methods
and fields, and provide them as input to Phase 2, which is responsible for matching program elements with changes in
their signatures. For every pair combination of unmatched method declarations, we compute their statement mappings,
which are then passed to a sorting function that finds the best match among all pairs. This step supports the detection
of method signature changes, such as renames, addition/deletion of parameters, change of return or parameter types,
as well as the detection of merged and split methods. In the next step, the statement mappings within the matched
method declarations are utilized to infer method-body-level and local field refactorings. RefactoringMiner does not use
a similarity threshold to match a pair of non-identical statements. Instead, it applies all possible syntactically valid
AST node replacements within a pair of input statements, and matches these statements only if they become textually
identical after the application of replacements. These AST node replacements within the statement mappings could be
references to renamed/extracted/inlined fields, local variables, or method parameters. We examine the consistency of
these replacements throughout the methods of a type declaration to ensure that the detected refactorings are valid.
Phase 3. For every pair combination of type declarations that were not matched in Phase 1, we compute the intersection
of methods and fields based on their signatures. Then, a sorting function determines the best match among all pairs.
This step supports the detection of type signature changes, such as class renames, class moves to another package, as
well as the detection of merged and split classes. For each pair of matched type declarations, we execute Phase 1 and 2,
as described above, to compute statement mappings and infer method-body-level and local field refactorings.
Phase 4. In the last phase, we collect any remaining unmatched methods and fields from all type declarations, and for
every pair combination of methods, we compute their statement mappings. Again, a sorting function determines the
best match among all pairs. This step supports the detection of method moves between previously existing files (if
these files are part of the same inheritance hierarchy then the move is actually a Pull Up or Push Down Method
refactoring), as well as method moves to new files (i.e,. Extract Class or Extract Superclass refactoring). Finally,
the statement mappings within the matched moved method declarations are examined for references to unmatched
fields in order to infer moved fields along with the moved methods.

3.2 Changes in RefactoringMiner 3.0 to improve statement mapping accuracy

Figure 12 shows the core of RefactoringMiner’s statement mapping process and highlights the parts that are added
or modified to improve the overall accuracy of our AST diff. This process is executed wherever “compute statement
mappings” appears in Figure 11. In a nutshell, given two code fragments as input (e.g., method #1 and method #2), first
the leaf statements (i.e., statements without a body) are matched in three rounds. The first round is executed only if the
input code fragments have an iso-structural control flow structure. After the completion of each round, the remaining
unmatched leaves are passed to the next round. During the execution of each round, a pair of statements is matched
only if the corresponding matching criterion shown in Figure 12 is met, and if there are multiple candidate mappings
for a given statement, a sorting function is used to select the “best” one. Next, the composite statements, i.e., statements
with a body containing other nested statements (for, while, if, do, switch, synchronized, try, catch, finally), are
matched in two rounds, utilizing the previously established leaf statement mappings. At the end of this process, there
might be some inexact mappings (i.e., non-identical matched statements) and some unmatched statements. These are
then matched with statements of added/removed methods in the same class to detect instances of Extract/Inline
Method refactorings (i.e., methods extracted from method #1 or methods inlined to method #2). At the end, a statement
mapping optimization process is executed to handle statements that might be matched two or more times (e.g., once
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remaining 
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composites

remaining           unmatched leaves

remaining           unmatched leaves

Leaf statement mapping

method
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method
#2

Round 1: Iden�cal + same depth
(iso-structural control flow)

Round 2: Iden�cal + different depth

Round 3: Non-iden�cal

Candidate
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from #1 and #2
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unmatched/inexact leaves + composites from #2
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3.2.1.2

3.2.4

3.2.3

3.2.3

3.2.2

3.2.2

3.2.1.1

Fig. 12. Overview of the statement mapping process highlighting the parts that are added or modified and the corresponding sections
explaining these new features in detail. Red-color oval shapes e.g., 3.2.2 indicate a change to a previously existing component in
RefactoringMiner 2.0. Green-color oval shapes e.g., 3.2.4 indicate a new component that did not exist in RefactoringMiner 2.0.

with a statement in the original method, and once with a statement in an extracted/inlined method). This process
determines which one of the duplicate statement mappings is the “best” and discards the other ones.

3.2.1 Improved sorting of candidate mappings. Originally, RefactoringMiner had a very simplistic approach for sorting
leaf mapping candidates (feature 3.2.1.1 in Figure 12) based on 3 criteria [63]. First, based on the string edit distance
of the nodes in ascending order (i.e., more textually similar node pairs rank higher). Second, based on the absolute
difference of the nodes’ depth in ascending order (i.e., node pairs with more similar depth rank higher). Third, based on
the absolute difference of the nodes’ index in their parent’s list of children in ascending order (i.e., node pairs with
more similar position in their parent’s list of children rank higher). Composite statement mappings (feature 3.2.1.2
in Figure 12) were sorted with the same criteria plus an additional one [63], namely based on the ratio of the nodes’
matched children in descending order (i.e., node pairs with more matched children rank higher).

This simplistic ranking was sufficient for the sake of detecting method-level refactorings, because the refactoring
detection rules simply require the number of matched statements within a pair of methods to be larger than the number
of unmatched statements. As a result, even if the statement mappings are not perfectly matched, the refactoring would
be still detected. However from our early experiments, we discovered that the resulting mappings were not always
accurate, especially in some corner cases involving commonly repeated statements (e.g., break, continue, return,
throw) within the body of a method. As a matter of fact, in 752 out of 988 commits (76%) in our benchmark (Section 4.1),
there is at least one case of identical repeated statements. Therefore, we introduced more fine-grained sorting criteria to
handle properly the ties between candidate mappings. These new criteria include checking whether the statements that
precede/follow the statement mappings are identical or not, and taking into account the edit distance of the statement
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mappings’ parent nodes. The formal definitions of the sorting criteria for leaf and composite mappings are detailed in
sections 3.2.1.1 and 3.2.1.2, respectively.

Given a mapping𝑀 = (𝑚1,𝑚2) with𝑚1 being the left-side statement and𝑚2 being the right-side statement,

Definition 3.1. edit-distance(𝑀) is the Levenshtein edit distance between𝑚1 and𝑚2. It should be noted that the
bodies of composite statements are not included in the computation of their edit distance.

Definition 3.2. depth(𝑚) is the number of composite statement parents of statement𝑚, until we reach the body of the
method declaration containing statement𝑚.

Definition 3.3. parent-edit-distance(𝑀) is an array where index 𝑖 has the Levenshtein edit distance between the 𝑖th
parent of𝑚1 and the 𝑖th parent of𝑚2 and 𝑖 = 1, ..., depth(𝑀) where depth(𝑀) =𝑚𝑖𝑛(depth(𝑚1), depth(𝑚2)). At index
1, we compute the edit distance between the direct parents of𝑚1 and𝑚2, at index 2, we compute the edit distance
between the parents of the direct parents of𝑚1 and𝑚2, and so on, until 𝑖 becomes equal to depth(𝑀).

Definition 3.4. direct-parent-edit-distance(𝑀) = parent-edit-distance(𝑀) [1]

Definition 3.5. parent-edit-distance-sum(𝑀) = ∑𝑛
𝑖=1 parent-edit-distance(𝑀) [𝑖], where 𝑛 = depth(𝑀)

Definition 3.6. depth-diff(𝑀) = |depth(𝑚1) − depth(𝑚2) |

Definition 3.7. index-diff(𝑀) = |index(𝑚1) − index(𝑚2) |, where index(𝑚) is𝑚’s index in its parent’s statement list

3.2.1.1 Sorting criteria for leaf statement mappings. Given two leaf mappings (i.e., pairs of matched leaf statements)
𝑀𝑎 and𝑀𝑏 , we check the following rules in the order they are listed and𝑀𝑎 is ranked over𝑀𝑏 iff (a rule is applicable if
its condition holds for𝑀𝑎 but not for𝑀𝑏 ):

(1) 𝑀𝑎 is part of a multi-mapping (i.e., a single statement matched to multiple statements or vice versa). If both𝑀𝑎 and
𝑀𝑏 are part of a multi-mapping,𝑀𝑎 is ranked first only if it involves more statements.

(2) if edit-distance(𝑀𝑎) ≠ edit-distance(𝑀𝑏 ):
(a) 𝑀𝑎 becomes textually identical after undoing an overlapping extract/inline variable refactoring.
(b) both statement pairs located right before and right after𝑀𝑎 are textually identical.
(c) the statements in𝑀𝑎 have the same nesting depth (i.e., depth-diff(𝑀𝑎) = 0), the same index in their parent’s

statement list, and the same AST type for their first non-block parent.
(d) if depth(𝑀𝑎) > 2 and depth(𝑀𝑏 ) > 2, parent-edit-distance-sum(𝑀𝑎) < parent-edit-distance-sum(𝑀𝑏 )
(e) edit-distance(𝑀𝑎) < edit-distance(𝑀𝑏 )

(3) if edit-distance(𝑀𝑎) = edit-distance(𝑀𝑏 ):
(a) if depth(𝑀𝑎) = depth(𝑀𝑏 ), parent-edit-distance-sum(𝑀𝑎) = 0 and parent-edit-distance-sum(𝑀𝑏 ) > 0
(b) if depth(𝑀𝑎) ≠ depth(𝑀𝑏 ), parent-edit-distance-sum(𝑀𝑎) < parent-edit-distance-sum(𝑀𝑏 )
(c) depth-diff(𝑀𝑎) < depth-diff(𝑀𝑏 )
(d) index-diff(𝑀𝑎) < index-diff(𝑀𝑏 )
(e) direct-parent-edit-distance(𝑀𝑎) < direct-parent-edit-distance(𝑀𝑏 )

3.2.1.2 Sorting criteria for composite statement mappings. Given a composite statement mapping𝑀 = (𝑚1,𝑚2) with
𝑚1 being the left-side statement and𝑚2 being the right-side statement, and children(𝑚) being the set of statements
nested under𝑚,
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Definition 3.8. child-match-ratio(𝑀) is the number of matched child pairs nested under𝑚1 and𝑚2, respectively,
divided by𝑚𝑎𝑥 ( |children(𝑚1) |, |children(𝑚2) |)

Definition 3.9. identical-composite-children(𝑀) is the number of matched composite child pairs nested under𝑚1 and
𝑚2, respectively, which are identical (i.e., have an edit distance equal to zero)

Given two composite statement mappings𝑀𝑎 and𝑀𝑏 , we check the following rules in the order they are listed and
𝑀𝑎 is ranked over𝑀𝑏 iff (a rule is applicable if its condition holds for𝑀𝑎 but not for𝑀𝑏 ):

(1) child-match-ratio(𝑀𝑎) ≥ 2 ∗ child-match-ratio(𝑀𝑏 )
(2) if edit-distance(𝑀𝑎) ≠ edit-distance(𝑀𝑏 ):

(a) 𝑀𝑎 becomes textually identical after undoing an overlapping extract/inline variable refactoring.
(b) edit-distance(𝑀𝑎) < edit-distance(𝑀𝑏 )

(3) if edit-distance(𝑀𝑎) = edit-distance(𝑀𝑏 ):
(a) identical-composite-children(𝑀𝑎) > identical-composite-children(𝑀𝑏 )
(b) child-match-ratio(𝑀𝑎) > child-match-ratio(𝑀𝑏 )
(c) depth-diff(𝑀𝑎) < depth-diff(𝑀𝑏 )
(d) index-diff(𝑀𝑎) < index-diff(𝑀𝑏 )

3.2.2 Multi-mapping support for duplicated code moved out of or moved into conditionals. RefactoringMiner was already
able to infer multi-mappings for some specific scenarios based on the refactorings it detects. For example, when some
duplicated code is extracted from the same method or different methods, RefactoringMiner detects as many Extract
Method refactoring instances as the number of duplicated code fragments. Each Extract Method instance includes
its own mappings between statements on the left side (i.e., one of the duplicated code fragments) and the right side (i.e.,
the extracted code fragment). All these statement mappings refer to exactly the same statements on the right side, thus
naturally forming multi-mappings. Inline Method refactorings can also form multi-mappings, if the inlined method is
called more than once.

However, there are also scenarios in which developers eliminate (or introduce) duplicated code within the same
method. Typically, such duplicated code exists within the branches of conditional statements, such as if-else-if or
switch-case statements, where the same logic is repeated within each execution branch with some slight variations. By
applying the Consolidate Duplicate Conditional Fragments refactoring [20], it is possible to merge the duplicated
logic within each execution branch. For example, in Figure 13, we can see an if-else-if statement with identical
functionality in each branch with the only difference being a String passed as an argument when calling method
fetchSyncDLObject(), which creates the syncDLObject. On the right side, we can see that the developer moved and
merged the duplicated statements out of the if-else-if statement, and introduced a variable named type to store the
varying value passed as an argument when calling method fetchSyncDLObject(). The original if-else-if statement
still remains in the method just to assign the proper value to variable type. Moreover, we can see that some of the
duplicated statements are further extracted to method updateSyncDLObject(), which is called inside the body of
statement if(syncDLObject != null), which was also moved and merged out of the if-else-if statement, and its
condition was inverted.

To support such duplication elimination/introduction scenarios, we developed a simple algorithm (feature 3.2.2 in
Figure 12) that is activated whenever we have many-to-one (i.e., many statements on the left side are matched with a
single statement on the right side) or one-to-many (i.e., one statement on the left side is matched with many statements
on the right side) candidate statement mappings. Before passing these candidate mappings to the sorting function to
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public void onAfterUpdate(ResourcePermission resourcePermission) {

  String modelName = resourcePermission.getName();

try {

    if (modelName.equals(DLFileEntry.class.getName())) {

SyncDLObject syncDLObject =

SyncDLObjectLocalServiceUtil.fetchSyncDLObject(

SyncConstants.TYPE_FILE,

GetterUtil.getLong(resourcePermission.getPrimKey()));

if (syncDLObject == null) {

return;

      }

syncDLObject.setModifiedTime(System.currentTimeMillis());

SyncDLObjectLocalServiceUtil.updateSyncDLObject(syncDLObject);

}

    else if (modelName.equals(DLFolder.class.getName())) {

SyncDLObject syncDLObject =

SyncDLObjectLocalServiceUtil.fetchSyncDLObject(

SyncConstants.TYPE_FOLDER,

GetterUtil.getLong(resourcePermission.getPrimKey()));

if (syncDLObject == null) {

return;

      }

syncDLObject.setModifiedTime(System.currentTimeMillis());

SyncDLObjectLocalServiceUtil.updateSyncDLObject(syncDLObject);

}

  }

catch (Exception e) {

    throw new ModelListenerException(e);

  }

}

public void onAfterUpdate(ResourcePermission resourcePermission) {

  String modelName = resourcePermission.getName();

try {

String type = null;

if (modelName.equals(DLFileEntry.class.getName())) {

type = SyncConstants.TYPE_FILE;

}

    else if (modelName.equals(DLFolder.class.getName())) {

type = SyncConstants.TYPE_FOLDER;

    }

SyncDLObject syncDLObject =

SyncDLObjectLocalServiceUtil.fetchSyncDLObject(

type, GetterUtil.getLong(resourcePermission.getPrimKey()));

if (syncDLObject != null) {

updateSyncDLObject(syncDLObject);

}

  }

  catch (Exception e) {

    throw new ModelListenerException(e);

  }

}

protected void updateSyncDLObject(SyncDLObject syncDLObject)

  throws SystemException {

syncDLObject.setModifiedTime(System.currentTimeMillis());

SyncDLObjectLocalServiceUtil.updateSyncDLObject(syncDLObject);

}

}

Call to the extracted method

Moved out of if-else-if to the extracted method

Moved out of if-else-if in the same method

Fig. 13. AST diff generated by RefactoringMiner for commit https://github.com/liferay/liferay-plugins/commit/7c7ecf4.

select the “best” one, we execute our algorithm to check if we should keep all of them instead. Assuming we have
many-to-one candidate mappings, the algorithm checks if the left-side statements in the candidate mappings are nested
under the same if-else-if or switch-case statement, and if each one of them belongs to a separate execution branch.
If this is true, next we check if the right-side statement is placed in a shallower depth in the method’s nesting structure
compared to the left-side statements. Usually, the new nesting depth of the right-side statement becomes equal to the
nesting depth of the if-else-if or switch-case statement from which it was moved out, as in the example of Figure
13. If all conditions checked by our algorithm are met, then we keep all many-to-one candidate mappings and skip the
execution of the sorting function. A similar algorithm is applied for one-to-many candidate mappings.

3.2.3 Statement mapping scope based on call sites. This is a language-aware feature (feature 3.2.3 in Figure 12) that
utilizes the location of method calls in order to restrict the scope of the statement mapping process for accurately
matching the statements within extracted and inlined methods. This feature can be applied in any programming
paradigm that involves function calls (e.g., functional, procedural, object-oriented), as long as the program has a control
flow and it is possible to bind function calls to declarations. The idea comes from the observation that developers tend
to extract consecutive statements, which are located within the body of a control statement in the origin method. For
example, in Figure 2, the developer extracted duplicated code located within the body of a for and an if statement,
respectively. As we can see in the right side of Figure 2, after the refactoring, two method calls to the extracted method
getCandidateDirInTier appear in the locations of the duplicated code fragments within the body of the same for and
if statement, respectively. By utilizing the location and the number of calls to the extracted method, we can achieve
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two things. First, the number of calls to the extracted method determines how many times the statement mapping
process should be executed. Since there are two method calls to the extracted method, we should match the remaining
unmatched statements in the origin method with the statements of the extracted method two times. Second, the location
of the calls helps to narrow down the scope of the statement mapping process in each execution. In the first execution,
we include only the unmatched statements within the body of the for loop in the origin method, as the for loop
corresponds to the parent mapping of the first call to the extracted method. In the second execution, we include only
the unmatched statements within the body of the if statement in the origin method, as the if statement corresponds
to the parent mapping of the second call to the extracted method. Following this approach, we are able to obtain the
multi-mappings shown in Figure 2, without mixing the mappings corresponding to each duplicated code region.

In the alternative scenario, where the duplicated code fragments are located within the method body scope, then the
calls to the extracted method would be also located within the method body scope. In this scenario, it is not possible to
use the parent mapping to restrict the unmatched statements included in each execution of the statement mapping
process, as both duplicated code fragments would have the same parent mapping (i.e., the origin method body block).
For this alternative scenario, in each execution we form a region expanding from the first to the last identical statement
mapping between the remaining unmatched statements in the origin method and the statements of the extracted
method. In each subsequent execution of the statement mapping process, we exclude the statements that were matched
within a region in all previous executions. With this approach, it is possible to obtain accurate multi-mappings, even
when the duplicated code fragments follow each other directly, without any intermediate non-extracted code between
them. Some examples of this scenario can be found in our AST diff gallery [52, 53].

3.2.4 Statement mapping optimization. This is a completely new component added in the statement mapping process
(feature 3.2.4 in Figure 12), which is executed right after the detection of Extract Method and Inline Method
refactorings extracted from or inlined to a given pair of matched methods (e.g., method #1 and method #2 in Figure
12). This component first detects statements that participate in more than one mappings. For example, a statement in
method #1 that is matched with a statement in method #2, and is also matched with a statement in an added method
(Extract Method scenario), or a statement in method #2 that is matched with a statement in method #1, and is also
matched with a statement in a removed method (Inline Method scenario). Assuming we have a set of such mappings,
we check the following rules in the order they appear (each rule is applicable, only if there is at least one mapping in
the set not satisfying the condition of the rule):
(1) If a mapping in the set includes a call to an extracted method or an inlined method, then this mapping is discarded,

and the others are kept.
(2) If one or more mappings in the set do not have their parent statements mapped, then these mappings are discarded,

and the others are kept.
(3) If one or more mappings in the set belong to a nested extracted method (i.e., a method extracted from another

extracted method) or a nested inlined method (i.e., a method inlined to another inlined method), then these mappings
are discarded, and the others are kept.

(4) If one or more mappings are not textually identical (i.e., the statements were matched by replacing AST sub-
expressions that were different), then these mappings are discarded, and the others are kept.

(5) We compute the minimum edit distance (i.e., the levenshtein distance between the two statements of a mapping)
among the mappings in the set, and discard the mappings having an edit-distance larger than the minimum one.

The same optimization process is applied in the case of Extract and Move Method and Move and Inline Method
refactorings, where the extracted/inlined code is moved to/from another file.
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3.2.5 Semantic and refactoring-aware import declaration diff. A good quality diff of import declaration statements
should help code reviewers to quickly understand about library migrations [3] and type/API migrations [34] that took
place in the file. To this end, we introduce the first semantic and refactoring-aware import declaration AST diff in the
literature, which offers three novel features, namely matching based on package/class refactorings, matching based
on local type changes in the file, and grouping/un-grouping based on import-on-demand declarations (i.e., import
package.*).

After completing the detection of refactorings at commit-level, RefactoringMiner is aware of changes in the structure
and organization of the project, as reflected by package-level refactorings (e.g., Rename Package, Move Package) and
class-level refactorings (e.g., Rename Class,Move Class). In a post-processing step, RefactoringMiner goes through
each modified Java file in the commit, and matches pairs of previously unmatched (i.e., removed and added) import
declarations whose types correspond to the fully-qualified names of moved/renamed classes. In Figure 14, we can see
import declaration statements matched based on Rename Class and Move Class refactoring information. All five
type declarations referenced in the import statements have been moved from package spdy to framed, and additionally
classes SpdyConnection and SpdyStream have been renamed to FramedConnection and FramedStream, respectively.
RefactoringMiner is able to correctly match the updated import declarations, despite the re-ordering after applying
alphabetical sorting.

package com.squareup.okhttp.mockwebserver;

import com.squareup.okhttp.Headers;

import com.squareup.okhttp.Protocol;

import com.squareup.okhttp.Request;

import com.squareup.okhttp.Response;

import com.squareup.okhttp.internal.NamedRunnable;

import com.squareup.okhttp.internal.Platform;

import com.squareup.okhttp.internal.Util;

import com.squareup.okhttp.internal.spdy.ErrorCode;

import com.squareup.okhttp.internal.spdy.Header;

import com.squareup.okhttp.internal.spdy.IncomingStreamHandler;

import com.squareup.okhttp.internal.spdy.SpdyConnection;

import com.squareup.okhttp.internal.spdy.SpdyStream;

import com.squareup.okhttp.internal.ws.RealWebSocket;

import com.squareup.okhttp.internal.ws.WebSocketProtocol;

import com.squareup.okhttp.ws.WebSocketListener;

package com.squareup.okhttp.mockwebserver;

import com.squareup.okhttp.Headers;

import com.squareup.okhttp.Protocol;

import com.squareup.okhttp.Request;

import com.squareup.okhttp.Response;

import com.squareup.okhttp.internal.NamedRunnable;

import com.squareup.okhttp.internal.Platform;

import com.squareup.okhttp.internal.Util;

import com.squareup.okhttp.internal.framed.ErrorCode;

import com.squareup.okhttp.internal.framed.FramedConnection;

import com.squareup.okhttp.internal.framed.FramedStream;

import com.squareup.okhttp.internal.framed.Header;

import com.squareup.okhttp.internal.framed.IncomingStreamHandler;

import com.squareup.okhttp.internal.ws.RealWebSocket;

import com.squareup.okhttp.internal.ws.WebSocketProtocol;

import com.squareup.okhttp.ws.WebSocketListener;

Fig. 14. AST diff generated by RefactoringMiner for commit https://github.com/square/okhttp/commit/c753d2e.

The type changes detected by RefactoringMiner within the scope of a Java file are also used to match pairs of
previously unmatched (i.e., removed and added) import declarations whose types correspond to the changed type
references. In Figure 15, we can observe that the developer changed the type of field options from Map to Set and the
initializer of field options from HashMap to HashSet. The modified import declaration statements have been matched
accordingly to reflect the collection migration from Map to Set. It should be noted that only the consistent type changes
within the scope of a Java file are taken into account. For example, if CommandLine.java included a type change from
HashMap to TreeSet in another part of the code, then the import declaration for java.util.HashMapwould be reported
as deleted, as the matching import declaration on the right-side is ambiguous. Finally, RefactoringMiner can match a
set of single-type-import declarations that are replaced with a type-import-on-demand declaration and vice-versa by
introducing multi-mappings, as shown in Figure 16. The grouping/un-grouping of import declarations is based on their
common package prefix (e.g., java.util. in the example of Figure 16).
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package org.apache.commons.cli;

import java.util.Collection;

import java.util.HashMap;

import java.util.Iterator;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

public class CommandLine {

   /** the unrecognised options/arguments */

   private List args = new LinkedList();

   /** the processed options */

   private Map options = new HashMap();

}

package org.apache.commons.cli;

import java.util.Collection;

import java.util.Iterator;

import java.util.LinkedList;

import java.util.List;

import java.util.Set;

import java.util.HashSet;

public class CommandLine {

    /** the unrecognised options/arguments */

    private List args = new LinkedList();

    /** the processed options */

    private Set options = new HashSet();

}

Fig. 15. AST diff generated by RefactoringMiner for Cli-1.

package org.apache.dubbo.rpc.cluster.router.tag.model;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.stream.Collectors;

package org.apache.dubbo.rpc.cluster.router.tag.model;

import org.apache.dubbo.common.utils.CollectionUtils;

import java.util.*;

import java.util.stream.Collectors;

Fig. 16. AST diff generated by RefactoringMiner for commit https://github.com/apache/dubbo/commit/500434a.

3.3 AST diff generation

As shown in Figure 17, we utilize the following information provided by RefactoringMiner to generate the AST diff:

• Pairs of matched declarations (i.e., import, class/enum, method, field, enum-constant declarations, initializer blocks)
• Statement-level mappings
• Refactoring-specific mappings by utilizing the mechanics of each supported refactoring type.

RefactoringMiner 3
Statement mappings

Program declara�on mappings
Import declara�on mappings

Refactoring mappings
based on mechanics

Tree Matcher

Tree Matcher

Overwrite
conflic�ng
mappings

AST mappings

AST mappings Final AST 
mappings

Edit script

version1 version2

Fig. 17. AST diff generation process.
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Table 1 shows the kind(s) of AST node mappings that each refactoring type contributes to. More specifically, a
refactoring may contribute declaration mappings (i.e., a pair of matched declarations with changed signature), multi-
mappings (i.e., duplicated statements being merged), intra-file-move mappings (i.e., statements moved within the
same file), inter-file-move mappings (i.e., statements moved between different files), or sub-expression mappings (i.e.,
expressions matched within larger statements, refer to Section 3.3.1 for more details).

Table 1. Refactoring types and their contributions in AST node mappings

Refactoring Type Kinds of AST node mappings

Rename Class/Method/Field declaration
Move and Rename Class/Method/Field declaration, inter-file-move
Move/Pull Up/Push Down Method/Field inter-file-move
Merge/Split/Extract Class inter-file-move
Extract and Move Method,Move and Inline Method multi†, inter-file-move, sub-expression
Extract/Inline Method multi†, intra-file-move, sub-expression
Merge/Split Method, Parameterize Test multi†, intra-file-move
Move Code Between Methods intra-file-move
Merge/Split/Invert Conditional sub-expression
Merge Catch multi, sub-expression
Replace Loop with Pipeline, Replace Pipeline with Loop sub-expression
Replace Anonymous with Class inter-file-move
Replace Anonymous with Lambda intra-file-move, sub-expression
Extract/Inline Variable/Field sub-expression
† only if the refactoring involves duplicated fragments being merged, or single fragment being duplicated

3.3.1 Use of refactoring mechanics to infer sub-expression mappings. As explained before, RefactoringMiner generates
mappings at the statement level. Moreover, for some specific refactoring types listed in Table 1, it generates sub-
expression mappings collected by utilizing the refactoring mechanics [18]:

• Extract Method: This refactoring provides mappings between arguments passed to the extracted method call
sites on the right side of the diff and sub-expressions within the statements being extracted on the left side of the
diff. For example, in Figure 4 there is a mapping between the sub-expression workingDir.get() from statement
builder.put(workingDir.get(), compilationDirectory); on the left side of the diff with the argument passed
to the extracted method call site return getAllPathsWork(workingDir.get()); on the right side of the diff. This
mapping is established because the parameter workingDir is used in the place of the original sub-expression in
statement builder.put(workingDir, compilationDirectory); within the body of the extracted method, and
RefactoringMiner matched the pair of builder.put() statements by replacing workingDir.get()with workingDir.
By utilizing the ExtractMethodmechanics, we know that the argument workingDir.get() passed to the extracted
method corresponds to parameter workingDir, and thus we can infer the aforementioned sub-expression mapping.

• Inline Method: This refactoring provides mappings between arguments passed to the inlined method call sites on
the left side of the diff and sub-expressions within the statements being inlined on the right side of the diff.

• Extract Variable/Field: These refactorings provide mappings between the sub-expression(s) being extracted from
statements on the left side of the diff and the initializer of the extracted variable/field declaration on the right side of
the diff. For example, in Figure 6 there is a mapping between the sub-expression "[" + (count++) + "]" on the
left side of the diff with the initializer of the newly introduced variable itemKey on the right side of the diff. This
mapping is established because the variable itemKey is used in the place of the original sub-expression in statement
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flatten(properties, Collections.singletonMap(itemKey, item), key); on the right side of the diff, and
RefactoringMiner matched the pair of flatten() statements by replacing "[" + (count++) + "]" with itemKey.
It should be emphasized that the longer (in number of characters) the extracted expression is, the lower the textual
similarity between the statement originally containing the expression and the statement referring to the extracted
variable becomes. For this reason, we gave high priority to the rule 2(a) in Section 3.2.1.1, which checks whether a
mapping “becomes textually identical after undoing an overlapping extract/inline variable refactoring”.

• Inline Variable/Field: These refactorings provide mappings between the sub-expression(s) being inlined to state-
ments on the right side of the diff and the initializer of the inlined variable/field declaration on the left side of the
diff.

• Replace Loop with Pipeline: This refactoring appears in the second edition of Fowler’s book [20] and is essentially
a migration of traditional loops and conditionals to the Java Stream APIs [19], as shown in Figure 8. RefactoringMiner
generates mappings between the sub-expressions within the loops and conditionals on the left side of the diff and the
lambda expressions appearing within Stream API calls on the right side of the diff. For example, in Figure 8 there are
four sub-expression mappings established based on the refactoring mechanics. The collection externalResources

being iterated by the enhanced-for loop on the left side of the diff becomes the invoker of the stream() method
invocation on the right side of the diff. The condition !isResourceLocationInCache(resource.location) of the
if statement on the left side of the diff becomes the lambda expression body of the filter() method invocation on
the right side of the diff. The statement details.setProperty(resource.location, resource.contentHash);

within the body of the if statement on the left side of the diff becomes the lambda expression body of the forEach()
method invocation on the right side of the diff. Finally, the enhanced-for loop formal parameter resource on the
left side of the diff is matched twice (i.e., multi-mapping) with the lambda expression parameters of the filter()
and forEach() method invocations on the right side of the diff.

• Replace Pipeline with Loop: This is the reverse refactoring of the previously discussed one, and the sub-expression
mappings are established in the reverse way.

• Split/Merge Conditionals: These refactorings capture the cases where a conditional (typically if statement) is split
to two or more conditionals, and cases where two or more conditionals are merged into a single one, respectively.
Typically, these if statements have complex conditional expressions combined with && and || operators, which are
either split into separate conditional sub-expressions, or merged into a single conditional super-expression. Before
the merge and after the split, typically these if statements are nested within each other when the operator is &&, and
are sequentially executed when the operator is ||. Both refactorings provide mappings between the split/merged
conditional sub-expressions.

• Merge Catch: This refactoring captures the cases where multiple catch blocks handling different exception types and
having identical or similar exception handling code in their bodies, are merged into a single catch block that handles
all exception types using the Union type (i.e., catch(Exception1 | Exception2)). The refactoring provides multi-
mappings (many-to-one mappings) for the exception handling statements being merged, as well as sub-expression
mappings for the exception types being moved from each individual catch to the Union type.

3.3.2 From RefactoringMiner output to AST diff. Algorithm 1 shows the process we follow to generate AST node
mappings using as input the list of program element declaration pairs P and refactoring instances R detected by
RefactoringMiner, as explained in Sections 3.1 and 3.2. Each pair 𝑝 ∈ P of program element declarations may additionally
include a set of mappings 𝑝.𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 . In particular, if 𝑝1 and 𝑝2 are method declarations, 𝑝.𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 contains the
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pairs of statements matched within the method bodies of 𝑝1 and 𝑝2. If 𝑝1 and 𝑝2 are field or enum constant declarations
𝑝.𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 contains the pairs of statements matched within the initializers of 𝑝1 and 𝑝2. Each refactoring instance
𝑟 ∈ R includes a set of mappings 𝑟 .𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 , as explained in Table 1.

Lines 2-7 generate the initial AST node mappings in mapping setM from the list of program element declaration
pairs P. Lines 8-12 generate AST node mappings in mapping set A from the list of refactorings R. Finally, lines
13-16 examine if there exists a mapping in A that has a conflict with a mapping inM. Two mappings are considered
conflicting, if they have the same left AST subtree, but have a different right AST subtree, and vice versa. In such a
case, the conflicting mapping is removed fromM and is replaced with the mapping from A. If there is no conflict, the
mapping from A is added toM, anyways. In this way, we give priority to all mappings established from refactorings,
as their correctness is guaranteed by the refactoring mechanics. In other words, this last step makes our algorithm
refactoring-aware.

Algorithm 1: Generate AST node mappings from RefactoringMiner output
Input :List of Refactorings R, List of pairs of mapped program elements P
Output :Mapping SetM in which every item is a pair of subtrees

1 M ← {} A ← {}
2 foreach 𝑝 = (𝑝1, 𝑝2) in P do
3 M ←M ∪ {(𝑝1, 𝑝2)}
4 foreach (𝑚1,𝑚2) in 𝑝.𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 do
5 M ←M ∪𝑇𝑟𝑒𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑟 (𝑚1,𝑚2)
6 end

7 end

8 foreach r in R do
9 foreach (𝑚1,𝑚2) in 𝑟 .𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 do
10 A ← A ∪𝑇𝑟𝑒𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑟 (𝑚1,𝑚2)
11 end

12 end

13 foreach (𝑚1,𝑚2) in A do
14 M ←M \ {(𝑥,𝑦) ∈ M | 𝑥 =𝑚1 ∨ 𝑦 =𝑚2}
15 M ←M ∪ {(𝑚1,𝑚2)}
16 end

Algorithm 1 calls 𝑇𝑟𝑒𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑟 (Algorithm 2) in lines 5 and 10. Algorithm 2 takes as input a pair of statements or
sub-expressions, as provided by RefactoringMiner, and generates fine-grained AST node mappings by matching the
leaf nodes within the input statements. In line 1, we execute the GumTree 3.0 (simple) algorithm to obtain the initial
set of fine-grained mappings inM. By default, GumTree employs a threshold for the hyperparameter𝑚𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡 (i.e.,
length of the longest path from one leaf to the root of the subtree) equal to 2. This is to avoid matching remaining leaf
expressions with height 1 (e.g., SimpleName nodes), which coincidentally have the same value. However, since we are
applying the algorithm on a single pair of statements (i.e., subtrees with rather shallow depth), we configure a lower
threshold for𝑚𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡 equal to 1, and modify the top-down phase of GumTree (see Section 6 for more details) by
adding a condition to prevent the matching of SimpleName nodes with parents having different AST types (i.e., avoid
semantically incompatible mappings for SimpleName nodes).
Manuscript submitted to ACM



A Novel Refactoring and Semantic Aware Abstract Syntax Tree Differencing Tool and a Benchmark for Evaluating the
Accuracy of Diff Tools 25

Lines 2-12 optimize the mappings generated by GumTree, as the lower threshold for𝑚𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡 may result in pairs
of matched leaf nodes (i.e., SimpleName and InfixOperator) with identical labels, whose parent nodes have not been
matched accordingly. Given a pair of matched leaf nodes (𝑡𝑎, 𝑡𝑏 ), ifM does not contain a mapping (𝑝𝑎, 𝑝𝑏 ) for the actual
parents of 𝑡𝑎 and 𝑡𝑏 (line 7), then all mismatches for the parent nodes 𝑝𝑎 and 𝑝𝑏 are removed fromM (line 8), and the
pair of actual parent nodes (𝑝𝑎, 𝑝𝑏 ) is added toM (line 9). Table 2 includes some illustrative examples involving method
invocations and infix expressions, which visually demonstrate the effect of the aforementioned mapping optimization.

Algorithm 2: Tree Matcher
Input :Two subtrees 𝑠𝑡1 and 𝑠𝑡2
Output :Mapping setM

1 M ← 𝐺𝑢𝑚𝑇𝑟𝑒𝑒𝑆𝑖𝑚𝑝𝑙𝑒 (𝑠𝑡1, 𝑠𝑡2) // Running GumTree 3.0 Simple with minHeight = 1

2 foreach (𝑡𝑎, 𝑡𝑏 ) inM do
3 𝑝𝑎 ← 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑡𝑎), 𝑝𝑏 ← 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑡𝑏 )
4 𝑐1← 𝑡𝑦𝑝𝑒 (𝑡𝑎) = SimpleName∧𝑡𝑦𝑝𝑒 (𝑡𝑏 ) = SimpleName∧𝑡𝑦𝑝𝑒 (𝑝𝑎) = Invocation∧𝑡𝑦𝑝𝑒 (𝑝𝑏 ) = Invocation

5 𝑐2← 𝑡𝑦𝑝𝑒 (𝑡𝑎) = Operator ∧ 𝑡𝑦𝑝𝑒 (𝑡𝑏 ) = Operator ∧ 𝑡𝑦𝑝𝑒 (𝑝𝑎) = InfixExpr ∧ 𝑡𝑦𝑝𝑒 (𝑝𝑏 ) = InfixExpr

6 if 𝑐1 ∨ 𝑐2 then
7 if ¬∃(𝑚1,𝑚2) ∈ M | 𝑚1 = 𝑝𝑎 ∧𝑚2 = 𝑝𝑏 then
8 M ←M \ {(𝑚1,𝑚2) ∈ M | 𝑚1 = 𝑝𝑎 ∨𝑚2 = 𝑝𝑏 }
9 M ←M ∪ {(𝑝𝑎, 𝑝𝑏 )}

10 end

11 end

12 end

3.4 How our approach addresses the limitations of AST diff tools

(1) Lack of support for multi-mappings: Although Algorithm 2 does not generate multi-mappings by itself, Algo-
rithm 1 aggregates the mappings coming from different refactoring instances and program element declaration
pairs (as detected by RefactoringMiner) without discarding new mappings for already mapped subtrees.

(2) Incorrect matching of program declarations: RefactoringMiner is utilizing the program structure, the program
element declaration types, and language clues (e.g., method calls, method signatures, field references) to reason
about and guide the matching process on specific parts of the ASTs, instead of trying to randomly match code
fragments between the left and right ASTs based on their similarity.

(3) Lack of refactoring awareness: Algorithm 1 (lines 13-16) prioritizes mappings established from refactorings, as
their correctness is guaranteed by the refactoring mechanics.

(4) Matching semantically incompatible AST nodes: Algorithm 2 modifies the top-down phase of GumTree by
adding a condition to prevent the matching of SimpleName nodes with parents having different AST types. Moreover,
RefactoringMiner is guiding the matching process towards semantically compatible mappings by avoiding to match
subtrees from program element declarations of a different kind.

(5) Lack of diff support at the commit level: RefactoringMiner detects refactorings that contribute inter-file-move
mappings (Table 1).
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Table 2. Improvements in sub-expression matching.
(RM = RefactoringMiner, GTG = GumTree Greedy, GTS = GumTree Simple, GT = GumTree Simple or Greedy)
Tool Diff

Example 1: nested invocations at the argument level

RM
String moduleName = guessCJSModuleName(

normalizeSourceName(script.getSourceFileName()));

String moduleName = guessCJSModuleName(

script.getSourceFileName());

GT
String moduleName = guessCJSModuleName(

normalizeSourceName(script.getSourceFileName()));

String moduleName = guessCJSModuleName(

    script.getSourceFileName());

Example 2: nested invocations at the invoker level

RM

KubernetesListBuilder builder = 

new KubernetesListBuilder()

.withLivenessProbe(getLivenessProbe())

.endContainer()

.withVolumes(getVolumes())

.endSpec()

.endTemplate()

.endSpec()

.endReplicationControllerItem();

KubernetesListBuilder builder = 

new KubernetesListBuilder()

.withLivenessProbe(getLivenessProbe())

.withReadinessProbe(getReadinessProbe())

.endContainer()

.withVolumes(getVolumes())

.endSpec()

.endTemplate()

.endSpec()

.endReplicationControllerItem();

GTS

KubernetesListBuilder builder = 

new KubernetesListBuilder()

.withLivenessProbe(getLivenessProbe())

.endContainer()

.withVolumes(getVolumes())

.endSpec()

.endTemplate()

.endSpec()

.endReplicationControllerItem();

KubernetesListBuilder builder = 

new KubernetesListBuilder()

.withLivenessProbe(getLivenessProbe())

.withReadinessProbe(getReadinessProbe())

.endContainer()

.withVolumes(getVolumes())

.endSpec()

.endTemplate()

.endSpec()

.endReplicationControllerItem();

GTG

KubernetesListBuilder builder = 

new KubernetesListBuilder()

.withLivenessProbe(getLivenessProbe())

.endContainer()

.withVolumes(getVolumes())

.endSpec()

.endTemplate()

.endSpec()

.endReplicationControllerItem();

KubernetesListBuilder builder = 

new KubernetesListBuilder()

.withLivenessProbe(getLivenessProbe())

.withReadinessProbe( getReadinessProbe())

.endContainer()

.withVolumes(getVolumes())

.endSpec()

.endTemplate()

.endSpec()

.endReplicationControllerItem();

Example 3: nested infix expressions
RM if (option.hasArg() && (option.getArgName() != null)) if (option.hasArg() && option.hasArgName())

GT if (option.hasArg() && (option.getArgName() != null)) if (option.hasArg() && option.hasArgName())

4 BENCHMARK

In this section, we describe the process we followed to create a publicly available benchmark [2] of AST node mappings.

4.1 Datasets

We relied on two popular datasets, namely Defects4J [31], which includes 835 bug fixes from 17 open-source projects,
and Refactoring Oracle [63], which includes over 11K refactorings and code changes found in 546 commits from 187
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open-source projects. Both datasets have been extensively validated over a long period of time. Defects4J has 10 releases
between 2015-2020 and the Refactoring Oracle has been constantly updated between 2018-2023 by incorporating results
from more tools and supporting more refactoring types. Both datasets have become the de facto standard for evaluating
automated program repair and refactoring mining tools, respectively. The reason we selected these two datasets to build
our benchmark is because the characteristics of the changes they include pose different levels of challenge for AST diff
tools. Bug fixing commits are a low barrier for assessing the accuracy AST diff tools, as most changes are small (a few
lines of code), local (typically located within a single method) and rather simple and straightforward. On the other hand,
refactoring commits are more challenging for AST diff tools, as most changes are big (many lines of code), dispersed
(located within different methods and files) and rather complex (overlapping changes and refactorings). Table 3 shows
the characteristics of the two datasets. We can clearly observe that the Refactoring dataset has a higher percentage of
cases with multi-mappings, 8 times higher average churn and a higher percentage of challenging cases compared to
Defects4J (as explained in Section 4.3 challenge expresses how challenging the construction of the ground-truth diff is).

Table 3. Benchmark characteristics

Property Defects4J Refactoring Oracle

# cases 800 188
# total number of diff files 996 287
# cases with multi-mapping (%) 25 (3.1%) 52 (27.6%)
# cases with refactoring (%) 107 (13.4%) 188 (100%)
average churn 0.011 0.086
# low challenge cases (%) 732 (91.5%) 70 (37.2%)
# medium challenge cases (%) 65 (8.1%) 87 (46.2%)
# high challenge cases (%) 3 (0.4%) 31 (16.4%)

Since generating a benchmark of AST node mappings is a rather tedious and challenging task, and both datasets are
large, we included from the refactoring oracle only the commits that have 1 or 2 modified files, and from Defects4J 800
out of the 835 total bug fixes.

4.2 Tools

We did our best effort to include as many AST diff tools as possible in order to do a comprehensive analysis of their
strengths and weaknesses. The criteria we set to select an AST diff tool are the following:

• The tool should be publicly available.
• The tool should be executable and provide an API, so that it can programatically executed.
• The tool should be able to report at minimum AST mappings at statement-level.

The tools that were considered and eventually selected based on our criteria are shown in Table 4. It should be
noted that CLDiff [28] was not included in our experiments, because it uses GumTree (without any changes in its
implementation) to obtain AST mappings and edit actions, and generates concise code differences by grouping fine-
grained code differences at or above the statement level. Since we already compare with many different versions of
GumTree, adding CLDiff in the list of evaluated tools is deemed redundant. Moreover, the higher-level groups of code
differences generated by CLDiff are not compatible with the fine-grained differences generated by the other tools, and
thus a direct comparison is not feasible.
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Table 4. Considered and selected AST diff tools

Tool Availability API AST mappings

RefactoringMiner 3.0 ✓ ✓ ✓
GumTree 3.0 (greedy) [41] ✓ ✓ ✓
GumTree 3.0 (simple) [13, 41] ✓ ✓ ✓
GumTree 2.1.0 [14] ✓ ✓ ✓
IJM [22] ✓ ✓ ✓
MTDiff [8] ✓ ✓ ✓
srcDiff [7] ✗ ✗ ✓

public LegendItemCollection getLegendItems() {

 CategoryDataset dataset = this.plot.getDataset(index);

 if (dataset != null) {

   return result;

  }

}

public LegendItemCollection getLegendItems() {

 CategoryDataset dataset = this.plot.getDataset(index);

 if (dataset == null) {

    return result;

  }

}

(a) AST generator gumtree.gen.jdt-2.1.0

public LegendItemCollection getLegendItems() {

 CategoryDataset dataset = this.plot.getDataset(index);

 if (dataset != null) {

   return result;

  }

}

public LegendItemCollection getLegendItems() {

 CategoryDataset dataset = this.plot.getDataset(index);

 if (dataset == null) {

    return result;

  }

}

(b) AST generator gumtree.gen.jdt-3.0.0
Fig. 18. AST diff with two different AST generators.

The implementation of MTDiff is included in the IJM repository [21]. Moreover, the API of GumTree changed
significantly in version 3.0, and thus it is no longer compatible with the 2.1 version. To avoid problems with class
name clashes, we had to create a shaded version of IJM by moving its class files into a folder named “shaded” and
referencing the classes corresponding to IJM,MTDiff, GumTree 2.1 by adding the “shaded.” prefix in their qualified name.
RefactoringMiner is 100% compatible with GumTree 3.0, as it generates the AST diff in objects extending the GumTree
3.0 APIs. Regarding the AST structure, RefactoringMiner and GumTree 3.0 utilize the library gumtree.gen.jdt-3.0.0,
which wraps around the Eclipse JDT Generator to generate ASTs. In contrast, the other tools rely on an older version
of this tree generation library, gumtree.gen.jdt-2.1.0. Consequently, there are differences in the generated AST
structures among these tools. For instance, in version 2.1, the InfixExpression node includes the operator as a label,
while in version 3.0, there is an additional child node to store the operator. The implications of these differences are
illustrated in Figures 18a and 18b. Clearly, the tree structure in version 2.1 hinders the algorithm’s ability to generate
fine-grained edit actions. Due to these differences in the AST structure produced by the generators 2.1 and 3.0, we can
compute the precision and recall of the tools compatible with GumTree 2.1 only at statement level.

4.3 Structure and format

There are two possible ways to store the output of AST diff tools. The first is in the form of the AST node mappings
found between two ASTs, and the second is in the form of a sequence of edit actions (e.g., insert, delete, update, move)
that transforms one AST into the other. We decided to store the ground truth in the form of AST node mappings, as not
all tools support the same kinds of edit actions, and thus their edit scripts are not 100% compatible. For example, Higo
et al. [27] introduced a new kind of edit action, named copy-and-paste, which is not supported by other AST diff tools.
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Moreover, in our work we introduced new kinds of edit actions to support multi-mappings and multi-moves, which are
not supported by other AST diff tools. We believe in this way our benchmark will be more usable in the future and
facilitate future research, regardless of the new edit actions researchers might come up with.

"intraFileMappings" : {

"matchedElements" : [

{

"left" : "class : FinalLocalVariableCheck",

"right" : "class : FinalLocalVariableCheck",

"info" : "TypeDeclaration[1429-12322]:TypeDeclaration[1429-12521]"

}, {

"left" : "validateEnhancedForLoopVariable",

"right" : "validateEnhancedForLoopVariable",

"info" : "FieldDeclaration[2914-3027]:FieldDeclaration[2914-3027]"

}, {

"left" : "public setValidateEnhancedForLoopVariable(validateEnhancedForLoopVariable boolean) : void",

"right" : "public setValidateEnhancedForLoopVariable(validateEnhancedForLoopVariable boolean) : void",

"info" : "MethodDeclaration[3033-3370]:MethodDeclaration[3033-3370]"

} ],

"mappings" : [

{

"left" : "public",

"right" : "public",

"info" : "Modifier[2584-2590]:Modifier[2584-2590]"

}, {

"left" : "class",

"right" : "class",

"info" : "TYPE_DECLARATION_KIND[2591-2596]:TYPE_DECLARATION_KIND[2591-2596]"

}, {

"left" : "public",

"right" : "public",

"info" : "Modifier[3189-3195]:Modifier[3189-3195]"

}, {

"left" : "final",

"right" : "final",

"info" : "Modifier[3196-3201]:Modifier[3196-3201]"

}, {

"left" : "void",

"right" : "void",

"info" : "PrimitiveType[3202-3206]:PrimitiveType[3202-3206]"

}, {

"left" : "setValidateEnhancedForLoopVariable",

"right" : "setValidateEnhancedForLoopVariable",

"info" : "SimpleName[3207-3241]:SimpleName[3207-3241]"

}, {

"left" : "boolean validateEnhancedForLoopVariable",

"right" : "boolean validateEnhancedForLoopVariable",

"info" : "SingleVariableDeclaration[3242-3281]:SingleVariableDeclaration[3242-3281]"

}, {

"left" : "{}",

"right" : "{}",

"info" : "Block[3283-3370]:Block[3283-3370]"

}, {

"left" : "this.validateEnhancedForLoopVariable = validateEnhancedForLoopVariable;",

"right" : "this.validateEnhancedForLoopVariable = validateEnhancedForLoopVariable;",

"info" : "ExpressionStatement[3293-3364]:ExpressionStatement[3293-3364]"

} ]

}

Fig. 19. A sample of human-readable AST diff with intra-file mappings

Our benchmark is structured as follows. For each commit from the Refactoring dataset, we create a directory named
as organization/project/commitSHA-1. For each bug from the Defects4J dataset, we create a directory named as
ProjectName-BugId. Within each directory, there is a separate json file storing mappings between program elements
and AST nodes for each modified compilation unit (i.e., Java file) in the diff. Each json file has a mandatory section
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for intra-file mappings (i.e., mappings within the file) and an optional section for inter-file mappings (i.e., mappings in
different files) in case some code is moved from/to this file.

As shown in Figure 19, intra-file mappings section includes two sub-sections. In the first section, named “matchedEle-
ments”, we store pairs of matched program element declarations, such as type, method, field and enum declarations. In
the second section, named “mappings”, we store pairs of AST statements or expressions. Each entry in the json file
has three properties, namely “left”, “right” and “info”. The properties “left” and “right” include a string representation
of the matched element on the left and right side of the diff, respectively. If the element is a declaration, the string
representation is a short signature of the declaration, including its name, and parameters (only for method declara-
tions). If the element is an AST statement/expression, the string representation is the actual code corresponding to the
statement/expression in pretty-printed format. The property “info” encodes AST type and location information in the for-
mat LeftASTType[LeftStartOffset-LeftEndOffset]:RightASTType[RightStartOffset-RightEndOffset]. We
decided to use this format for two main reasons. First, it is human-readable, which makes easy to understand and
manually edit the file if needed. Second, it facilitates the evaluation framework we propose for assessing the quality of
the diff generated by each tool, which covers different quality dimensions, such as statement mapping accuracy, program
element mapping accuracy and semantically incompatible mappings. For instance, based on the “matchedElements”
section, we can compute the program element mapping accuracy by comparing the pairs of program elements listed in
this section with the pairs of program elements matched by an AST diff tool. Based on the “mappings” section, we
can compute the statement mapping accuracy by comparing the mappings listed in this section with the mappings
generated by an AST diff tool. Finally, based on the “info” property, we can compute the semantically incompatible
mappings by looking for mappings generated by an AST diff tool that match only the left or right side of a ground-truth
mapping.

The inter-file mappings section has the same format as the intra-file mappings section, with the only difference being
that the mappings are grouped based on the origin or destination file, as it is possible to have code moved from/to
multiple different files. Finally, we include the following metadata at the commit level (Refactoring dataset) and bug
level (Defects4J dataset) to provide an overview of the commit changes, and facilitate future research.

• Multi-mappings: This is a boolean variable (true/false) to inform about the presence of AST node multi-mappings
in the diff (i.e., one-to-many, many-to-one, many-to-many). This is a novel feature in AST diff supported only by
RefactoringMiner.
• Left-side churn: This is a ratio variable defined as removed lines+modified lines

total lines in the left-side files of the diff.
• Right-side churn: This is a ratio variable defined as added lines+modified lines

total lines in the right-side files of the diff.
• Challenge level: This a categorical variable that can take three possible values, namely low, medium, high to express
how challenging the construction of the ground-truth diff is, as determined by the time taken to construct it. The
construction time depends on the number and complexity of the changes to be inspected, and the number of missing
or incorrect mappings generated by the tools, which should be manually fixed in the ground-truth diff.
• Comments: This is free-form text explaining the reason the diff is challenging, along with some arguments justifying
some debatable mappings.

4.4 Construction process

The process we followed to construct our benchmark for assessing the accuracy of AST diff tools is as follows:
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Step 1 - Diff tools execution: We execute all selected tools listed in Table 4. We extended the directory diff viewer

provided by GumTree to include the diff results of all selected AST diff tools visualized with the classic and monaco file

diff viewers, as shown in Figure 20. Moreover, we designed factory APIs that can process input from local files (suitable
for the Defects4J dataset), as well as GitHub commits (suitable for the Refactoring dataset).

Fig. 20. AST diff output for all selected AST diff tools (Defects4J dataset, JacksonCore project, bugID 6).

Step 2 - Diff inspection and validation:We inspect the diff generated by each tool following the diff assessment
criteria listed in Section 4.5 to assess the correctness of the AST mappings in the diff. If there are no debatable mappings,
only the first author of the paper is involved in the inspection. If there is at least one debatable mapping that the first
author is not sure about, both paper authors are involved in the inspection and try to reach a consensus using arguments
justifying their opinions. In the vast majority of the examined cases with debatable mappings the two co-authors were
able to reach a consensus. In the rare cases that this was not possible, the co-authors asked the opinion of the current
members of the Refactoring research group at Concordia University (listed in the Acknowledgments Section), and the
debate was resolved with a majority vote. As a matter of fact, there were 24 debatable cases in the Defects4J dataset and
9 debatable cases in the Refactoring dataset, which constitute around 3% of the examined cases. Overall, the inspection
and validation process lasted 6 person-months.
Step 3 - Ground truth generation: There are three possible outcomes after the inspection and validation of a diff:

• At least one of the tools generates the optimal diff with all mappings assessed as correct and without any missing
mappings. In that case, we use one of these tools to generate the ground-truth in the human-readable diff format.
• A tool generates a part of the optimal diff, while another tool generates the remaining part of the optimal diff. In that
case, we combine the optimal diff parts from multiple tools to generate the ground-truth in the human-readable diff
format.
• There are some ASTmappings that all tools matched them incorrectly or missed them. In that case, we programatically
add the correct mappings or missing mappings to generate the ground-truth in the human-readable diff format.

4.5 Diff assessment criteria

When inspecting the AST diff generated by the tools to construct the ground-truth diff, we check the following criteria
(properties) to assess the correctness of the mappings:

(1) Statement continuity: Consecutive mapped statements should remain in the same relative execution order. In
many cases, there exist multiple identical statements (e.g., break, continue, return) within the same method. This
introduces multiple potential matching candidates for approaches that generate mappings at statement level, such
as RefactoringMiner. With the statement continuity criterion, we check whether statements with multiple matching
candidates have the same corresponding statements around them (i.e., before and after) on the left and right side of
the diff.

(2) Compliance with developer actions and intent: The diff should comply with the changes the developer (i.e.,
commit author) actually performed. The intention of the developer is often expressed in the commit message or
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pull request discussions. By reading the commit message of the example discussed in Section 2.2, it becomes clear
that the intention of the developer was not to rename method getAllPaths to getAllPathsWork, as expressed in
the diff shown in Figure 3, but rather to enhance the functionality of the already existing method getAllPaths to
“cache the values returned by getAllPaths to avoid the multiple ImmutableBiMap objects being created for the same
working directory”, as expressed in the diff shown in Figure 4 with the new functionality of getAllPaths being
highlighted in green color and the original functionality being extracted into method getAllPathsWork.

(3) Aesthetic appeal orVisual appeal has been commonly used in computer graphics research as a subjective measure
to evaluate the quality of a visualization [11, 60]. An AST diff can be considered as a visualization of the changes that
took place on the AST of a piece of source code. Thus, a good quality diff should be aesthetically appealing, intuitive,
natural, clear and easy-to-understand. Incorrect mappings introduce visual noise or clutter in the diff visualization,
and make it look unappealing, counter-intuitive, unnatural, ambiguous and confusing, as in the examples shown in
Figures 1, 7 and 9.

(4) Consistent control flow restructuring: In the case of control flow restructuring (e.g., inverted conditionals,
deleted/added conditionals, change in the nesting level or scope of conditionals, merged/split conditionals) the diff
should reflect the change as being behavior-preserving. For example, in the diff shown in Figure 21 an if statement
is deleted and replaced with a conditional expression, but at the same time the condition of the if statement “sf ==

null || sf.getParam() == null” is inverted in the conditional expression as “sf != null && sf.getParam()

!= null”. Since, the condition is inverted, we see that the execution of the statements is inverted too. Initially,
the body of the if statement included statement “return null;”, which is now moved to the “else” part of the
conditional expression “: null”. On the other hand, the last statement of the method on the left side “return
sf.getParam()[featureIndex];”, which is executed only if the condition of the if statement is evaluated as
false, is moved to the “then” part of the conditional expression “? sf.getParam()[featureIndex]”. The way
the statements and sub-expressions are mapped in the diff preserves the program behavior after the control flow
restructuring, and thus gives us the confidence to consider these mappings as correct.

(5) Consistent identifier renaming: The mappings should conform to consistent identifier renames. For example,
method call renames within statement mappings should conform with the corresponding method declaration
renames and field/variable reference renames within statement mappings should conform with the corresponding
field/variable declaration renames. As discussed in Section 2.3, the diff shown in Figure 5 does not conform to
consistent identifier renaming, as the reference to variable object is matched with itemKey, while the declaration
of variable object is renamed to item. On the other hand, the diff shown in Figure 6 conforms to the consistent
identifier renaming criterion.

(6) Consistent inline comment location: In many cases, there exist similar statements that go through similar
changes within the same method. This introduces multiple potential matching candidates for approaches that
generate mappings at statement level, such as RefactoringMiner. Moreover, the statements around them might also
change. Thus, the statement continuity criterion is not helpful in that case. However, inline comments within the
method might remain unchanged or be slightly changed. With the consistent inline comment location criterion, we
check whether statements with multiple matching candidates are surrounded by the same inline comments on
the left and right side of the diff. For example, in the diff shown in Figure 22 there are two assignment statements
for variable text, which are identical and change in exactly the same way on the right side of the diff. Moreover,
the assertion statements that follow are also very similar and change as well. Therefore, there is some ambiguity
about what is the right mapping for these statements. The way the statements are mapped in the diff makes them
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surrounded by the same unchanged inline comments, and thus gives us the confidence to consider these mappings
as correct.

public double[] getFeature(int featureIndex, char... chars) {

 SmartForest<double[][]> sf = smartForest;

sf = sf.getBranch(chars);

if (sf == null || sf.getParam() == null) {

    return null;

  }

  return sf.getParam()[featureIndex];

}

public double[] getFeature(int featureIndex, char... chars) {

final SmartForest<double[][]> sf = 

this.smartForest.getBranch(chars);

  return sf != null && sf.getParam() != null ?

sf.getParam()[featureIndex] : null;

}

Fig. 21. AST diff generated by RefactoringMiner for commit https://github.com/NLPchina/ansj_seg/commit/913704e.

public void testISODurationFormat(){

 TimeZone timeZone = TimeZone.getTimeZone("GMT-3");

 Calendar cal = Calendar.getInstance(timeZone);

 cal.set(2002, 1, 23, 9, 11, 12);

 cal.set(Calendar.MILLISECOND, 1);

 String text;

// repeat a test from testDateTimeISO to compare extended and not

  text = DateFormatUtils.ISO_DATETIME_TIME_ZONE_FORMAT.format(cal);

  assertEquals("2002-02-23T09:11:12-03:00", text);

// test fixture is the same as above, but now with extended format.

  text = DurationFormatUtils.format(

  cal.getTime().getTime(),

  DurationFormatUtils.ISO_EXTENDED_FORMAT_PATTERN, false, timeZone);

  assertEquals("P32Y1M22DT9H11M12.1S", text);

// test fixture from example in http://www.w3.org/TR/xmlschema-2/#d

  cal.set(1971, 1, 3, 10, 30, 0);

 cal.set(Calendar.MILLISECOND, 0);

 text = DurationFormatUtils.format(

  cal.getTime().getTime(),

  DurationFormatUtils.ISO_EXTENDED_FORMAT_PATTERN, false, timeZone);

  assertEquals("P1Y1M2DT10H30M0.0S", text);

  // want a way to say 'don't print the seconds in format()' or other

  //assertEquals("P1Y2M3DT10H30M", text);

}

public void testFormatPeriodISO(){

 TimeZone timeZone = TimeZone.getTimeZone("GMT-3");

Calendar base = Calendar.getInstance(timeZone);

base.set(1970, 0, 1, 0, 0, 0);

base.set(Calendar.MILLISECOND, 0);

  Calendar cal = Calendar.getInstance(timeZone);

  cal.set(2002, 1, 23, 9, 11, 12);

 cal.set(Calendar.MILLISECOND, 1);

 String text;

// repeat a test from testDateTimeISO to compare extended and not

  text = DateFormatUtils.ISO_DATETIME_TIME_ZONE_FORMAT.format(cal);

  assertEquals("2002-02-23T09:11:12-03:00", text);

// test fixture is the same as above, but now with extended format.

  text = DurationFormatUtils.formatPeriod(base.getTime().getTime(), 

   cal.getTime().getTime(),

   DurationFormatUtils.ISO_EXTENDED_FORMAT_PATTERN, false, timeZone);

  assertEquals("P32Y1M22DT9H11M12.001S", text);

 // test fixture from example in http://www.w3.org/TR/xmlschema-2/#d

  cal.set(1971, 1, 3, 10, 30, 0);

 cal.set(Calendar.MILLISECOND, 0);

 text = DurationFormatUtils.formatPeriod(base.getTime().getTime(), 

   cal.getTime().getTime(),

   DurationFormatUtils.ISO_EXTENDED_FORMAT_PATTERN, false, timeZone);

  assertEquals("P1Y1M2DT10H30M0.000S", text);

 // want a way to say 'don't print the seconds in format()' or other

  //assertEquals("P1Y2M3DT10H30M", text);

}

Fig. 22. AST diff generated by RefactoringMiner for commit https://github.com/apache/commons-lang/commit/5111ae7.

5 EVALUATION

Following the template defined by Briand et al. [4] for the Goal-Question-Metric (GQM) paradigm, we define our study
as: We analyze six AST diff tools for the purpose of evaluating their accuracy with respect to AST node mappings from
the viewpoint of code reviewers and developers that want to understand the changes in a commit or pull request in the
context of a benchmark including bug-fixing and refactoring commits from open-source projects.

More specifically, we investigate the following research questions:

RQ1. What is the accuracy of each tool in multi-mappings?
RQ2. How many semantically incompatible mappings are generated by each tool?
RQ3. What is the accuracy of each tool in matching program elements (i.e., method, field declarations)?
RQ4. How do refactorings affect the accuracy of each tool?
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RQ5. How many mappings are missed or mismatched by each tool due to the lack of commit-level change analysis?
RQ6. What is the overall accuracy of each tool?
RQ7. What is the percentage of perfect diffs generated by each tool?
RQ8. What is the execution time of each tool?
RQ9. What is the effect of the changes presented in Section 3.2 on the accuracy of RefactoringMiner 3.0 over the prior
version 2.0?

In many of the subsections that follow we provide precision, recall, and F-score, which are computed as follows:

Definition 5.1. Given the set of AST node mappings listed in the benchmark 𝑆𝐵 and the set of AST node mappings
generated by a tool 𝑆𝑇 , True Positives = 𝑆𝐵 ∩𝑆𝑇 , False Positives = 𝑆𝑇 \𝑆𝐵 and False Negatives = 𝑆𝐵 \𝑆𝑇 . Therefore, the
precision and recall of a tool 𝑆𝑇 is computed as Precision =

|𝑇𝑃 |
|𝑇𝑃 |+|𝐹𝑃 | Recall =

|𝑇𝑃 |
|𝑇𝑃 |+|𝐹𝑁 | F-score =

2×|𝑇𝑃 |
2×|𝑇𝑃 |+|𝐹𝑃 |+|𝐹𝑁 |

Since all tools are able to match identical AST sub-trees with 100% accuracy, including all AST node mappings in
a file would artificially increase the computed precision and recall. As a result, we decided to exclude all AST node
mappings nested under unchanged program elements from both 𝑆𝐵 and 𝑆𝑇 when computing precision and recall.

5.1 RQ1: Multi-mappings

5.1.1 Experimental procedure. For this research question, we focus our analysis on multi-mappings, i.e., AST nodes
that have more than one corresponding nodes on the right side of the diff (one-to-many mappings), or the left side of
the diff (many-to-one mappings). More specifically, we filter all AST node mappings marked as multi-mappings in our
benchmark 𝑆𝐵 , and compute the accuracy of the AST diff tools on this particular subset of mappings. RefactoringMiner
is the only tool that supports multi-mappings. The other AST diff tools, typically match only one instance of the
duplicated code, and the other duplication instances are either unmatched (i.e., appear as deleted/added code in the diff)
or are mismatched with irrelevant code, as happened in the case shown in Figure 1. With this research question, we
want to highlight the negative impact that the lack of support for multi-mappings has on the accuracy of the tools.

Table 5. Precision and recall for multi-mappings in both datasets

RM 3.0 GT 3.0 greedy GT 3.0 simple GT 2.1.0 IJM MTDiff
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

99.7 98.4 47.0 10.4 59.3 10.3 44.3 8.7 18.3 2.6 29.6 7.5

5.1.2 Results and discussion. As shown in Table 5, IJM is clearly the worst-performing tool on multi-mappings with the
lowest precision and recall, as in many cases it fails to match even a single instance of the duplicated code. This result
is quite surprising as IJM is essentially an improved version of GumTree 2.1.0, which has a far better multi-mapping
accuracy. Therefore, we performed an in-depth investigation to find the reason behind IJM’s poor performance. We
discovered that IJM authors modified the structure of AST by merging SimpleName leaf AST nodes with their parent
nodes. This was done to avoid the problem of semantically incompatible mappings, as explained in Section 2. However,
this change made the depth of the AST shorter. Normally, a method invocation has a minimum height of 2, as the name
of the method is a leaf SimpleName node nested under the MethodInvocation parent node. After the merging, the
height of the MethodInvocation subtree becomes 1. As a result, the first phase of IJM that executes GumTree on the
entire files to find the largest identical subtrees, fails to match statements of height equal to 1 (i.e., method invocation
statements with a merged name node), because GumTree employs a threshold for the hyperparameter𝑚𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡 (i.e.,
length of the longest path from one leaf to the root of the subtree) equal to 2. For this reason, many of the duplicated
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statements that are simple method invocations without arguments are not getting matched with their corresponding
statements in the extracted methods.

From the remaining tools, RefactoringMiner has by far the highest accuracy (99.7% precision, 98.4% recall), which is
expected as it is the only tool supporting multi-mappings. GumTree 3.0 (simple) is the second-best performing tool on
multi-mappings with a precision of 59% and a recall of 10%. GumTree 3.0 (greedy) has a similar recall to GumTree 3.0
(simple), but it has a lower precision by -12%, as due to its greedy nature, it tends to mismatch the remaining duplication
instances with irrelevant (possibly newly added) code. GumTree 2.1.0 has a very similar performance to GumTree 3.0
(greedy) with a slightly lower precision and recall (around -2%).

RQ1 findings: As expected all tools that do not support multi-mappings have a low recall within the range 2-10%.
Moreover, the tools that are more greedy in nature (GumTree 3.0 greedy) have lower precision than their non-greedy
counterparts (GumTree 3.0 simple), because they tend to force incorrect mappings for the unmatched multi-mappings.
Based on their multi-mapping accuracy, the tools are ranked as follows:

(1) RefactoringMiner 3.0 (F-score=99%)
(2) GumTree 3.0 simple (F-score=17.5%)
(3) GumTree 3.0 greedy (F-score=17%)
(4) GumTree 2.1.0 (F-score=14.5%)
(5) MTDiff (F-score=12%)
(6) IJM (F-score=4.5%)

5.2 RQ2: Semantically incompatible mappings

5.2.1 Experimental procedure. For this research question, we investigate AST node types that can play different
semantic roles in different contexts. In most cases, the different semantic roles that can be played by an AST type are
incompatible with each other. However, language-agnostic diff tools match AST nodes of the same type, regardless of
their semantic role in the program. To partially address this limitation of language-agnostic diff tools, we extended
GumTree 3.0 greedy and simple versions, so that they generate more fine-grained AST type labels for leaf AST nodes.
In particular, for all leaf AST nodes, we change their AST type label by merging their actual type label with the type
label of their parent AST node. For example, a SimpleName node with a SimpleType parent node will have a type label
SimpleType-SimpleName, while a SimpleName node with a MethodInvocation parent node will have a type label
MethodInvocation-SimpleName. In this way, we can avoid matching leaf AST nodes of the same AST type, which
have parent nodes of different AST types. We name these variants of GumTree 3.0 as Fine-Grained (FG).

Since all tools use the Eclipse JDT parser for generating ASTs, we analyzed the Eclipse JDT documentation to find
AST types used in multiple contexts. Below we list the AST types that are involved in multiple contexts and play a
semantically incompatible role in each context:

• Block: This AST type is used in 7 different contexts, namely as (1) the body of a method declaration, (2) the body of an
initializer declaration, (3) the body of a catch clause, (4) the body of a try statement, (5) the body of a synchronized
statement, (6) the body of a finally block, and (7) the body of control statements (while, for, if).

• SingleVariableDeclaration: This AST type is used in 5 different contexts, namely as (1) catch clause exception, (2)
enhanced-for formal parameter, (3) method declaration parameter, (4) lambda expression parameter, and (5) pattern
variable in instanceof expression (Java 17 feature).
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• MethodDeclaration: This AST type is used to represent both method and constructor declarations. A constructor
serves the semantic role of creating instances of a class and initializing its attributes, while a method serves the
semantic role of providing the behavior for an instance of a class based on its current state. Thus, it makes no semantic
sense to match a constructor with a method.

• Modifier: This AST type is used to represent access modifiers (public, private, protected), static, abstract,
final, native, synchronized, transient, volatile, strictfp, default, sealed, and non-sealed modifiers.
Among these modifiers, only the access modifiers are semantically compatible with each other, and the final,
sealed, non-sealed modifiers (Java 17 feature) are semantically compatible with each other. All other modifiers
have a unique semantic role in the program, and thus are not replaceable by another modifier (i.e., should not be
matched with another modifier).

• Type: This AST type is used in 22 different contexts, namely (1) method declaration return type, (2) receiver type
and (3) list of thrown exception types, (4) record pattern type (Java 19 feature), (5) instanceof expression right
operand, (6) type declaration super class type and (7) list of implemented interface types, (8) list of permitted types
(Java 17 feature) (9) cast expression type, (10) class instance creation type, (11) creation reference type, (12) field
declaration type, (13) variable declaration type, (14) method reference parameter type (in Javadoc), (15) type literal
type, (16) type method reference type, (17) annotation type member declaration type, (18) wildcard-type bound, (19)
array-type component and (20) element type, (21) qualified-type qualifier, and (22) parameterized-type type.

• SimpleName: This AST type is used in 25 different contexts, namely (1) method declaration name and (2) receiver
qualifier, (3) record pattern name (Java 19 feature), (4) variable declaration name, (5) type parameter name, (6-8)
type/super/expression method reference name, (9) field access name, (10) super field access name, (11) method
invocation name, (12) super method invocation name, (13) method reference parameter name (in Javadoc), (14)
method reference name (in Javadoc), (15) member reference name (in Javadoc), (16) enum constant declaration name,
(17) annotation type member declaration name, (18) type declaration name, (19) labeled statement label, (20) continue
statement label, (21) break statement label, (22) member value pair name (in annotations), (23) qualified-type name,
(24) qualified-name name, and (25) name-qualified type name.

Definition 5.2. A mapping𝑀 = (𝑚1,𝑚2) ∈ 𝑆𝑇 (i.e., the mappings generated by tool 𝑇 ) is considered as semantically

incompatible if𝑚1 and𝑚2 have the same AST node type, the parents of𝑚1 and𝑚2 have a different AST node type (i.e.,
different context), and𝑀 ∉ 𝑆𝐵 , where 𝑆𝐵 is our benchmark of mappings.

Based on this definition and the mappings generated by a tool 𝑆𝑇 , we can compute the number of semantically

incompatible mappings for tool𝑇 . Especially for modifiers, our definition is slightly modified as semantically incompatible
modifiers can have parents of the same AST type.

Definition 5.3. A modifier mapping 𝑀 = (𝑚1,𝑚2) ∈ 𝑆𝑇 is considered as semantically incompatible if 𝑚1 and 𝑚2

have the Modifier AST type, but belong to a different semantic group (i.e., access modifiers, seal modifiers, and each
remaining modifier in its own group).

5.2.2 Results and discussion. As we can observe from Table 6, RefactoringMiner is the only tool that does not generate
semantically incompatible mappings for the six investigated AST node types. This can be attributed to its semantic-
aware algorithm design that uses language clues and refactoring information to guide the matching process, instead of
randomly matching AST subtrees based on their similarity, regardless of their semantic context and relevance. On the
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Table 6. Number of semantically incompatible mappings in both datasets

AST node Type RM
3.0

GT 3.0
greedy

GT 3.0
simple

GT
2.1.0 IJM MTDiff GT 3.0

greedy (FG)
GT 3.0

simple (FG)

Block 0 83 116 79 61 77 71 98
SingleVariableDeclaration 0 4 3 1 0 5 3 3
MethodDeclaration 0 0 0 1 0 6 0 0
Modifier 0 6 1 7 6 9 5 1
Type 0 118 94 60 0 398 111 95
SimpleName 0 418 0 356 18 793 0 0
Total 0 629 214 504 85 1288 190 197

other hand, all other examined tools exhibit semantic violations to a greater or lesser extent. Below we list the most
common semantic violations for each AST node type, and discuss the individual behavior of each tool.

• Block violations: The most common semantic violation for blocks is matching the body of a method declaration
with the body of and if, for, or try statements. All tools are affected by this problem with GumTree 3.0 simple
having the largest number of instances (116) and IJM having the smallest number of instances (61). This usually
happens when the body of the control statement contains a large portion of the code inside the method body, and
there is some control re-structuring (e.g., surrounding the body of a method within a newly added try block).

• SingleVariableDeclaration violations: The most common semantic violation for single-variable-declarations
is matching the formal parameter of an enhanced-for with a method parameter. All tools except for IJM and
RefactoringMiner exhibit this behavior. MTDiff is the only tool matching a catch clause exception declaration with a
method parameter or an enhanced-for formal parameter.

• MethodDeclaration violations: GumTree 2.1.0 and MTDiff are the only tools matching a constructor with a method.
MTDiff has the largest number of instances (6), while GumTree 2.1 has only one instance of this violation.

• Modifier violations: The most common semantic violation for modifiers is matching access modifiers (public,
private, protected) with the static modifier. All tools except for RefactoringMiner exhibit this behavior with
MTDiff having the largest number of instances (9) and GumTree 3.0 simple having only one instance.

• Type violations: The most common semantic violation for types is matching the type of a field declaration with
the return type of a method or the type of a local variable declaration. Moreover, matching the type of a method
parameter with the type of a local variable declaration is another common semantic violation. MTDiff, which has the
largest number of instances for this violation tends to match the type within type-literals (i.e., Type.class) with
regular type references as the aforementioned ones.

• SimpleName violations: The most common semantic violation for simple names (i.e., identifiers) is not matching
the three components of a method invocation (i.e., receiver, name, arguments) accordingly, and also mismatching
these three components with semantically irrelevant simple names, which are not even within method invocations.
As already discussed in Section 5.1, IJM modified the structure of AST by merging SimpleName leaf AST nodes
with their parent nodes to avoid this semantic violation, which explains the reason it has only 18 instances of this
violation. IJM violations mainly correspond to method invocation arguments being matched with a method invocation
receiver, as the method names are merged with their parent method invocations, and thus they cannot be semantically
mismatched.
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A notable finding is that GumTree 3.0 simple has zero semantic violations for simple names (i.e., identifiers), while
it has 94 for type references, in contrast to its greedy counterpart, which has semantic violations for both of these
AST types. Both versions of GumTree follow the same top-down phase to find the largest identical sub-trees with the
minHeight hyperparameter threshold configured equal to 2. As a result, while SimpleName nodes with identical values
cannot be matched in this phase, as their height is equal to 1, Type nodes with identical values can be matched, as their
height is at minimum equal to 2 (e.g., a SimpleType has a SimpleName node as leaf with the actual name of the type). In
the bottom-up phase that follows, the greedy version applies a non-conservative approach that matches AST subtrees
of height equal to 1 (i.e., leaf AST nodes), while the simple version is more conservative and avoids this approach. This
difference in the bottom-up phase of the GumTree simple version is responsible for having zero semantic violations
for SimpleName nodes. Another notable but expected finding is that the tools which are more greedy in nature (i.e.,
GumTree greedy and MTDiff) have the largest number of semantically incompatible mappings.

With respect to the GumTree variants using fine-grained AST type labels for leaf AST nodes (last two columns in
Table 6), we can observe that this technique greatly benefits the GumTree greedy version by eliminating completely
semantically incompatible mappings for SimpleName nodes, and also slightly reducing the number of semantically
incompatible mappings for the other AST node types. On the other hand, the effect of this technique on the GumTree
simple version is very small, as it only slightly reduces the the number of semantically incompatible mappings for
Block nodes. Despite the improvements, still none of the two GumTree variants can achieve having zero semantic
violations. This finding shows that the language-aware features embodied in RefactoringMiner (i.e., the program element
matching algorithm shown in Figure 11) and IJM (i.e., the partial matching technique) are more effective in eliminating
semantically incompatible mappings.

RQ2 findings: RefactoringMiner is the only tool with zero semantic violations for the six investigated AST node
types. The tools that are more greedy in nature (i.e., GumTree greedy and MTDiff) tend to generate a larger
number of mappings with semantic violations. On the contrary, the tools that utilize language-aware features (i.e.,
RefactoringMiner and IJM) tend to generate a smaller number of mappings with semantic violations. Based on their
number of semantically incompatible mappings, the tools are ranked as follows:

(1) RefactoringMiner 3.0 (0 semantic violations)
(2) IJM (85 semantic violations)
(3) GumTree 3.0 greedy with fine-grained AST type labels (190 semantic violations)
(4) GumTree 3.0 simple with fine-grained AST type labels (197 semantic violations)
(5) GumTree 3.0 simple (214 semantic violations)
(6) GumTree 2.1.0 (504 semantic violations)
(7) GumTree 3.0 greedy (629 semantic violations)
(8) MTDiff (1288 semantic violations)

5.3 RQ3: Program element mappings

5.3.1 Experimental procedure. For this research question, we investigate the ability of the tools to match correctly
program elements (i.e., type, method, field declarations). More specifically, we filter all AST nodemappings corresponding
to type, method, and field declarations in our benchmark 𝑆𝐵 , and compute the accuracy of the AST diff tools on this
particular subset of mappings. As most AST diff tools are language-agnostic, they do not utilize any language clues in
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order to guide the matching process. Instead, they try to “blindly” find the largest identical (or similar) AST sub-trees in
a pair of files, and then match the corresponding method/field declarations containing these AST sub-trees.

However, this approach has some undesired implications. When a relatively large part of a method is extracted into
a new method, the original method declaration on the left side is matched with the extracted method declaration on the
right side, and thus the remaining method declaration (calling the extracted method) appears as newly added on the
right side of the diff. This gives the code reviewers the wrong impression that the original method is “renamed” to the
extracted method, which makes it more difficult to understand the actual change intended by the commit authors (i.e.,
Extract Method refactoring). As we will see in the next subsection regarding RQ4, Extract Method is the most
common refactoring in our dataset. Moreover, there is empirical evidence showing that Extract Method is the most
popular method-related refactoring applied by developers [46]. Silva et al. monitored 285 GitHub projects for a period
of two months and found that Extract Method refactoring had the largest number of instances [58]. Therefore, the
implications of not handling properly Extract Method refactorings when generating AST diff are rather significant.

Regarding field declarations, RefactoringMiner is the only tool among the compared ones that uses field references
to match renamed fields. More specifically, in Phase 2 (Figure 11) it first establishes the corresponding method pairs
within a class (including methods with changes in their signature), and then utilizes the statement mappings within the
matched method pairs to find name-identifier replacements referring to a pair of field declarations. If these replacements
are consistent across all method pairs, then we have high confidence that the referenced pair of fields should be matched
as renamed. On the other hand, traditional AST diff tools rely only on the similarity of the field declaration AST sub-trees
to match fields. However, field declarations are in general small sub-trees as they consist only of a type, a name, a list of
modifiers, and an optional initializer expression, and thus the pairs of matching field declarations are rather ambiguous
when multiple fields have been renamed in a class. In a previous work [63], we showed that GumTree 2.1.2 had 78%
precision and 70% recall in the detection of renamed fields, and 75% precision and 62% recall in the detection of field
type changes. Negara et al. [46] found that Rename Field is the second most popular refactoring manually applied by
developers after Rename Local Variable. Moreover, Ketkar et al. [34] 416K commits from 129 open-source projects
and found that field type changes are more commonly and frequently applied by developers than field renames. They
also found that developers who changed the type of a variable or attribute, they also renamed it in 55% of the examined
instances. Therefore, field type changes and renames tend to co-occur, thus making the matching of field declarations
even more ambiguous for traditional AST diff tools.

Table 7. Precision and recall for program element mappings in both datasets

Prog RM 3.0 GT 3.0 greedy GT 3.0 simple GT 2.1.0 IJM MTDiff
Elem # Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Type 1432 100 100 99.9 98.7 99.9 98.7 99.9 98.9 99.9 98.7 99.2 98.3
Enum 17 100 100 100 100 100 100 100 100 100 100 100 100
Method 2289 100 100 93.5 75.1 92.3 77.4 93.9 75.9 99.4 82.7 88.4 75.4
Field 245 100 98.8 98.5 52.2 97.7 52.7 97.3 59.2 98.2 44.5 97.2 57.6

Overall 3983 100 99.9 96.4 82.3 95.7 83.7 96.6 83.3 99.6 86.2 93.2 82.6

5.3.2 Results and discussion. Table 7 shows the mapping accuracy of the tools per program element type. The second
column in Table 7 shows the number of instances for each program element type that were considered in the computation
of precision and recall, which corresponds to the number of program elements with changed AST trees. We would like
to emphasize that we excluded the program elements that have identical AST trees, since all tools can match them with
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100% accuracy, and thus their inclusion would artificially increase the computed precision and recall. For the sake of
providing complete information, the total number of type, enum, method, and field declarations in our benchmark is
2745, 139, 47795, and 16438, respectively. From the aforementioned numbers, we can infer that only a small portion of
program elements changed in the benchmark commits (i.e., 52% of the type declarations, 12% of the enum declarations,
4.8% of the method declarations, and 1.5% of the field declarations).

Based on the results shown in Table 7 all tools can match type and enum declarations with a high precision and
recall. This is an expected outcome, as type declarations are typically large AST subtrees (i.e., they include methods and
fields), and thus it is very uncommon to have different type declarations with highly similar AST trees (i.e., there is less
ambiguity). Moreover, we can observe that all GumTree-based tools have a very similar precision (between 99.2-99.9%)
and recall (between 98.3-98.9%) in matching type/enum declarations. However, RefactoringMiner is the only tool that
achieves 100% accuracy, as it relies on method and field signatures to match renamed/moved classes (Figure 11, Phase
3), and thus can match classes even if their method bodies have been extensively modified.

Regarding method declarations, RefactoringMiner has an almost perfect precision and recall with only one false
positive and one false negative. The second-best performing tool is IJM, which has 99.4% precision and 82.7% recall. This
good performance can be attributed to partial matching, which restricts the scope of matching to method declarations
with the same signature (i.e., first, IJM attempts to match methods only by their signature, and then it attempts to
match the remaining methods by their signature and by their method body). The reason RefactoringMiner has a better
performance than IJM is because the process followed in Figures 11 and 12 can additionally match methods with
changes in their signatures, methods from/to which other methods have been extracted/inlined, and also methods that
have been merged to a single method or split to multiple methods. All other tools have a quite close performance with
a precision ranging between 88-94% and a recall ranging between 75-77%.

Regarding field declarations, RefactoringMiner has a perfect precision with zero false positives and a recall of 98.8%
with three false negatives. There is no clear second-best performing tool, as GumTree 3.0 greedy has the second highest
precision with 98.5% and GumTree 2.1.0 has the second highest recall with 59.2%. Notably, IJM does not perform as
good as it does for method declarations, since it has the lowest recall among all tools (44.5%), but it has the third-best
precision (98.2%). IJM also applies partial matching for field declarations, but it processes all field declaration subtrees
together in a single iteration, without processing separately those that have identical signatures (i.e., same type and
name). After some investigation, we found that IJM’s lower recall is due to some non-identical field declarations being
moved to newly introduced inner classes within the same file. The first phase of IJM that executes GumTree on the
entire files to find the largest identical subtrees, fails to match the moved field declarations, since they are non-identical
(e.g., they have differences in modifiers). In the phase where IJM performs partial matching for field declarations, it
includes only the fields declared within the same class, and thus it is unable to match attributes moved to other classes,
even if these classes are within the same file (i.e., inner classes). The other GumTree-based tools search for similar
sub-trees in the entire file, and thus are able to match these moved field declarations regardless of their class container.
Although, RefactoringMiner follows a similar approach to IJM by first matching field declarations within the same
classes (Figure 11, Phase 2), it has an additional phase at the end (Figure 11, Phase 4) that detects moved field declarations
between different classes. Moreover, by utilizing field references, RefactoringMiner can match fields with co-occurring
changes in their name, type, modifiers and initializer (i.e., when most or every part of the field declaration subtree has
changed), while the other tools fail as the subtree similarity of such field declarations is very small, which explains their
lower recall values.
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RQ3 findings: Our analysis shows that all tools have a relatively high accuracy in matching type/enum declarations,
but RefactoringMiner is the only tool with 100% precision and recall. However, when it comes to matching method
and field declarations RefactoringMiner still has an almost perfect accuracy, while the recall of the other tools drops
significantly. In particular, all AST diff tools, except for RefactoringMiner, have considerably low recall in matching
field declarations (44-59%). Therefore, we can conclude that utilizing programming language clues, such as the
signatures and references of program elements, can improve significantly the mapping accuracy for method and field
declarations. Based on their overall program element mapping accuracy, the tools are ranked as follows:

(1) RefactoringMiner 3.0 (F-score=99.9%)
(2) IJM (F-score=92.4%)
(3) GumTree 2.1.0 (F-score=89.4%)
(4) GumTree 3.0 simple (F-score=89.3%)
(5) GumTree 3.0 greedy (F-score=88.8%)
(6) MTDiff (F-score=87.6%)

5.4 RQ4: Refactoring-related mappings

5.4.1 Experimental procedure. For this research question, we investigate how different refactoring types affect the
mapping accuracy of AST diff tools. To isolate the refactoring effect, we carefully select the AST sub-trees that could be
potentially affected by each particular refactoring transformation, and compute the accuracy of the AST diff tools on
the subset of mappings included within the selected AST sub-trees. The AST sub-trees considered for each refactoring
type are listed below:

• Extract Method: The source method declaration from which the method is extracted on the left and right side of the
diff, and the extracted method itself on the right side of the diff.
• Inline Method: The target method declaration to which the method is inlined on the left and right side of the diff,
and the inlined method itself on the left side of the diff.
• Extract Variable: The pairs of statements that reference the extracted variable, and the extracted variable declaration
itself on the right side of the diff.
• Inline Variable: The pairs of statements that reference the inlined variable, and the inlined variable declaration
itself on the left side of the diff.
• Rename Variable/Parameter + Change Variable/Parameter Type + Parameterize Variable: The pairs of
statements that reference the variable/parameter, and the variable/parameter declaration itself on the left and right
side of the diff. Parameterize Variable is a refactoring that commonly occurs along with Extract Method and
captures local variables that become parameters in the extracted method. In many cases, the name of the parameterized
variable changes in the extracted method. There are also a few cases where Parameterize Variable occurs within
the same method by eliminating a local variable and introducing a parameter in its place.
• Replace Variable with Field: The pairs of statements that reference the variable/field, the variable declaration itself
on the left side of the diff, and the field declaration on the right side of the diff.
• Add Parameter: The method declaration to which the parameter is added on the left and right side of the diff, and
the parameter declaration itself on the right side of the diff. The reason we include the complete method declaration
is because the addition of a parameter is usually accompanied with newly added functionality affecting existing
statements or adding new statements, which should be properly matched by the diff tool.
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• Rename Method: The renamed method declaration on the left and right side of the diff. The reason we include
the complete method declaration is because renaming might involve some functionality change affecting existing
statements or adding/deleting statements, which should be properly matched by the diff tool.

We included in our analysis only the refactoring types with ten or more instances, as having a small number of
instances poses a threat to the generalizability of our findings. Moreover, we excluded all refactoring types that move
code between different files, such asMove Method, Pull Up Method,Move Field, because we investigate the accuracy
of the tools on inter-file mappings separately in the next Section 5.5. Therefore, all examined refactoring types have a
local effect within the same file. Finally, in cases where different refactoring instances of the same type affect exactly the
same AST subtrees, we keep only one instance in our results to avoid recounting the same effect. For example, when
duplicated code is extracted from the same method, all Extract Method instances affect the same source method and
the same extracted method, and thus we keep only one instance in our results.

Table 8. Precision and recall for refactoring-related mappings in both datasets considering only statement mappings

Refactoring RM 3.0 GT 3.0 greedy GT 3.0 simple GT 2.1.0 IJM MTDiff
Type # Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Extract Method 178 99.6 99.6 89.9 73.7 90.7 73.5 89.2 71.8 92.6 67.3 87.2 70.4
Rename Variable 77 100 98.6 53.8 41.5 53.1 40.7 51.1 40.4 59.5 31.1 51.1 41.0
Extract Variable 75 98.5 98.5 79.7 68.6 81.7 71.5 79.7 68.6 75.2 62.0 80.8 76.6
Change Var Type 47 100 97.4 95.7 85.9 95.7 84.6 91.4 82.1 85.7 46.2 82.7 79.5
Add Parameter 45 99.9 99.5 68.9 73.4 69.0 71.3 54.6 57.0 73.6 73.4 94.2 94.6
Param Variable 30 100 100 84.4 81.7 87.9 86.0 84.8 72.0 66.7 21.5 70.7 62.4
Inline Method 28 99.0 98.8 90.1 89.8 92.6 90.8 85.9 84.5 92.9 86.5 90.6 87.3
Inline Variable 22 100 100 50.0 29.4 66.7 47.1 54.5 35.3 53.8 41.2 61.5 47.1
Rename Parameter 19 100 100 87.5 87.5 89.1 85.4 87.0 83.3 86.0 77.1 89.4 87.5
Change Param Type 18 100 100 89.1 82.6 89.6 87.0 87.1 78.3 93.5 84.1 95.4 89.9
Rename Method 15 100 99.1 100 95.5 98.2 97.3 100 98.2 100 95.5 94.6 95.5
Replace Var w Field 10 100 100 89.5 85.0 100 75.0 81.0 85.0 100 70.0 82.4 70.0

Overall 564 99.6 99.4 84.4 73.7 85.2 73.4 80.7 69.3 87.4 67.7 87.2 74.7

5.4.2 Results and discussion. Based on the results shown in Table 8, RefactoringMiner has consistently the highest
precision and recall for all examined refactoring types. The second-best performing tool differs for different sets
of refactoring types. For instance, MTDiff has the second-best accuracy (based on F-score) for parameter-related
refactorings (Add Parameter, Rename Parameter, Change Parameter Type), as well as Extract Variable. GumTree
3.0 simple has the second-best accuracy for Extract Method, Inline Method, Parameterize Variable, and Inline
Variable. GumTree 3.0 greedy has the second-best accuracy for variable-related refactorings (Rename Variable,
Change Variable Type, Replace Variable with Field), but it is only slightly better than the third-best accuracy
by GumTree 3.0 simple. Notably, there is no refactoring type for which IJM has the second-best accuracy, and for
the reasons explained in Sections 5.1 and 5.3 it has the lowest recall value for Extract Method, Extract Variable,
Rename Variable, Change Variable Type, Parameterize Variable, and Rename Parameter refactorings. GumTree
2.1.0 has the second-best accuracy for only one refactoring type, namely Rename Method, but all tools have a quite
similar performance on this refactoring type, and thus there is no clear advantage for GumTree 2.1.0.

Since some of the refactoring types listed in Table 8 involve sub-expression mappings (see Section 3.3.1), we decided
to further investigate the performance of the tools at sub-expression level. However, due to the compatibility issues
among the tools discussed in Section 4.2, the tools that can provide comparable sub-expression mappings are those using
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the AST generator gumtree.gen.jdt-3.0.0, namely RefactoringMiner and the greedy/simple versions of GumTree
3.0. Table 9 shows the precision and recall of the three tools at a more fine-grained level that additionally includes
sub-expression mappings.

Table 9. Precision and recall for refactoring-related mappings in both datasets considering statement and sub-expression mappings

Refactoring RM 3.0 GT 3.0 greedy GT 3.0 simple
Type # Precision Recall Precision Recall Precision Recall

Extract Method 178 99.3 99.3 74.9 63.8 79.2 63.4
Rename Variable 77 99.1 98.3 38.9 21.4 49.5 20.7
Extract Variable 75 96.8 97.5 43.9 51.9 55.2 50.5
Change Variable Type 47 98.4 96.9 55.7 50.0 78.9 46.4
Parameterize Variable 30 100 99.5 58.5 56.7 74.2 60.8
Inline Method 28 99.1 98.8 72.7 82.5 82.4 83.8
Inline Variable 22 98.0 98.0 37.0 40.0 53.8 42.0

By comparing Tables 9 and 8, we can observe that RefactoringMiner maintains high accuracy levels with some
small decrease in its precision and recall. However, GumTree 3.0 greedy has a considerable drop in its precision, and
has consistently a larger drop in precision than GumTree 3.0 simple. This result shows that the greedy version of
GumTree 3.0 often forces incorrect mappings at the sub-expression level that harm considerably its precision. On
the other hand, the same greedy nature helps to slightly increase the recall over its non-greedy counterpart for some
refactoring types, but this small improvement in recall comes with a much larger cost in its precision. Overall, we can
conclude that GumTree simple has a clearly better performance than GumTree greedy when we take into consideration
sub-expression mappings.

RQ4 findings: RefactoringMiner has consistently the highest precision and recall for all examined refactoring types.
Regarding the second-best performance, each tool has an advantage over a different set of refactoring types. MTDiff
has an advantage in parameter-related refactorings and extract variable. GumTree 3.0 simple has an advantage in
extract/inline method. GumTree 3.0 greedy has an advantage in local-variable-related refactorings. Based on their
overall refactoring mapping accuracy, the tools are ranked as follows:

(1) RefactoringMiner 3.0 (F-score=99.5%)
(2) MTDiff (F-score=80.5%)
(3) GumTree 3.0 simple (F-score=78.9%)
(4) GumTree 3.0 greedy (F-score=78.7%)
(5) IJM (F-score=76.3%)
(6) GumTree 2.1.0 (F-score=74.6%)

5.5 RQ5: Inter-file mappings

5.5.1 Experimental procedure. For this research question, we focus our analysis on inter-file mappings, i.e., AST nodes
that have a corresponding node in a file other than the one they are located in. More specifically, we filter all AST node
mappings marked as inter-file mappings in our benchmark 𝑆𝐵 , and compute the accuracy of the AST diff tools on this
particular subset of mappings. Typically, inter-file mappings are caused by refactorings moving methods and fields
between existing files (i.e.,Move Method,Move Field), or to new files (i.e., Extract Class, Extract Superclass).
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As none of the compared tools is designed to support inter-file mappings, we implemented the Staged Tree Matching
(STM) algorithm proposed by Fujimoto et al. [23] for the GumTree 3.0 greedy and simple versions. Staged Tree Matching
first applies the standard GumTree algorithm on the pairs of files modified in a commit. Then, it constructs a project-level
AST for each version by connecting the AST roots corresponding to each file to a pseudo-project-root node, and runs
another matching phase on the project-level ASTs by considering only the remaining unmatched AST subtrees.

Table 10. Precision and recall for inter-file mappings in both datasets considering statement and sub-expression mappings

RM 3.0 GT 3.0 greedy (STM) GT 3.0 simple (STM)
Precision Recall Precision Recall Precision Recall

100 99.6 90.9 96.8 90.3 97.3

5.5.2 Results and discussion. As shown in Table 10, RefactoringMiner has a perfect precision, as all moves it detected
were correct, but it missed one method move, thus leading to 6 false negative statement mappings and a recall of 99.6%.
With respect to the Staged Tree Matching algorithm, we can observe that GumTree simple has a higher recall, while
GumTree greedy has a higher precision. The explanation for this finding is that GumTree greedy tends to forcefully
match some moved statements with newly added statements within the same file, as shown in the example of Figure 9,
and thus these statements are not considered in the second matching phase of the algorithm, which eventually results
in a lower recall. For the same reason, GumTree greedy generally has less statements considered in the second phase
compared to GumTree simple, and thus the chances of generating false mappings are less, which eventually results
in a higher precision. This trade-off in precision and recall between the two GumTree versions actually shows that
the language-aware approach followed by RefactoringMiner to find moved code by analyzing how method calls and
field accesses are updated within matched statements and binding those references to the corresponding method/field
declarations is more effective in terms of accuracy, as it allows to reason about the code that remained in the same file
and the code that has been moved to a different file.

RQ5 findings: RefactoringMiner has a perfect precision in inter-file mappings, which is higher by 9-10% than the
precision achieved by the Staged Tree Matching algorithm implemented for the two GumTree 3.0 versions. Moreover,
RefactoringMiner has a higher recall by 2-3% compared to the two GumTree 3.0 versions. Based on their inter-file
mapping accuracy, the tools are ranked as follows:

(1) RefactoringMiner 3.0 (F-score=99.8%)
(2) GumTree 3.0 greedy (F-score=93.74%)
(3) GumTree 3.0 simple (F-score=93.68%)

5.6 RQ6: Overall accuracy

5.6.1 Experimental procedure. For this research question, we compute the overall accuracy of the tools by including
all AST node mappings in our benchmark 𝑆𝐵 . Moreover, given the compatibility issues among the tools discussed in
Section 4.2, we compute the accuracy at two levels of granularity. At the coarse-grained level, we include mappings
between statements and program elements, as all tools can provide this information. At the fine-grained level, we
include sub-expression mappings in addition to the mappings considered at the coarse-grained level. The tools that can
provide comparable sub-expression mappings are those using the AST generator gumtree.gen.jdt-3.0.0, namely
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RefactoringMiner and the greedy/simple versions of GumTree 3.0. Moreover, we include in the evaluation, our imple-
mentation of the GumTree greedy and simple version with the techniques discussed in Sections 5.2 and 5.5, namely
Fine-Grained AST types (FG) and Staged Tree Matching (STM) combined.

Table 11. Overall mapping accuracy considering only statement mappings

RM 3.0 GT 3.0 greedy GT 3.0 simple GT 2.1.0 IJM MTDiff
Dataset Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Defects4J 99.8 99.6 99.2 98.4 99.1 98.5 98.9 98.5 99.0 98.6 98.4 98.2
Refactoring 99.7 99.5 91.5 74.1 91.7 73.9 90.2 70.9 92.8 71.5 93.3 75.7

Overall 99.8 99.6 97.3 91.2 97.2 91.3 96.7 90.4 97.5 90.6 97.1 91.6

5.6.2 Results and discussion. As we can observe from Table 11, at the coarse-grained level all tools exhibit a very
high accuracy in the Defects4J dataset with RefactoringMiner having the highest precision and recall. However, in the
Refactoring dataset the differences in accuracy are considerably larger with RefactoringMiner having a +6.4% precision
and +24% recall than the second-best performing tool, which is MTDiff. This result proves our argument that bug fixing
commits are a low barrier for assessing the accuracy of AST diff tools, and thus more challenging datasets should be
used, such as the Refactoring benchmark we introduce in this paper. Our analysis in the previous research questions has
shown that the lack of support for multi-mappings and inter-file mappings contributes a considerable number of false
negatives for all tools other than RefactoringMiner. Moreover, the lack of language-awareness contributes false negatives
in method and field declaration mappings, and the lack of refactoring-awareness contributes false negatives in statement
mappings, especially for variable-related refactorings. Although MTDiff seems to have the second-best performance
based on F-score, it is hard to make a safe conclusion about which tool is actually the second-best performing one,
as all tools (with the exception of RefactoringMiner) have a quite similar overall F-score at statement level ranging
between 93.5-94.3%. However, there is some indication that MTDiff has a slightly better performance in the Refactoring
dataset with +1.6% precision and recall than the third-best performance.

Table 12. Overall mapping accuracy considering statement and sub-expression mappings

RM 3.0 GT 3.0 greedy GT 3.0 simple
GT 3.0 greedy

STM+FG
GT 3.0 simple

STM+FG
Dataset Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Defects4J 99.7 99.3 97.5 93.1 98.4 97.8 97.7 92.5 98.3 97.4
Refactoring 99.6 99.2 84.1 70.2 86.7 72.4 85.9 76.6 87.4 79.0

Overall 99.7 99.3 93.8 86.1 95.2 90.0 94.3 87.6 95.2 91.8

At the fine-grained level that additionally includes sub-expression mappings, we can observe by comparing Table 12
with Table 11 that the precision and recall of all tools drops. However, GumTree 3.0 greedy has the largest accuracy
drop among the three tools, which means that it tends to force more incorrect sub-expression mappings, but also miss
more sub-expression mappings due to its greedy nature. RefactoringMiner has still a remarkable overall precision
and recall of 99.7% and 99.3%, respectively, showing that it performs very well at the sub-expression level too. More
specifically, in the Refactoring dataset it has a +13% precision and +27% recall than the second-best performing tool,
which is GumTree 3.0 simple. GumTree 3.0 simple has consistently better precision and recall than GumTree 3.0 greedy
in both datasets, when considering sub-expression mappings, while the accuracy differences between these tools are
very small, when considering only statement mappings.
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Regarding the Fine-Grained AST types (FG) and Staged Tree Matching (STM) techniques, we can observe from Table 12
that their effect is positive on both precision and recall in the Refactoring dataset, which includes more inter-file
mappings and more complex changes (i.e., changes prone to semantically incompatible mappings) than the Defects4J
dataset. More specifically, the techniques contributed in GumTree greedy and simple version an increased precision by
1.8% and 0.7%, respectively, and an increased recall by 6.4% and 6.6%, respectively. However, in the Defects4J dataset, the
techniques contributed a small decrease in recall by 0.6% and 0.4%, respectively, while the precision remained almost
unchanged. Further investigation revealed that this small drop in recall is mainly due to the Fine-Grained AST types

(FG) technique, which may also have a negative effect. For example, if a variable (i.e., SimpleName AST type), which is
part of an infix expression, gets wrapped into a method invocation as an argument within the same infix expression,
the FG technique will block the mapping of this variable, since the variable’s fine-grained AST type originally was
InfixExpression-SimpleName and then changed to MethodInvocation-SimpleName. This finding shows that the
FG technique can be potentially improved by allowing the mapping of leaf AST nodes with parents of different AST
types in some certain scenarios, as the aforementioned one. In conclusion, despite the potential accuracy improvements
brought by these language-independent techniques, still none of the two GumTree variants can achieve the accuracy
of RefactoringMiner. Moreover, our experiment shows that these language-independent techniques may also have a
negative effect on accuracy under certain scenarios. The language-aware features embodied in RefactoringMiner (i.e.,
the program element matching algorithm shown in Figure 11, the detection of inter-file move refactorings, the use of
language clues, such as method calls and field references, to reason about and guide the matching process) are more
effective than the language-independent solutions that have been explored in the literature to overcome some of the
limitations of the state-of-the-art AST diff tools.

RQ6 findings: All tools except for RefactoringMiner, have a quite similar F-score at statement level ranging
between 93.5-94.3%. RefactoringMiner brings significant accuracy improvements, especially in the Refactoring dataset
and when considering sub-expression mappings, with +13% in precision and +27% in recall than the second-best
performing tool. GumTree 3.0 simple has consistently better precision and recall than GumTree 3.0 greedy in both
datasets, when considering sub-expression mappings. Based on their overall mapping accuracy, the tools are ranked
as follows:

(1) RefactoringMiner 3.0 (F-score=99.7% at statement level and 99.5% at sub-expression level)
(2) MTDiff (F-score=94.3% at statement level)
(3) GumTree 3.0 simple (F-score=94.2% at statement level and 92.6% at sub-expression level)
(4) GumTree 3.0 greedy (F-score=94.2% at statement level and 89.8% at sub-expression level)
(5) IJM (F-score=93.9% at statement level)
(6) GumTree 2.1.0 (F-score=93.5% at statement level)

5.7 RQ7: Perfect diff rate
5.7.1 Experimental procedure. For this research question, we investigate the ability of the tools to generate perfect diffs.
A diff generated by a tool 𝑇 is considered perfect, if the set of AST node mappings in 𝑆𝑇 is identical to the benchmark
mappings 𝑆𝐵 (i.e., 𝑆𝑇 = 𝑆𝐵 ). Therefore, perfect diff rate is the percentage of commits for which a tool generated the
perfect diff. Since even small diff imperfections can cause confusion to the developer trying to understand the changes
intended by the commit author, perfect diff rate essentially measures the ability of the tools to generate noise-free or
confusion-free diffs, as the perfect diff reflects the commit author intentions in the most accurate way.
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Table 13. Perfect diff rate considering only statement mappings

Dataset RM 3.0 GT 3.0 greedy GT 3.0 simple GT 2.1.0 IJM MTDiff

Defects4J 89.4 75.4 72.4 75.6 75.6 68.3
Refactoring 82.4 14.9 13.8 11.2 13.8 5.9
Overall 88.1 63.9 61.2 63.4 63.9 56.4

Table 14. Perfect diff rate considering statement and sub-expression mappings

Dataset RM 3.0 GT 3.0 greedy GT 3.0 simple

Defects4J 85.9 18.1 63.3
Refactoring 70.2 4.8 8.5
Overall 82.9 15.6 52.8

5.7.2 Results and discussion. Table 13 shows the perfect diff rate of the tools considering only statement mappings (i.e.,
coarse-grained level). As we can observe from Table 13, all tools are able to generate the perfect diff for a relatively
large percentage of cases from the Defects4J dataset, with RefactoringMiner having the highest rate with 89.4% and the
remaining tools ranging between 68-75%. Regarding the Refactoring dataset, with the exception of RefactoringMiner
that achieves a rate of 82.4%, the rates of the other tools decrease dramatically and range between 6-15%. This result is
another proof that bug fixing commits are a low barrier for assessing the accuracy of AST diff tools, and thus more
challenging datasets should be used, such as the Refactoring benchmark we introduce in this paper. Table 14 shows the
perfect diff rate of the tools considering statement and sub-expression mappings (i.e., fine-grained level). By comparing
Table 14 with Table 13, we can observe that all tools have a lower perfect diff rate. This is reasonable as the tools need
to correctly match all fine-grained sub-expression mappings to achieve the perfect diff. However, GumTree 3.0 greedy
is the tool that has by far the largest decrease in its perfect diff rate. This result is consistent with our findings in RQ4
and RQ6, showing that the greedy version of GumTree 3.0 very often forces incorrect mappings at the sub-expression
level. On the other hand, RefactoringMiner achieves a perfect diff rate of 70.2% in the Refactoring dataset, and 85.9% in
the Defects4J dataset, which is a remarkable achievement, given the challenge of matching correctly all fine-grained
sub-expression mappings.
RQ7 findings: RefactoringMiner has the highest perfect diff rate in both levels of granularity (i.e., with and without
including sub-expression mappings). All tools, except for RefactoringMiner, exhibit a very low perfect diff rate for the
Refactoring dataset ranging between 6-15%. Based on their overall perfect diff rate, the tools are ranked as follows:

(1) RefactoringMiner 3.0 (87.9%)
(2) IJM (63.9%)
(3) GumTree 3.0 greedy (63.9%)
(4) GumTree 2.1.0 (63.4%)
(5) GumTree 3.0 simple (61.2%)
(6) MTDiff (56.4%)

5.8 RQ8: Execution time

5.8.1 Experimental procedure. For this research question, we measure the execution time of each tool on each dataset
in our benchmark. We executed each tool separately on each commit of the Defects4J and Refactoring datasets, and
recorded the time taken to generate the AST diff using the System.nanoTime Java method to get the start time and end
time of the diff generation process for each commit. All tools were executed on the same machine with the following
specifications: Apple M2 @ 3.49GHz, 16GB LPDDR5-6400 RAM, 512GB SSD, MacOS Sonoma 14.2, Java 17.0.6 x64.
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5.8.2 Results and discussion. Figures 23 and 24 show the execution time distribution of each tool on the Defects4J and
Refactoring datasets, respectively. Clearly, GumTree 3.0 simple is the fastest tool, followed by IJM and GumTree 2.1,
which have a very similar performance, as IJM is an extension of GumTree 2.1. RefactoringMiner comes in fourth place
with an execution time that is 2.5 times slower on median and 3.3 times slower on average than GumTree (simple). Still,
it has execution times within the same order of magnitude as the three faster tools, and it can process each bug fixing
commit in the Defects4J dataset in less than 800 ms. MTDiff comes in the fifth place, and GumTree greedy (i.e., the
default algorithm in GumTree 3.0 configuration) has the slowest execution time among all tools, and is an order of
magnitude slower than the GumTree simple (13.5 times slower on median and 21.3 times slower on average).
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Fig. 23. Execution time per Defects4J commit in milliseconds.

As explained before, the Refactoring benchmark includes inter-file mappings, and RefactoringMiner is the only tool
supporting such mappings with the cost of additional processing. Therefore, its execution time differences with the other
tools are expected to be larger than those observed in the Defects4J dataset. Still, we can observe from Figure 24 that the
tools are ranked in the same order in terms of their execution time as in the Defects4J dataset, but RefactoringMiner is
now 4.8 times slower on median and 6.8 times slower on average than GumTree 3.0 simple. We inspected the 5 commits
in which RefactoringMiner has an execution time above 1 second, and they either involved inter-file mappings, or very
large files (i.e., 15K LOC).

To create a ranking of the tools based on their execution time, for each pairwise combination of tools, we applied the
Wilcoxon signed-rank test on their execution time distributions with the following null hypothesis: “the execution time
of tool X is smaller than the execution time of tool Y”. We selected this test, because the execution time distributions
are matched or dependent samples, meaning that we have execution times for the same commits in all distributions.
Table 15 shows all 15 pair combinations of tools that the statistical test was applied for. The rows of the table represent
tool X, while the columns represent tool Y in the statistical test. The symbol < indicates that the null hypothesis was
accepted with significance at 95 percent confidence level, and thus we can conclude that tool X is faster than Y.
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Fig. 24. Execution time per Refactoring commit in milliseconds.

Table 15. Results of the Wilcoxon signed-rank test on the execution time distributions of the tools in both datasets

X
Y

IJM GumTree 2.1.0 RefactoringMiner MTDiff GumTree 3.0 greedy

GumTree 3.0 simple < < < < <

IJM < < < <

GumTree 2.1.0 < < <

RefactoringMiner < <

MTDiff <

RQ8 findings: RefactoringMiner is slower than GumTree 3.0 simple, GumTree 2.1 and IJM, but still its execution
time is within the same order of magnitude. GumTree 3.0 simple is an order of magnitude faster than GumTree 3.0
greedy, and given it has also higher precision and recall, it should be preferred over GumTree greedy. Based on their
execution times, the tools are ranked as follows:

(1) GumTree 3.0 simple
(2) IJM
(3) GumTree 2.1.0
(4) RefactoringMiner 3.0
(5) MTDiff
(6) GumTree 3.0 greedy

5.9 RQ9: Accuracy comparison between RefactoringMiner 3.0 and 2.0

5.9.1 Experimental procedure. As discussed in Section 3.2, we made some changes in the statement mapping process of
RefactoringMiner 2.0 [63], which is the core of the tool. With this research question, we want to investigate what is
the effect of these changes on the accuracy of RefactoringMiner 3.0 over the prior version 2.0. Since RefactoringMiner
2.0 does not have AST diff generation capabilities, we focused our comparison on features that both versions 2.0
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and 3.0 support, namely the matching of program element declarations (i.e., type, method, field declarations) and
statements. Therefore, we utilized our benchmark at the appropriate level of granularity (i.e., gumtree.gen.jdt-2.1.0,
see Section 4.2) to compute the accuracy of versions 2.0 and 3.0 on program element declaration and statement mappings,
multi-mappings, inter-file-move mappings, and refactoring-related mappings, respectively. Moreover, we computed
and compared the number of semantically incompatible mappings and perfect diff rate for versions 2.0 and 3.0.

Table 16. Precision and recall for statement mappings and program element declaration mappings

RM 3.0 RM 2.0
Dataset Precision Recall Precision Recall

Statement Defects4J 99.8 99.6 99.0 86.5

mappings Refactoring 99.7 99.5 96.2 91.5
Overall 99.8 99.6 98.1 87.9

Declaration Defects4J 100 100 100 98.1

mappings Refactoring 100 99.7 99.8 93.7
Overall 100 99.9 99.9 96.5

Multi-mappings Overall 99.7 98.4 80.4 72.2

Refactoring mappings Overall 99.6 99.4 93.8 90.8

Inter-file mappings Overall 100 99.6 99.6 94.0

Perfect diff rate Overall 88.1 53.5

5.9.2 Results and discussion. As we can observe from Table 16, RefactoringMiner 3.0 has a slightly higher precision
and considerably higher recall in comparison to version 2.0 with respect to statement mappings. The differences
are more evident in the Refactoring dataset, where RefactoringMiner 3.0 has a +3.5% precision and +8% recall than
version 2.0, while in the Defects4J dataset version 3.0 has a +0.8% precision and +13.1% recall than version 2.0. We
performed a thorough investigation to understand why version 2.0 performs worse than version 3.0 in statement
mappings, and we found four main reasons. First, there are some program elements that contain statements, but are not
processed by version 2.0. Such program elements are initializer blocks and the initializers of field declarations and enum
constants, which are used to initialize fields and are executed before class constructors. RefactoringMiner supported the
processing of initializer blocks in version 2.3, the diff of field declaration initializers in version 2.2, and the diff of enum
constant initializers in version 2.3.2. In particular, some commits from project JSoup in the Defects4J dataset have enum
constants intialized with anonymous classes containing a large number of statements, which explains the lower recall
observed in the Defects4J dataset compared to the Refactoring dataset. Second, there are some refactoring types that
contribute statement mappings, but are not supported by version 2.0. For example, Replace Anonymous with Class
is a refactoring that contains statement mappings between the methods of the anonymous class and the methods of the
introduced class, and was supported in version 3.0. Third, we found cases in version 2.0 diffs, where repeated statements
within the body of a method were not accurately matched. The improved sorting criteria discussed in Section 3.2.1
in cases of ties (i.e., when there are multiple possible matches for a given statement), reduced both false positives
and negatives, thus contributing to improved precision and recall. The fourth reason is related to the replacement
algorithm used by RefactoringMiner to match non-identical statements. As explained in Section 3.1 (Phase 2) and in [63],
RefactoringMiner applies syntactically valid AST node replacements within a pair of non-identical input statements, and
matches these statements only if they become textually identical after the application of replacements. This design choice
avoids the use of arbitrary code similarity thresholds to match non-identical statements. Throughout the evolution of
the tool from version 2.0 to 3.0, the kinds of supported replacements increased, thus enabling the matching of statement
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pairs that could not be matched before, as the replacement algorithm could not make them textually identical. For
example, version 2.3 supports the replacement of variables with boolean literals and the replacement of variables with
class instance creations, while these kinds of replacements were not supported in previous versions of the tool. In
conclusion, the first, second and fourth reasons mainly affect the recall of the tool, while the third reason affects both
precision and recall.

Regarding program element declaration mapping accuracy, we can observe from Table 16 that the precision of
versions 2.0 and 3.0 is very close, as version 3.0 has a +0.2% precision in the Refactoring dataset, and a +0.1% precision in
the Defects4J dataset. However, the differences in recall are larger, especially in the Refactoring dataset, where version
3.0 has a +6% recall than version 2.0. Again, we performed a thorough investigation to explain the observed differences
in recall, and we found two main reasons. The first reason is that version 2.0 is not processing the initializers of field
declarations and enum constants to find differences, as already explained in the previous paragraph. However, in some
cases field declarations and enum constants are initialized with an anonymous class, and thus version 2.0 is missing to
match the method declarations within the anonymous classes in the field/enum-constant initializers. The second reason
is related to an inherent limitation of version 2.0, which is not able to match method declarations with empty bodies, as
it requires to find at least one statement mapping in order to match a pair of methods. Developers commonly instantiate
interfaces with anonymous classes (e.g., when implementing listeners for various events) and leave some methods
with empty implementation. Version 2.0 is unable to match such methods with an empty body within anonymous
class declarations. This issue was fixed in version 3.0 of RefactoringMiner by matching the empty methods within
anonymous classes based on their signature similarity. Both of these reasons affect the recall of the tool in matching
method declarations within anonymous classes.

Regarding multi-mapping accuracy, we can observe from Table 16 that version 2.0 has a considerably lower precision
(-19.3%) and recall (-26.2%) than version 3.0. The lower recall in multi-mappings is an expected finding, as version 2.0 does
not support several refactorings that contribute multi-mappings, such as the Consolidate Duplicate Conditional
Fragments refactoring (first supported in version 3.0, see Section 3.2.2) and the Merge/Split Method, Parameterize
Test and Merge Catch refactorings (supported in version 2.4, see Table 1). Version 2.0 essentially supports the multi-
mappings established from Extract Method refactorings, where duplicated code fragments from the same or different
methods are merged into a single method, and Inline Method refactorings, where a single code fragment is duplicated
in all call sites of the inlined method. The interesting finding is that many of these missed multi-mappings contribute
false positive mappings (i.e., decrease precision), as they tend to be mismatched with other irrelevant statements. These
findings show that supporting refactoring types eliminating or introducing duplicate code is essential for improving
both precision and recall in statement mappings.

Regarding refactoring-related mappings, as shown in Table 16, version 2.0 has a lower recall (-8.6%) and precision
(-5.8%) than version 3.0. This can be attributed to two main reasons. Version 2.0 supports considerably less refactoring
types (40 in total) compared to version 3.0, which supports over 100 refactoring types, API changes and language
migrations. These unsupported refactoring types contribute negatively in the recall of version 2.0. Moreover, the
overall improvement in statement mapping accuracy achieved in version 3.0, also improved the precision and recall in
refactoring-related statement mappings, and thus the overall refactoring detection accuracy.

Regarding inter-file mappings, as shown in Table 16, version 2.0 has a slightly lower recall (-5.6%) than version 3.0,
while its precision is very similar to that of version 3.0. We performed a thorough investigation to explain the observed
difference in recall, and we found two main reasons behind the false negatives. The first reason is that version 2.0 fails
to detect some moved and renamed attributes, while version 3.0 is utilizing the field references found in statement
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mappings within moved methods to inferMove and Rename Attribute refactorings. The second reason is that version
2.0 is not processing the pairs of anonymous class declarations within moved methods, and thus the methods declared
in the anonymous classes are not getting matched.

In terms of semantically incompatible mappings, version 2.0 has six such mappings, while version 3.0 has zero. Four
of these mappings were between anonymous class method body blocks and composite statement body blocks, while two
mappings were incompatible type mappings due to incorrectly matched variable declaration statements. Still compared
to the other AST diff tools that were evaluated in Section 5.2, RefactoringMiner 2.0 has a considerably smaller number
of semantically incompatible mappings, which shows that the core algorithm driving the matching process (Figure 11)
was already very effective in generating semantically compatible mappings since version 2.0.

Finally, version 2.0 has a much lower perfect diff rate (-35%) compared to version 3.0, and actually has the lowest
perfect diff rate among all tools. This finding is rather expected, as RefactoringMiner 2.0 is not processing some parts of
the AST (e.g., initializer blocks, field declaration and enum constant initializers, and import declarations), and thus in
many cases it is not able to generate a complete diff covering the entire ASTs.

RQ9 findings: Our analysis has shown that RefactoringMiner 2.0 was not processing parts of the AST, as its
matching process is fully guided based on language-dependent features and clues. In other words, RefactoringMiner
is not trying to randomly match code fragments between the left and right ASTs based on their similarity, but it
is utilizing the program structure, the program element declaration types, and language clues (e.g., method calls,
method signatures, field references) to reason about and guide the matching process on specific parts of the ASTs. In
version 3.0, we enhanced the aforementioned reasoning/guiding algorithm to process parts of the AST that were
previously not handled (e.g., initializer blocks, field declaration initializers), thus improving the recall of the tool
by 8-13% in statement mappings and by 2-6% in program element declaration mappings. Moreover, the changes in
the statement mapping process of RefactoringMiner discussed in Section 3.2 improved both precision and recall
of the tool, as RefactoringMiner 3.0 makes less mistakes when breaking ties for statements with multiple possible
matches. Moreover, in version 3.0, we supported several refactoring types that contribute multi-mappings, which
further improved the statement mapping accuracy of the tool.

5.10 Discussion

In this section, we provide insights based on our experiment findings.

How to eliminate semantically incompatible mappings: The fact that AST diff tools can match semantically
incompatible AST nodes is something already known in the literature. As a matter of fact, IJM [22] attempted to
overcome the semantic violations related to name identifiers by modifying the structure of AST (i.e, by merging
SimpleName leaf AST nodes with their parent nodes). However, as discussed in RQ1, this change in the AST structure
made the depth of the AST shorter, and affected negatively the accuracy of IJM on matching statements of height equal
to 1 (i.e., method invocation statements with a merged name node), as GumTree employs a default threshold for the
hyperparameter𝑚𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡 (i.e., length of the longest path from one leaf to the root of the subtree), which is equal to 2.

Based on our findings, changing the AST structure is not the correct approach to eliminate semantically incompatible
AST node mappings. A better approach is to introduce the semantic role of the AST nodes in the program (e.g., method
call name, variable name, type name) as a node property, and match two nodes of the same AST type, only if they have
the same or a compatible semantic role property. Alternatively, semantic compatibility can be forced for AST nodes
playing multiple semantic roles (e.g., SimpleName) by checking whether their direct parents have the same AST type.
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Greed is bad: GumTree greedy and MTDiff represent algorithms trying to maximize the number of generated AST node
mappings. GumTree greedy applies a non-conservative approach that matches AST subtrees of height equal to 1 in the
bottom-up phase of the algorithm. MTDiff uses 5 optimizations to generate additional move edit operations. Based on
our findings, GumTree greedy has consistently lower accuracy than its non-greedy counterpart (i.e., GumTree simple)
in all examined research questions. More specifically, when compared to the simple version, GumTree greedy has
lower accuracy in multi-mappings (RQ1), more semantically incompatible mappings (RQ2), lower accuracy in program
element mappings (RQ3), lower accuracy in refactoring-related mappings (RQ4), more false positives in inter-file
mappings (RQ5), lower overall accuracy (RQ6), and much lower perfect diff rate when considering sub-expression
mappings (RQ7). The same findings hold when comparing MTDiff with its less-greedy counterpart, which is GumTree
2.1.0. More specifically, when compared to GumTree 2.1.0, MTDiff has lower accuracy in multi-mappings (RQ1), more
semantically incompatible mappings (RQ2), lower accuracy in program element mappings (RQ3), more false positives in
inter-file mappings (RQ5), and lower perfect diff rate (RQ7). In addition, their greedy nature has considerable runtime
cost, as GumTree greedy and MTDiff are an order of magnitude slower than all other AST diff tools in both Defects4J
and Refactoring datasets (RQ8).

GumTree 3.0 is a very established tool, widely used by researchers and practitioners in downstream tasks. In GumTree
3.0 released version, the default algorithm is the greedy one. We strongly recommend to the GumTree development
team to change the default algorithm to the simple version, as the majority of researchers and practitioners are using
this tool with its default configuration.

Partial matching is a good idea: Partial matching is essentially a divide-and-conquer approach introduced by IJM to
divide the AST into different sections of declarations based on their kind (e.g., import declarations, method declarations,
field declarations), and then apply the tree matching process separately on each section of declarations. Based on the
discussion of RQ3 results, this approach improved significantly the program element mapping accuracy for method
declarations compared to GumTree 2.1.0 (i.e., the tool extended by IJM). However, we also found that partial matching
was not so effective for field declarations, as it fails to match slightly modified field declarations moved to inner classes
within the same file. Thus, IJM requires an additional post-processing step to match field declarations between different
classes declared within the same file.

Although partial matching requires some basic language-awareness as input to the algorithm (i.e., the main program
declarations in each programming language), as well as some criteria to match declarations of the same kind (i.e.,
signature-based matching), it is a very effective approach to narrow-down the matching process to different sections of
the AST instead of the whole AST.

Language-awareness is helpful to guide the matching process: GumTree and all tools based on it, apply a
language-independent AST node matching algorithm, which tries to “blindly” find the largest identical (or similar) AST
sub-trees in a pair of files without relying on language clues to guide the matching process. The premise is that being
language-independent, it is possible to devise a solution that can support any programming language (i.e., silver bullet).
However, based on our findings, being 100% language-independent may negatively affect the accuracy of the generated
AST node mappings, due to the “blind” matching process. Programming language clues, such as method calls, field
accesses, and refactoring transformations can guide the matching process to more accurate mappings. For example,
when in the place of a deleted piece of code, there is a call to a newly added method in a file, it is very likely that the
deleted piece of code has been moved to this newly added method (i.e., Extract Method refactoring). Therefore,
instead of “blindly” trying to match the deleted piece of code within the entire file, the matching process can focus on
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the code within the body of this newly added method. This approach can avoid false mappings with newly added code
in other parts of the AST that is coincidentally similar to the deleted code, and guide the matching process towards the
correct mappings.

Obviously, computing bindings between references (i.e., method calls and field accesses) and their corresponding
declarations (i.e., method and field declarations), as well as detecting refactoring operations, are rather challenging
tasks for some programming languages, especially at commit (or pull request) level, where we have a small portion of
the project’s code available for analysis and it is not possible to build the code and get these bindings from the compiler.
If we are able to overcome these challenges, then the design and development of hybrid AST diff tools that combine
language-independent and language-specific features seems a very promising direction.

We need more challenging benchmarks: Based on our analysis of RQ6 and RQ7 results, all examined tools achieve a
higher accuracy in the Defects4J dataset compared to the Refactoring dataset. Moreover, the differences in their accuracy
are rather small in the Defects4J dataset compared to the Refactoring dataset. These results show that bug-fixing
commits, which typically include small (a few lines of code), local (typically located within a single method), and rather
simple changes, are not suitable for assessing the accuracy of AST diff tools, as they offer AST matching problem
instances of rather low complexity and challenge. However, the majority of AST diff tools have been evaluated in bug
fixing datasets, which makes the evaluation findings unreliable and hard to interpret. Moreover, these evaluations were
not objective, as they were based on the number of generated mappings and the size of the resulting edit script, without
validating whether the mappings and edit actions are correct and reflect the actual changes intended by the commit
author.

We call the AST differencing community to follow our lead and contribute new and more challenging benchmarks,
as these can help advance the capabilities of our tools, and reveal limitations that have not been discovered yet. To this
end, we have developed a benchmarking infrastructure and tooling [2] that can automate parts of this labour-intensive
process.

5.11 Limitations

To provide an overview of the limitations of our work, we examined the AST diffs for 15 commits in which our tool
has some of its lowest accuracy values, despite having higher accuracy than the other tools. We found four commonly
occurring issues:

(1) Our tool may generate inaccurate mappings in test code, because unit tests share a lot of identical or similar
statements (e.g., assertions, test object creations), and thus there is more ambiguity in the matching process, as a
given statement may have multiple candidate matching statements. Moreover, developers apply some test-specific
refactorings in test code [59], which are not supported by RefactoringMiner yet. As this is a common issue that all
AST diff tools exhibit to some extent, the AST diff community should develop special techniques for matching test
code, and create benchmarks with commits including test files to evaluate the accuracy of the tools on test changes.

(2) The algorithm described in Section 3.2.2 for generating multi-mappings when duplicated code is moved out of or
moved into conditionals does not cover scenarios that follow a different nesting pattern than the expected one. For
example, in a commit from project apache/hbase [67] the statements in lines L164-168 are duplicated 3 times in
R152-159, R163-169 and R174-181, but the conditional statements do not form an if-else-if chain as expected,
but are sequential if statements. Thus, our algorithm can be improved to cover more scenarios.
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(3) Despite the improvements described in Section 3.2.1.1 for handling ties in leaf statement mappings, we still observe
some false mappings for jump statements (e.g., break, continue, return), especially when the control flow of the
program is heavily restructured, as in the case of a commit from project Nutz [5].

(4) A limitation that is inherited by GumTree simple (used in Algorithm 2) is its inability to match string literals
with small variations (i.e., only identical string literals can be matched). However, greedy algorithms, such as
GumTree (greedy) and MTDiff can overcome this limitation with the risk of having more false mappings. For pairs
of statements where we have high confidence that they correspond to a correct mapping, we could utilize algorithms
that can match AST nodes with different values, especially for string literals with small variations.

Arguably, someone could claim that the main limitation of this work is language specificity, as it builds upon
RefactoringMiner (a tool supporting Java programs) to obtain the statement mappings. Our counter-argument and
main point of this work is that AST diff should not be treated in a language-agnostic manner, as language-awareness
provides very useful information for improving the AST mapping accuracy, thus leading to a diff output that reflects
more accurately the changes intended by the commit author. Through illustrative examples and experiment results, we
have shown that by utilizing language clues (i.e., method calls and signatures, field references), the semantic role of
AST nodes in the program, refactoring information, and by supporting multi-mappings and inter-file mappings, we can
achieve considerable improvements in accuracy.

5.12 Threats to Validity

External validity: The benchmark used for our experiments includes nearly 1,000 cases (800 bug fixes from 17 different
projects and 188 refactoring commits from 105 different projects). This dataset ensures a certain level of diversity with
respect to the domain of the projects and the characteristics of the changes (i.e., refactorings vs. bug fixes).

Internal validity: Although we did our best effort to reduce bias in the construction of our benchmark by incorporating
the input of six different AST diff tools, we cannot claim the oracle is completely unbiased, as all validators are co-
authors of this work. The vast majority of the AST mappings in the benchmark were straightforward to validate using
well-defined diff assessment criteria (Section 4.5). Only around 3% of the examined cases included debatable mappings,
which were resolved after extensive discussions between the two authors of the paper, and by asking the opinion of our
lab members, when the co-authors were not able to reach a consensus.

Verifiability:We make the source code of RefactoringMiner [62] and our benchmark [2] publicly available to enable
the replication of our experiments and facilitate future research on AST diff techniques.

6 RELATEDWORK

The most significant and influential work on AST differencing is GumTree by Falleri et al. [14]. GumTree is a language-
independent abstract syntax tree matcher, and generates the AST node mappings between two trees in two phases.
In the first (top-down) phase, it detects the largest identical subtrees. In order to find the largest identical subtrees,
GumTree must compare all sub-tree combinations within two files. Due to the recursive nature of trees, the runtime
complexity is prone to grow very fast. To achieve a better runtime, GumTree exploits a hashing technique. There are
two hash values associated with every tree. The first one is calculated by considering the label and the value of the tree
and the second one is calculated based on the label only (structure hash). The structure hash is useful to find structurally
isomorphic trees excluding the actual node values. Hash values for non-leaf nodes are dependent on the values of their
children. In the first phase, both labels and values are considered, as GumTree aims to find the largest identical subtrees.
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GumTree starts with the highest trees available in both files and performs a comparison by checking their hash values.
This comparison goes step by step deeper into the inner nodes, until a minimum height equal to 2 is reached. The
tuning of the minimum height parameter is essential to avoid matching small trees that are leaves, but have identical
values. The second (bottom-up) phase aims to match the trees that are not matched previously, but a fair amount of
their children are matched. More specifically, two trees are matched if the ratio of their common descendants is greater
or equal to 0.5.

Iterative Java Matcher (IJM) [22] is built upon GumTree and aims to improve the quality of the generated move and
update actions, specifically for Java projects. The first enhancement (partial matching) restricts the scope of matching
to selected parts of the source code to decrease the chance of mismatches. Instead of applying the GumTree algorithm
on the entire Java files, IJM provides partial input to GumTree by pruning specific parts of the Java file, such as
the import statements, type declarations, enumeration declarations, method declarations, and field declarations. The
second enhancement (merging name nodes) addresses another limitation of GumTree, which is prone to match nodes
whose parents correspond to different AST types. Since this limitation mostly occurs for the SimpleName AST type,
IJM combines SimpleName nodes with their parent nodes to prevent inaccurate mappings. The last enhancement
(name-aware matching) improves the bottom-up phase of GumTree by considering the string similarity of the names of
the nodes in addition to their node types.

Move-optimized Tree Differencing (MTDiff) [8] is based on ChangeDistiller [17] and uses 5 optimizations, namely
identical subtree, longest common subsequence, unmapped leaves, inner node, and leaf move, to shorten the resulting
edit scripts. When applied to Gumtree, RTED, JSync, and ChangeDistiller, they led to shorter scripts for 18-98% of the
changes in the histories of 9 open-source software repositories.

CLDiff [28] uses GumTree (without any changes in its implementation) to obtain AST mappings and edit actions, and
generates concise code differences by grouping fine-grained code differences at or above the statement level. Finally,
it links the related concise code differences according to five predefined links, namely Def-Use linking changes in
declarations with changes in their references, Abstract-Method linking changes in abstract methods with changes
in their sub-class implementations, Override-Method linking changes in overridden methods with changes in their
overriding methods, Implement-Method linking changes in interface methods with changes in their implementing
methods, and Systematic-Change linking similar changes caused by systematic edits (e.g., refactoring).

7 CONCLUSIONS

In this work, we presented a novel AST diff tool based on RefactoringMiner [63] that resolves all limitations of the
current tools: (1) it supports multi-mappings, (2) it avoids matching semantically incompatible AST nodes, (3) it uses
language clues to guide the matching process, (4) it is refactoring-aware, (5) it supports diff at the commit level. To
evaluate our tool and compare it with the state-of-the-art tools, we created the first benchmark of AST node mappings,
including 800 bug-fixing commits from Defects4J [31] and 188 refactoring commits from the Refactoring Oracle [63],
following a very meticulous and well-defined process. Our evaluation showed that our tool achieved a considerably
higher precision and recall, especially for refactoring commits, it does not generate semantically incompatible AST
node mappings, and has an execution time that is comparable with that of the faster tools. More specifically, our
tool has the best performance in 7 out of 8 diff quality dimensions covered by our evaluation framework, including
multi-mapping accuracy (RQ1), semantically compatible mappings (RQ2), program element mapping accuracy (RQ3),
refactoring-related mapping accuracy (RQ4), inter-file mapping accuracy (RQ5), overall mapping accuracy (RQ6), and
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perfect diff rate (RQ7). The only category our tool does not have the best performance is execution time (RQ8), where it
ranks fourth out of 6 tools.

Implications for researchers: The accurate AST node mappings generated by RefactoringMiner can improve the
performance of several downstream tasks that rely on AST diff information. For instance, automated program repair
[29, 35, 43, 66] and library/API migration [16, 37] techniques mine the change history of open-source projects to extract
bug-fixing patches and API usage migration scenarios, respectively, based on AST edit scripts. The AST diff accuracy
affects the quality of the extracted change patterns. Finally, our benchmark of AST node mappings can be used to
evaluate the accuracy of novel AST diff tools.

Implications for practitioners: The exceptional accuracy of RefactoringMiner’s AST diff can enable fine-grained and
refactoring-aware code evolution analysis [30], such as tracking a specific statement (e.g., code block) in the commit
change history of a project, and finding the commits it changed. Codoban et al. [6] surveyed 217 developers and
found that 85% of them consider software history important to their development activities and 61% need to refer to
history at least several times a day. An interesting direction is to develop an intelligent AST diff visualization UI based
on the output of RefactoringMiner, which can overlay semantic and refactoring information on top of the changes
[12, 28]. Software developers can use such an intelligent change visualization tool to conduct their code reviews, saving
considerable effort and time in understanding the changes, and thus improving their overall productivity.

8 FUTURE RESEARCH

We believe that a diff reflecting with high accuracy the changes intended by the commit author is an important
foundation upon which intelligent code review assistants could be built, as having accurate mappings between two
versions of code establishes what portion of the code remained the same (even if it was refactored) and what portion of
the code is truly deleted or added. However, there are still missing components to enable intelligent assistants. The first
component is navigation assistance.

• In what order and granularity should we navigate the code reviewer over the changes to help her understand better
the “story” and motivation behind the changes?
• Should we start from behavior-preserving changes (i.e., refactorings) to give a higher-level view of the design changes
intended by the commit author, and then proceed with non-behavior-preserving changes to give more insights about
the new features or bug fixes intended by the commit author?
• How should we deal with overlapping behavior-preserving and non-behavior-preserving changes?
• Should we group relevant changes and present them as one change to the code reviewer?

The second component is explanation assistance. Ideally, the code reviewer would like to know why a particular change
happened. Some of these explanations can come directly from diff-related information. For example, multi-mappings
can be associated with the intention of eliminating duplicated code. Inversion, splitting and merging of conditional
statements can be associated with the intention of re-structuring the control-flow of the program. However, for changes
that cannot be explained by refactorings, and especially for changes implementing a new functionality or fixing a bug,
the explanation is not straightforward. For such changes we could utilize commit message information, linked issues in
the commit message, or discussions from a Pull Request involving the commit. If the aforementioned information is not
helpful, we could utilize Large Language Models (LLMs) to provide an explanation. This would require to investigate
what is the best way to provide the required input and context to the LLM, what is the best approach to prompt the
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LLM, and how should we deal with known LLM limitations, such as hallucination and limited ability to control and
reproduce the model’s responses.

Another research direction is to extend RefactoringMiner, so that it is able to support more programming languages.
RefactoringMiner’s core statement mapping algorithm (Figure 12) is mostly language-independent, as it uses a string
replacement algorithm to match statements that are textually different, and a set of heuristics to match method calls
and object creations with differences in their arguments. For example, it already abstracts method invocations, object
creations, and method references into objects of the same class, namely AbstractCall, and thus similar constructs
from other programming languages could be represented by the same abstraction.

ACKNOWLEDGMENTS

The authors would like to thank the members of the Refactoring research group at Concordia University, Victor
Veloso, Tayeeb Hasan, Pedram Nouri, Palash Borhan Uddin, Diptopol Dam, and Mosabbir Khan Shiblu, for providing
their opinion on debatable AST mappings whenever needed. This research was partially supported by NSERC grant
RGPIN-2018-05095.

REFERENCES
[1] Mohammad Sadegh Aalizadeh. 2021. Automatic Motivation Detection for Extract Method Refactoring Operations. Master’s thesis. Concordia University.

https://spectrum.library.concordia.ca/id/eprint/988716/
[2] Pouria Alikhanifard and Nikolaos Tsantalis. 2023. DiffBenchmark. https://github.com/pouryafard75/DiffBenchmark
[3] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. MigrationMiner: An Automated Detection Tool of Third-Party Java Library

Migration at the Method Level. In 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). 414–417. https://doi.org/10.
1109/ICSME.2019.00072

[4] Lionel C. Briand, Christiane M. Differding, and H. Dieter Rombach. 1996. Practical guidelines for measurement-based process improvement. Software
Process: Improvement and Practice 2, 4 (1996), 253–280. https://doi.org/10.1002/(SICI)1099-1670(199612)2:4<253::AID-SPIP53>3.0.CO;2-G

[5] Wendal Chen. 2015. Nutzam Nutz. https://github.com/nutzam/nutz/commit/6599c748ef35d38085703cf3bd41b9b5b6af5f32#diff-
d47d95ef90d7f70d88b06a02d8505b58a81c7c1174c2494e56c9b09d090bc6edL308

[6] Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey. 2015. Software history under the lens: A study on why and how developers
examine it. In 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME). 1–10. https://doi.org/10.1109/ICSM.2015.7332446

[7] Michael John Decker, Michael L. Collard, L. Gwenn Volkert, and Jonathan I. Maletic. 2020. SrcDiff: A Syntactic Differencing Approach to Improve
the Understandability of Deltas. J. Softw. Evol. Process 32, 4 (apr 2020), 31 pages. https://doi.org/10.1002/smr.2226

[8] Georg Dotzler and Michael Philippsen. 2016. Move-Optimized Source Code Tree Differencing. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (Singapore, Singapore) (ASE ’16). Association for Computing Machinery, New York, NY, USA, 660–671.
https://doi.org/10.1145/2970276.2970315

[9] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2021. An Exploratory Study on Confusion in Code Reviews. Empirical
Softw. Engg. 26, 1 (jan 2021), 48 pages. https://doi.org/10.1007/s10664-020-09909-5

[10] Max Ellis, Sarah Nadi, and Danny Dig. 2023. Operation-Based Refactoring-Aware Merging: An Empirical Evaluation. IEEE Transactions on Software
Engineering 49, 4 (2023), 2698–2721. https://doi.org/10.1109/TSE.2022.3228851

[11] Johannes Eschner, Peter Mindek, and Manuela Waldner. 2023. Illustrative Motion Smoothing for Attention Guidance in Dynamic Visualizations.
Computer Graphics Forum 42, 3 (2023), 361–372. https://doi.org/10.1111/cgf.14836 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14836

[12] Ronald Escobar, Juan Pablo Sandoval Alcocer, Hagen Tarner, Fabian Beck, and Alexandre Bergel. 2022. Spike – A code editor plugin highlighting
fine-grained changes. In 2022 Working Conference on Software Visualization (VISSOFT). IEEE Press, 167–171. https://doi.org/10.1109/VISSOFT55257.
2022.00026

[13] Jean-Remy Falleri and Matias Martinez. 2024. Fine-grained, accurate and scalable source differencing. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association for Computing Machinery, New York, NY, USA, Article
231, 12 pages. https://doi.org/10.1145/3597503.3639148

[14] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. 2014. Fine-Grained and Accurate Source Code
Differencing. In Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering (Vasteras, Sweden) (ASE ’14).
Association for Computing Machinery, New York, NY, USA, 313–324. https://doi.org/10.1145/2642937.2642982

[15] Yuanrui Fan, Xin Xia, David Lo, Ahmed E. Hassan, Yuan Wang, and Shanping Li. 2021. A Differential Testing Approach for Evaluating Abstract
Syntax Tree Mapping Algorithms. In Proceedings of the 43rd International Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press,

Manuscript submitted to ACM

https://spectrum.library.concordia.ca/id/eprint/988716/
https://github.com/pouryafard75/DiffBenchmark
https://doi.org/10.1109/ICSME.2019.00072
https://doi.org/10.1109/ICSME.2019.00072
https://doi.org/10.1002/(SICI)1099-1670(199612)2:4<253::AID-SPIP53>3.0.CO;2-G
https://github.com/nutzam/nutz/commit/6599c748ef35d38085703cf3bd41b9b5b6af5f32#diff-d47d95ef90d7f70d88b06a02d8505b58a81c7c1174c2494e56c9b09d090bc6edL308
https://github.com/nutzam/nutz/commit/6599c748ef35d38085703cf3bd41b9b5b6af5f32#diff-d47d95ef90d7f70d88b06a02d8505b58a81c7c1174c2494e56c9b09d090bc6edL308
https://doi.org/10.1109/ICSM.2015.7332446
https://doi.org/10.1002/smr.2226
https://doi.org/10.1145/2970276.2970315
https://doi.org/10.1007/s10664-020-09909-5
https://doi.org/10.1109/TSE.2022.3228851
https://doi.org/10.1111/cgf.14836
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14836
https://doi.org/10.1109/VISSOFT55257.2022.00026
https://doi.org/10.1109/VISSOFT55257.2022.00026
https://doi.org/10.1145/3597503.3639148
https://doi.org/10.1145/2642937.2642982


A Novel Refactoring and Semantic Aware Abstract Syntax Tree Differencing Tool and a Benchmark for Evaluating the
Accuracy of Diff Tools 59

1174–1185. https://doi.org/10.1109/ICSE43902.2021.00108
[16] Mattia Fazzini, Qi Xin, and Alessandro Orso. 2020. APIMigrator: An API-Usage Migration Tool for Android Apps. In Proceedings of the IEEE/ACM

7th International Conference on Mobile Software Engineering and Systems (Seoul, Republic of Korea) (MOBILESoft ’20). Association for Computing
Machinery, New York, NY, USA, 77–80. https://doi.org/10.1145/3387905.3388608

[17] Beat Fluri, Michael Wursch, Martin Pinzger, and Harald Gall. 2007. Change Distilling:Tree Differencing for Fine-Grained Source Code Change
Extraction. IEEE Transactions on Software Engineering 33, 11 (2007), 725–743. https://doi.org/10.1109/TSE.2007.70731

[18] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston, MA, USA.
[19] Martin Fowler. 2015. Refactoring with Loops and Collection Pipelines. https://martinfowler.com/articles/refactoring-pipelines.html
[20] Martin Fowler. 2018. Refactoring: Improving the Design of Existing Code (2 ed.). Addison-Wesley, Boston, MA, USA.
[21] Veit Frick. 2023. IJM GitHub repository. https://github.com/VeitFrick/IJM
[22] Veit Frick, Thomas Grassauer, Fabian Beck, and Martin Pinzger. 2018. Generating Accurate and Compact Edit Scripts Using Tree Differencing. In

2018 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE Press, 264–274. https://doi.org/10.1109/ICSME.2018.00036
[23] Akira Fujimoto, Yoshiki Higo, Junnosuke Matsumoto, and Shinji Kusumoto. 2020. Staged Tree Matching for Detecting Code Move across Files.

In Proceedings of the 28th International Conference on Program Comprehension (Seoul, Republic of Korea) (ICPC ’20). Association for Computing
Machinery, New York, NY, USA, 396–400. https://doi.org/10.1145/3387904.3389289

[24] Gerrit Code Review. 2023. Side-by-Side Diff Screen. https://gerrit-review.googlesource.com/Documentation/user-review-ui.html#diff-view
[25] GitHub Docs. 2023. Pull requests. https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-

with-pull-requests/about-comparing-branches-in-pull-requests#diff-view-options
[26] Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou. 2021. A Large-Scale Empirical Study on Java Library Migrations: Prevalence, Trends, and

Rationales. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA, 478–490. https://doi.org/10.1145/
3468264.3468571

[27] Yoshiki Higo, Akio Ohtani, and Shinji Kusumoto. 2017. Generating Simpler AST Edit Scripts by Considering Copy-and-Paste. In Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering (Urbana-Champaign, IL, USA) (ASE ’17). IEEE Press, 532–542.

[28] Kaifeng Huang, Bihuan Chen, Xin Peng, Daihong Zhou, Ying Wang, Yang Liu, and Wenyun Zhao. 2018. ClDiff: Generating Concise Linked Code
Differences. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (Montpellier, France) (ASE ’18).
Association for Computing Machinery, New York, NY, USA, 679–690. https://doi.org/10.1145/3238147.3238219

[29] Yanjie Jiang, Hui Liu, Xiaoqing Luo, Zhihao Zhu, Xiaye Chi, Nan Niu, Yuxia Zhang, Yamin Hu, Pan Bian, and Lu Zhang. 2023. BugBuilder: An
Automated Approach to Building Bug Repository. IEEE Transactions on Software Engineering 49, 4 (2023), 1443–1463. https://doi.org/10.1109/TSE.
2022.3177713

[30] Mehran Jodavi and Nikolaos Tsantalis. 2022. Accurate Method and Variable Tracking in Commit History. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022).
Association for Computing Machinery, New York, NY, USA, 183–195. https://doi.org/10.1145/3540250.3549079

[31] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database of Existing Faults to Enable Controlled Testing Studies for Java
Programs. In Proceedings of the 2014 International Symposium on Software Testing and Analysis (San Jose, CA, USA) (ISSTA 2014). Association for
Computing Machinery, New York, NY, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[32] Ameya Ketkar, Ali Mesbah, Davood Mazinanian, Danny Dig, and Edward Aftandilian. 2019. Type Migration in Ultra-Large-Scale Codebases.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA, USA, 1142–1153.
https://doi.org/10.1109/ICSE.2019.00117

[33] Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey Bryksin. 2022. Inferring and Applying Type Changes. In Proceedings of
the 44th International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York,
NY, USA, 1206–1218. https://doi.org/10.1145/3510003.3510115

[34] Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2020. Understanding Type Changes in Java. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020).
Association for Computing Machinery, New York, NY, USA, 629–641. https://doi.org/10.1145/3368089.3409725

[35] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein, Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining
Relevant Fix Patterns for Automated Program Repair. Empirical Softw. Engg. 25, 3 (may 2020), 1980–2024. https://doi.org/10.1007/s10664-019-09780-z

[36] Zarina Kurbatova, Vladimir Kovalenko, Ioana Savu, Bob Brockbernd, Dan Andreescu, Matei Anton, Roman Venediktov, Elena Tikhomirova, and
Timofey Bryksin. 2021. RefactorInsight: Enhancing IDE Representation of Changes in Git with Refactorings Information. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 1276–1280. https://doi.org/10.1109/ASE51524.2021.9678646

[37] Maxime Lamothe, Weiyi Shang, and Tse-Hsun Peter Chen. 2022. A3: Assisting Android API Migrations Using Code Examples. IEEE Transactions on
Software Engineering 48, 2 (2022), 417–431. https://doi.org/10.1109/TSE.2020.2988396

[38] Xuan Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program Repair. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). 213–224. https://doi.org/10.1109/SANER.2016.76

[39] Zhongxin Liu, Xin Xia, Meng Yan, and Shanping Li. 2021. Automating Just-in-Time Comment Updating. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering (Virtual Event, Australia) (ASE ’20). Association for Computing Machinery, New York,

Manuscript submitted to ACM

https://doi.org/10.1109/ICSE43902.2021.00108
https://doi.org/10.1145/3387905.3388608
https://doi.org/10.1109/TSE.2007.70731
https://martinfowler.com/articles/refactoring-pipelines.html
https://github.com/VeitFrick/IJM
https://doi.org/10.1109/ICSME.2018.00036
https://doi.org/10.1145/3387904.3389289
https://gerrit-review.googlesource.com/Documentation/user-review-ui.html#diff-view
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-comparing-branches-in-pull-requests#diff-view-options
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-comparing-branches-in-pull-requests#diff-view-options
https://doi.org/10.1145/3468264.3468571
https://doi.org/10.1145/3468264.3468571
https://doi.org/10.1145/3238147.3238219
https://doi.org/10.1109/TSE.2022.3177713
https://doi.org/10.1109/TSE.2022.3177713
https://doi.org/10.1145/3540250.3549079
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ICSE.2019.00117
https://doi.org/10.1145/3510003.3510115
https://doi.org/10.1145/3368089.3409725
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1109/ASE51524.2021.9678646
https://doi.org/10.1109/TSE.2020.2988396
https://doi.org/10.1109/SANER.2016.76


60 Alikhanifard and Tsantalis

NY, USA, 585–597. https://doi.org/10.1145/3324884.3416581
[40] Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian Bird, and Jacek Czerwonka. 2018. Code Reviewing in the Trenches: Challenges

and Best Practices. IEEE Software 35, 4 (2018), 34–42. https://doi.org/10.1109/MS.2017.265100500
[41] Matias Martinez, Jean-Rémy Falleri, and Martin Monperrus. 2023. Hyperparameter Optimization for AST Differencing. IEEE Transactions on Software

Engineering 49, 10 (2023), 4814–4828. https://doi.org/10.1109/TSE.2023.3315935
[42] Mason McLead. 2022. Global Code Time Report. https://www.software.com/reports/code-time-report
[43] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and Applying Systematic Edits by Learning from Examples. In Proceedings

of the 2013 International Conference on Software Engineering (San Francisco, CA, USA) (ICSE ’13). IEEE Press, 502–511.
[44] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. How We Refactor, and HowWe Know It. IEEE Transactions on Software Engineering

38, 1 (2012), 5–18. https://doi.org/10.1109/TSE.2011.41
[45] Eugene W. Myers. 2023. AnO(ND) Difference Algorithm and Its Variations. Algorithmica 1, 1–4 (mar 2023), 251–266. https://doi.org/10.1007/

BF01840446
[46] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny Dig. 2013. A Comparative Study of Manual and Automated Refactorings.

In Proceedings of the 27th European Conference on Object-Oriented Programming (Montpellier, France) (ECOOP’13). Springer-Verlag, Berlin, Heidelberg,
552–576. https://doi.org/10.1007/978-3-642-39038-8_23

[47] Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E. Johnson, and Danny Dig. 2012. Is It Dangerous to Use Version Control Histories to
Study Source Code Evolution?. In 26th European Conference on Object-Oriented Programming (Beijing, China) (ECOOP’12). Springer-Verlag, Berlin,
Heidelberg, 79–103. https://doi.org/10.1007/978-3-642-31057-7_5

[48] Yusuf Sulistyo Nugroho, Hideaki Hata, and Kenichi Matsumoto. 2020. How Different Are Different Diff Algorithms in Git? Use –Histogram for
Code Changes. Empirical Softw. Engg. 25, 1 (jan 2020), 790–823. https://doi.org/10.1007/s10664-019-09772-z

[49] Rick Ossendrijver, Stephan Schroevers, and Clemens Grelck. 2022. Towards Automated Library Migrations with Error Prone and Refaster. In
Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing (Virtual Event) (SAC ’22). Association for Computing Machinery, New York,
NY, USA, 1598–1606. https://doi.org/10.1145/3477314.3507153

[50] Rick Ossendrijver, Stephan Schroevers, and Clemens Grelck. 2023. Automating Library Migrations with Error Prone and Refaster. SIGAPP Appl.
Comput. Rev. 23, 1 (apr 2023), 5–19. https://doi.org/10.1145/3594264.3594265

[51] Jevgenija Pantiuchina, Fiorella Zampetti, Simone Scalabrino, Valentina Piantadosi, Rocco Oliveto, Gabriele Bavota, and Massimiliano Di Penta.
2020. Why Developers Refactor Source Code: A Mining-Based Study. ACM Trans. Softw. Eng. Methodol. 29, 4, Article 29 (sep 2020), 30 pages.
https://doi.org/10.1145/3408302

[52] RefactoringMiner ASTDiff Gallery. 2023. 12 duplicated code fragments extracted from the samemethod. https://github.com/tsantalis/RefactoringMiner/
wiki/AST-Diff-Gallery#12-duplicated-code-fragments-extracted-from-the-same-method-in-commit-click-to-view-diff

[53] RefactoringMiner ASTDiff Gallery. 2023. 36 duplicated code fragments extracted from the samemethod. https://github.com/tsantalis/RefactoringMiner/
wiki/AST-Diff-Gallery#36-duplicated-code-fragments-extracted-from-the-same-method-in-commit-click-to-view-diff

[54] Giovanni Rosa, Luca Pascarella, Simone Scalabrino, Rosalia Tufano, Gabriele Bavota, Michele Lanza, and Rocco Oliveto. 2021. Evaluating SZZ
Implementations Through a Developer-Informed Oracle. In Proceedings of the 43rd International Conference on Software Engineering (Madrid, Spain)
(ICSE ’21). IEEE Press, 436–447. https://doi.org/10.1109/ICSE43902.2021.00049

[55] Qianhua Shan, David Sukhdeo, Qianying Huang, Seth Rogers, Lawrence Chen, Elise Paradis, Peter C. Rigby, and Nachiappan Nagappan. 2022. Using
Nudges to Accelerate Code Reviews at Scale. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA, 472–482.
https://doi.org/10.1145/3540250.3549104

[56] Bo Shen, Wei Zhang, Christian Kästner, Haiyan Zhao, Zhao Wei, Guangtai Liang, and Zhi Jin. 2021. SmartCommit: A Graph-Based Interactive
Assistant for Activity-Oriented Commits. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA, 379–390.
https://doi.org/10.1145/3468264.3468551

[57] Danilo Silva, João Paulo da Silva, Gustavo Santos, Ricardo Terra, and Marco Tulio Valente. 2021. RefDiff 2.0: A Multi-Language Refactoring Detection
Tool. IEEE Transactions on Software Engineering 47, 12 (2021), 2786–2802. https://doi.org/10.1109/TSE.2020.2968072

[58] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We Refactor? Confessions of GitHub Contributors. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016). Association for Computing
Machinery, New York, NY, USA, 858–870. https://doi.org/10.1145/2950290.2950305

[59] Elvys Soares, Márcio Ribeiro, Rohit Gheyi, Guilherme Amaral, and André Santos. 2023. Refactoring Test Smells With JUnit 5: Why Should Developers
Keep Up-to-Date? IEEE Transactions on Software Engineering 49, 3 (2023), 1152–1170. https://doi.org/10.1109/TSE.2022.3172654

[60] Laura South, David Saffo, Olga Vitek, Cody Dunne, and Michelle A. Borkin. 2022. Effective Use of Likert Scales in Visu-
alization Evaluations: A Systematic Review. Computer Graphics Forum 41, 3 (2022), 43–55. https://doi.org/10.1111/cgf.14521
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14521

[61] Liang Tan and Christoph Bockisch. 2019. A Survey of Refactoring Detection Tools. In Proceedings of the Workshops of the Software Engineering
Conference 2019, Stuttgart, Germany, February 19, 2019 (CEUR Workshop Proceedings, Vol. 2308), Stephan Krusche, Kurt Schneider, Marco Kuhrmann,
Robert Heinrich, Reiner Jung, Marco Konersmann, Eric Schmieders, Steffen Helke, Ina Schaefer, Andreas Vogelsang, Björn Annighöfer, Andreas

Manuscript submitted to ACM

https://doi.org/10.1145/3324884.3416581
https://doi.org/10.1109/MS.2017.265100500
https://doi.org/10.1109/TSE.2023.3315935
https://www.software.com/reports/code-time-report
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1007/BF01840446
https://doi.org/10.1007/BF01840446
https://doi.org/10.1007/978-3-642-39038-8_23
https://doi.org/10.1007/978-3-642-31057-7_5
https://doi.org/10.1007/s10664-019-09772-z
https://doi.org/10.1145/3477314.3507153
https://doi.org/10.1145/3594264.3594265
https://doi.org/10.1145/3408302
https://github.com/tsantalis/RefactoringMiner/wiki/AST-Diff-Gallery#12-duplicated-code-fragments-extracted-from-the-same-method-in-commit-click-to-view-diff
https://github.com/tsantalis/RefactoringMiner/wiki/AST-Diff-Gallery#12-duplicated-code-fragments-extracted-from-the-same-method-in-commit-click-to-view-diff
https://github.com/tsantalis/RefactoringMiner/wiki/AST-Diff-Gallery#36-duplicated-code-fragments-extracted-from-the-same-method-in-commit-click-to-view-diff
https://github.com/tsantalis/RefactoringMiner/wiki/AST-Diff-Gallery#36-duplicated-code-fragments-extracted-from-the-same-method-in-commit-click-to-view-diff
https://doi.org/10.1109/ICSE43902.2021.00049
https://doi.org/10.1145/3540250.3549104
https://doi.org/10.1145/3468264.3468551
https://doi.org/10.1109/TSE.2020.2968072
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1109/TSE.2022.3172654
https://doi.org/10.1111/cgf.14521
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14521


A Novel Refactoring and Semantic Aware Abstract Syntax Tree Differencing Tool and a Benchmark for Evaluating the
Accuracy of Diff Tools 61

Schweiger, Marina Reich, and André van Hoorn (Eds.). CEUR-WS.org, 100–105. https://ceur-ws.org/Vol-2308/emls2019paper02.pdf
[62] Nikolaos Tsantalis. 2023. RefactoringMiner. https://github.com/tsantalis/RefactoringMiner
[63] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2022. RefactoringMiner 2.0. IEEE Transactions on Software Engineering 48, 3 (2022), 930–950.

https://doi.org/10.1109/TSE.2020.3007722
[64] Nikolaos Tsantalis, Matin Mansouri, Laleh Eshkevari, Davood Mazinanian, and Danny Dig. 2018. Accurate and Efficient Refactoring Detection

in Commit History. In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE) (ICSE ’18). IEEE Press, 483–494. https:
//doi.org/10.1145/3180155.3180206

[65] Martin Unterholzner. 2014. Improving refactoring tools in Smalltalk using static type inference. Science of Computer Programming 96 (2014), 70–83.
https://doi.org/10.1016/j.scico.2013.11.032 Special issue on Advances in Smalltalk based Systems.

[66] Yilin Yang, Tianxing He, Yang Feng, Shaoying Liu, and Baowen Xu. 2022. Mining Python Fix Patterns via Analyzing Fine-Grained Source Code
Changes. Empirical Softw. Engg. 27, 2 (mar 2022), 37 pages. https://doi.org/10.1007/s10664-021-10087-1

[67] Duo Zhang. 2023. Apache HBase. https://github.com/apache/hbase/commit/29cf51d8391099f5628a52d2c3306932758d4108

Manuscript submitted to ACM

https://ceur-ws.org/Vol-2308/emls2019paper02.pdf
https://github.com/tsantalis/RefactoringMiner
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1016/j.scico.2013.11.032
https://doi.org/10.1007/s10664-021-10087-1
https://github.com/apache/hbase/commit/29cf51d8391099f5628a52d2c3306932758d4108

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Approach overview
	1.3 Contributions

	2 Motivating examples demonstrating the limitations of current AST diff tools
	2.1 Lack of support for multi-mappings
	2.2 Incorrect matching of program declarations
	2.3 Lack of refactoring awareness
	2.4 Matching semantically incompatible AST nodes (i.e., semantic ignorance)
	2.5 Lack of diff support at the commit level (i.e., commit-level change ignorance)

	3 Approach
	3.1 Background on how RefactoringMiner 2.0 works
	3.2 Changes in RefactoringMiner 3.0 to improve statement mapping accuracy
	3.3 AST diff generation
	3.4 How our approach addresses the limitations of AST diff tools

	4 Benchmark
	4.1 Datasets
	4.2 Tools
	4.3 Structure and format
	4.4 Construction process
	4.5 Diff assessment criteria

	5 Evaluation
	5.1 RQ1: Multi-mappings
	5.2 RQ2: Semantically incompatible mappings
	5.3 RQ3: Program element mappings
	5.4 RQ4: Refactoring-related mappings
	5.5 RQ5: Inter-file mappings
	5.6 RQ6: Overall accuracy
	5.7 RQ7: Perfect diff rate
	5.8 RQ8: Execution time
	5.9 RQ9: Accuracy comparison between RefactoringMiner 3.0 and 2.0
	5.10 Discussion
	5.11 Limitations
	5.12 Threats to Validity

	6 Related Work
	7 Conclusions
	8 Future Research
	Acknowledgments
	References

