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Abstract—Of all merits of the object-oriented paradigm, flexibility is probably the most important in a world of constantly changing

requirements and the most striking difference compared to previous approaches. However, it is rather difficult to quantify this aspect of

quality: This paper describes a probabilistic approach to estimate the change proneness of an object-oriented design by evaluating the

probability that each class of the system will be affected when new functionality is added or when existing functionality is modified. It is

obvious that when a system exhibits a large sensitivity to changes, the corresponding design quality is questionable. The extracted

probabilities of change can be used to assist maintenance and to observe the evolution of stability through successive generations and

identify a possible “saturation” level beyond which any attempt to improve the design without major refactoring is impossible. The

proposed model has been evaluated on two multiversion open source projects. The process has been fully automated by a Java

program, while statistical analysis has proved improved correlation between the extracted probabilities and actual changes in each of

the classes in comparison to a prediction model that relies simply on past data.

Index Terms—Object-oriented programming, product metrics, object-oriented design methods, quality analysis and evaluation.
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1 INTRODUCTION

ACCORDING to Parnas [30], software engineering deals

with “the construction of multiversion software,” that
is, software that will undergo a number of revisions either

to enhance the functionality or to fix bugs. The ability to

perform corrective, adaptive or perfective maintenance [6]

in an existing object-oriented design has been associated

with many closely related terms such as changeability [2],

maintainability [16], robustness to changes [15], extensi-

bility [33], and flexibility [25]. A number of terms have also

been used in order to describe the lack of the above features
in a design such as rigidity, fragility, inflexibility, limited

evolvability, etc. The context, in which all of the above

terms are usually used, is that changes are unavoidable in

software development and that anticipation of changes by a

software designer is of major importance.
The object-oriented paradigm offers a number of features

that are meant to facilitate the development of flexible

software, if employed correctly. By flexibility it is meant

that the principles of encapsulation, information hiding,

abstraction, inheritance, and polymorphism should be

correctly applied so as to remove any odors of fragility

and rigidity [25]. The latter properties characterize a design

that is easy to break or difficult to change, respectively.

According to [19], most of the aspects related to good code

writing hinge on a single underlying quality, namely,

flexibility.

Practically, the addition of new functionality in an object-
oriented system should have as limited impact on existing
code as possible. If the modification of a class method
imposes code changes to a number of existing classes,
object-orientation is of limited value. This feature has been
successfully captured by the Open-Closed Principle [28],
which states that “software entities should be open for
extension but closed for modification.” Flexibility becomes
a crucial factor also from an economic point of view since a
number of studies conclude that the largest percentage of
software development effort is spent on rework and
maintenance. There are many design principles [25],
heuristics [33], and patterns [15] that help to enforce good
programming practices in order to build more stable and
flexible systems.

In order to characterize several aspects of a software
system a large number of metrics has been proposed [13]
and, since the initial work of Chidamber and Kemerer [11],
the field of software metrics has been expanding to the
object-oriented domain as well. Many of these metrics have
been both theoretically justified and empirically validated
while others lack a systematic validation on real-life
industrial software. However, we believe that most of the
existing metrics evaluate the degree of object-orientation or
measure static characteristics of the design, which are not
always helpful in answering the question whether a
specific design is good or not [22]. When trying to answer
such a question, an expert would assess the conformance of
the design to well established rules of thumb, heuristics,
and principles. This work attempts to systematize this
process by quantifying the change proneness of each class
in a design.

In brief, the goal is to assess the probability that each
class will change in a future generation. The goal of the
proposed method is not to evaluate the change proneness of
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a design examining it in isolation. Rather, it should be
applied when several successive versions of an application
are available. In order to calculate these probabilities, axes
of change, through which a change in one class can affect
another class of the design, are identified. Statistical results
validate that the proposed analysis offers improved pre-
diction accuracy compared to a model that simply considers
information from past generations. An improved correla-
tion coefficient is obtained between the calculated prob-
abilities and actual changes for all classes and for all
generations of two open source projects. Moreover logistic
regression analysis has shown that the proposed model has
an increased goodness of fit and a larger impact than
previously used measures.

The evaluation is based on simple probabilistic analysis
and can be easily automated: A Java program has been
developed that can parse a complete hierarchy of direc-
tories containing the classes of a design and automatically
extract the probabilities of change. For the calculation of
probabilities, the tool reads past data for an evolving
design, such as the ones developed in the open source
community. An additional piece of information that can be
extracted from the model are the classes that have a “bad”
history of changes and at the same time affect a large
number of other classes. These classes can be a localized
source of problems to the design and, thus, should be easily
identified.

The rest of the paper is organized as follows: In Section 2,

the possible axes of change in an object-oriented design are

described. The analysis process for the probability estima-

tion along with the assumptions made is presented in

Section 3. One sample application employing a design

pattern and two larger software applications are extensively

analyzed in Section 4 and statistical analysis results are

discussed. In Section 5, the software tool that has been

developed in order to automate the proposed methodology

is described while threats to the validity and limitations of

the analysis are mentioned in Section 6. Previous ap-

proaches on relevant subjects are described in Section 7 and

open research issues in Section 8. Finally, we conclude in

Section 9.

2 AXES OF CHANGE

In order to emphasize the interference between the classes
of a system, the proposed model defines several axes of
change through which a change in a class can affect other
classes enforcing them to be modified. By change, we mean
that given a change in one of the affecting classes, the
affected classes should be updated, in order for the software
to operate correctly. To describe the way that a change in
one module would necessitate a change in any other
module, Haney [18] used the term ripple effect. For example,
the change in the signature of a method in a class will
require the update of all classes that use this method. Each
class can change because of its involvement in one or more
axes of change. The following observations and terminology
focus mainly on systems developed using Java; however,
the conclusions can be easily ported to any object-oriented
programming language.

In general, axes fall in three main categories. For each
case, an example of how change can propagate is briefly
mentioned:

Inheritance axis:

. Interface. A class implements one or more interfaces
(inherits pure abstract classes for C++). For example,
the addition of a new method in the interface or a
change in the signature of an existing method
enforces all classes implementing this interface to
modify themselves in order to be compliant with this
change.

. Class Inheritance. A class inherits another class. In
case of an abstract base class, the addition of a new
abstract method or a change in the declaration of an
existing abstract method enforces all classes that
inherit (extend) this abstract class to modify the
corresponding implementing methods. For a non-
abstract class, if one class employs the constructor of
its superclass or explicitly uses a method of the
superclass (e.g., via the super identifier), any
change in the signature of the constructor or method
imposes the subclass to be modified.

Reference axis.

. Direct instance. A class instantiates an object (em-
ploying a new operation for example). A change in
the signature of the constructor implies that all
classes that create instances of this class have to
modify the corresponding constructor call.

. Reference. A class employs an object as a parameter
in its constructor or one of its methods. A change
in the declaration of one method (whether static or
nonstatic) enforces all classes using that method to
modify the corresponding method calls. On the
other hand, all changes in the body of a method
do not affect classes that employ that method
(encapsulation).

Dependency axis. By this axis, it is meant that a change
in any class or package name on which a class depends, will
enforce changes to the dependent class. A change in the
package name will enforce the update of all import
statements throughout the program. The renaming of a
class or the package which contains it is not treated as a new
class but as a change in that particular class.

The above three axes are related to a possible modifica-
tion of a class’ probability of change due to other classes
and, therefore, will be called external axes of change.

However, since each class can also change due to
modifications to the class itself, we define also an internal

axis of change that summarizes all possible causes of
change: modification to method declarations, addition of
new methods/attributes, change of implementation, etc.
This axis refers to changes originating from the class itself
and not changes that have propagated from other classes:
Nevertheless, it has to be taken into account since a class
with a “bad” history of changes will contribute to the
overall system’s probability of change, possibly by affecting
other classes as well. It is important to mention that in the
extraction of changes related to the internal axis, changes
which originate from other classes should not be counted;
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otherwise, the same effect will be counted twice in the
model, once as an internal change and then as a modifica-
tion of the probability of propagated changes.

At this point, it should be noted that dependence on
library classes (such as STL in C++ or API’s in Java) is not
considered a source of changes since these classes are not
likely to change. Axes involving such classes are not taken
into account in the analysis. If these classes were taken into
account, the analysis would become more complicated due
to a larger number of classes and, more important, the zero
or close to zero probabilities of change for these classes,
would unavoidably affect the evaluation of the system
under study.

3 PROBABILITY ESTIMATION

3.1 Analysis

Given a class A in which a change can occur, the aim is to
calculate the probability that another class C that can be
affected, has to change.

The probability that a class C might change in the next
generation of the software will be denoted as P Cð Þ. Since
the only possible events are that 1) the class changes and
that 2) the class does not change (i.e., the sample space is
S ¼ f}change}; }no change}g), the proposed probability on
the sample space of the two outcomes satisfies the following
properties:

1. Any probability is a number between 0 and 1:
0 � P ðCÞ � 1. (The probability is physically mea-
sured in a class that undergoes a number of
modifications through successive generations, as
the ratio of the number of changes over the number
of generation upgrades. Since this number can be at
least 0 and at maximum 1, it follows that the range of
the probability function is [0..1].)

2. The sample space, S, of all possible outcomes has a
probability of 1: P ðSÞ ¼ 1.

3. Since the two events are disjoint, P ð}change} [
}no change}Þ ¼ P }change}ð Þ þ P }no change}ð Þ and,
thus, P is a valid probability measure [29].

As already mentioned, every class is subject to change
due to its involvement in several axes of change. Since even
one change will be a reason for editing the code, the
probability in which we are interested is given by the joint
probability of all events (i.e., change in any axis), also known
as probability of the OR of two or more events. For example,
if a class C can change due to two axes of change, axisA and
axisB, the probability that C will change is given by [1]:

P ðCÞ ¼ P ðC : axisA [ C : axisBÞ
¼ P ðC : axisAÞ þ P ðC : axisBÞ � P ðC : axisA \ C : axisBÞ
¼ P ðC : axisAÞþP ðC : axisBÞ�P ðC : axisAÞ�P ðC : axisBÞ

assuming that changes originating from two different axes
are independent. This probability is always lower or equal
to one. P ðC : axisXÞ symbolizes the probability that class C
will change due to axisX.

However, one change in a class does not always
propagate to the associated classes. For example, the
modification of a method’s body in a class does not cause

a change to a client class (excluding the case when pre and
postconditions of the method are changed). For this to
happen, the signature of a method that is being used by the
client class has to change. Therefore, the probability of
change for the client class should be calculated as a
conditional probability upon the probability of change in
the other class. Let us assume that class C is involved in one
external axis (e.g., has a reference to class A and employs
one of its methods). Then, the probability P ðC : axisAÞ is
calculated as:

P ðC : axisAÞ ¼ P ðCjAÞ � P ðAÞ;

where P ðCjAÞ is the conditional probability of a change in
class C with respect to a change in class A, read as the
probability of C given A. The term P ðCjAÞ essentially
represents the probability that a change in class A will
eventually propagate to class C. In other words, it is a
probability associated to the axis involving both classes.
Within a broader perspective, it could be measured as the
percentage of past changes in class A that have caused
changes in class C. The reason for incorporating this
conditional probability is to avoid a “worst-case” analysis
[34], in which all changes are assumed to propagate to other
classes.

Since an internal change will always have an effect on the
class to which it is made,

P C : internalð Þ ¼ P ðCjCÞ � P ðCÞ ¼ P ðCÞ:

In case a global stability measure is sought [6], one could
employ the probabilities of all classes in the system to
derive a measure that characterizes the whole system
according to its probability of change in a future generation
(e.g., the mean or median value).

3.2 Assumptions in the Model

In the previous analysis, it has been assumed that the events
associated with each axis of change (i.e., a change due to
axisA and a change due to axisB) are independent,
meaning that the outcome of one event does not affect in
a direct way the probability of the other. Of course, there
could be conceptual dependencies within the rest of the
system, but, for the sake of simplicity, such dependencies
are ignored. A conceptual dependency implies a connection
between two components that cannot be discovered by
source code analysis. For example, changes that are due to
the same requirement but cannot be identified in the code.

In case of multiple axes of change associating two classes
(e.g., inheritance and containment), the previous assump-
tion does not hold (i.e., the changes along the two axes are
certainly associated). However, because even one axis is
sufficient for propagating the change from one class to
another, these multiple axes are considered as one.

The application of the proposed model (presented in
Section 4.2) considers the percentage of changes that
propagate to other classes (propagation factor). This factor
can be specified for each axis separately. For practical
reasons, the tool that has been developed allows the user to
set a common value for all axes in one generation of the
system. For the evaluation of the case studies, we have used
a common factor throughout all generations. This common
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factor represents the ratio of the number of propagated
changes over the number of all changes.

As already mentioned, changes in a method’s body are
considered as local, i.e., that they do not propagate.
However, this is not true when the pre and postconditions
of the method change, causing clients of that method to
undergo a change as well. This assumption is made only for
practical reasons since code analysis can hardly reveal
changes to the pre and postconditions of a method.

4 APPLICATION RESULTS—DISCUSSION

4.1 Demonstration of the Methodology

The proposed probabilistic measure does not aim at the
evaluation of a given design by examining it in isolation. It
rather evaluates the evolution of a design through succes-
sive generations and predicts the probability of change for
each class. However, in order to demonstrate the applica-
tion of the proposed model, we have calculated each class’
probability of change for a design that employs the
Decorator Design Pattern [15]. In this example, the applied
analysis is partial since past data are not used in order to
assess each class’ probability of change. The complete
application of the methodology will be shown for the real-
world examples in the following section.

4.1.1 Decorator Pattern

The system that is being used as an example can add
dynamically functionality to a base class. However, this is
not performed simply using inheritance and composition.
The example design has anticipated that future classes with
enhanced functionality might be added in the system and,
therefore, employs the Decorator pattern. The correspond-
ing UML class diagram is shown in Fig. 1. Classes X, Y , and
Z call in their doIt() method the corresponding method of
the D class, while D class calls in its doIt() method the
corresponding method of its contained core object, which
can be either a leaf object (such as an object of class A or X)
or another composite object.

4.1.2 Analysis

Since there are no data from past generations, to estimate
the possibility of change in any part of the system, the
model assumes that for classes where changes originate, the
probability of change is a constant value, with most

reasonable value 0.5 (this value refers to the probability
related to the internal axis of change). For the conditional
probabilities (i.e., the probability that a change will actually
propagate from the originating class to the affected ones),
one could either set arbitrarily a constant value such as 0.5,
or could perform a worst case analysis by setting this value
equal to 1 [34]. For the rest of this example, we set all
conditional probabilities equal to 0.5.

Abstract classes D and A participate in only one external
axis of change with respect to the declaration of method
doIt() in interface I. (Class D appears to have a second
axis due to the containment relationship with class I.
However, since we are only interested in the probability
that one class is being affected by another, multiple axes of
change from one class to another are counted only once).
Assuming that a change in interface I will occur with a
probability of 0.5 (P ðIÞ ¼ 0:5) and that this change will
propagate to class D with a probability of 0.5
ðP DjIð Þ ¼ 0:5Þ, then:

P ðD : inheritance axisÞ ¼ P ðDjIÞ � P ðIÞ ¼ 0:5 � 0:5 ¼ 0:25:

Consequently, considering also the internal axis:

P ðDÞ ¼ P ðD : internal axis [D : inheritance axisÞ
¼ P ðD : internal axisÞ þ P D : inheritance axisð Þ
� P ðD : internal axisÞ � P D : inheritance axisð Þ

¼ P ðD : internal axisÞ þ P DjIð Þ � P Ið Þ
� P ðD : internal axisÞ � P DjIð Þ � P Ið Þ

¼ 0:5þ 0:5 � 0:5� 0:5 � 0:5 � 0:5 ¼ 0:625:

Class A has also one internal axis and one inheritance axis
with respect to interface I and, therefore, P ðAÞ¼P ðDÞ¼0:625.

Classes X, Y , and Z have only one external axis
regarding the inheritance of their superclass D. Any change
in the signature of method doIt() will cause definite
changes to the subclasses since the doIt() method of the
subclasses calls the doIt() method of the superclass.
Taking the joint probability due to this axis and that due to
internal changes for class X results in:

P ðXÞ ¼ P ðX : internal [X : inheritanceÞ
¼ P ðX : internalÞ þ P ðX : inheritanceÞ
� P ðX : internalÞ � P ðX : inheritanceÞ

¼ P ðX : internalÞ þ P ðXjDÞ � P ðDÞ
� P ðX : internalÞ � P ðXjDÞ � P ðDÞ

¼ 0:5þ 0:5 � 0:625� 0:5 � 0:5 � 0:625 ¼ 0:656:

Classes Y and Z have the same probability of change.

4.2 Analysis of Large-Scale Software

In order to investigate the applicability of the proposed
methodology in software of a larger scale, two open-source
projects have been examined, namely, JFlex [20] and JMol
[21]. These two projects have been selected for analysis
because they satisfy the following criteria:

. They have evolved through a number of generations.

. Access to the full source code of each version is
possible since they are both open-source projects.

. They contain a relatively large number of classes.
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. They have a different percentage of propagated
changes. This was important for assessing whether
the percentage of propagated changes affects the
accuracy of the model.

. Both projects are relatively mature (Registration date
on sourceforge.net JFlex: 18 Nov. 2000, JMol: 25 Mar.
2001).

. They are written in Java (Our bytecode parser
supports at the moment only Java).

4.2.1 JFlex

JFlex [20] is a “Lexical Analyzer Generator for Java,” written
in Java, which takes a specially formatted specification file
containing the details of a lexical analyzer as input and
creates a Java source file for the corresponding lexical
analyzer. The source code for JFlex is publicly available,
while the latest version that has been examined consists of
58 Java classes. Thirteen subsequent versions have been
automatically analyzed using the tool that has been
developed for this purpose.

Since past data were now available for each generation
(except for the first one), the change history has been
analyzed to extract the internal probability of change for
each class. For example, in case one class underwent four
upgrades and changes took place in three out of the four
upgrades, the internal class probability of change at the fifth
generation would be 3=4. However, it is worth mentioning,
that only changes that originated in the class itself are
considered in this calculation: Changes that have propa-
gated from other classes are not measured within the
internal class probability since they are taken into account
when the conditional probability related to the originating
class is calculated. Otherwise, the model would incorporate
the effect of the changes twice. The actual class’ probabil-
ities of change have been calculated employing the
developed tool that reads all internal probabilities of change
(stored in a file), receives as input a factor that represents
the percentage of changes that are expected to propagate
and analyzes an xml file (or the source code) that contains
the static structure of the system. According to the change

history for JFlex, the overall percentage of changes that
cause a ripple effect on other classes was found to be equal
to 25 percent.

In order to check the validity of the extracted probabil-
ities of change by statistical means and to investigate their
relation to the actual changes (or no changes) in the classes
of JFlex through successive generations, we calculated the
correlation between the calculated probability of change for
each class and a Boolean variable capturing whether that
class was changed in the next generation or not. Since the
correlation coefficient has to be calculated between one
dichotomous variable and one continuous variable, the
point-biserial correlation has been extracted, which is a
special case of the Pearson correlation [12].

A boxplot diagram showing the correlation between the
Boolean variable in the horizontal axis (change/no change
in the next generation) and the probability of change is
shown in Fig. 2a. This plot has been extracted from
12 versions of JFlex software (except for the last version
for which no validation data were available since there is no
further generation) and for all of its classes, namely, from
N ¼ 561 data pairs. Each data pair contains one value that
represents a class’ probability of change (that is, class X in
generation Y ) and one value that represents the actual
outcome in the following generation (which was known for
all generations but the last one).

To compare the efficiency of the proposed model against
a prediction model that is simply based on historic
probabilities, in Fig. 2b the boxplot diagram shows the
correlation between probability values extracted from
change history and changes/no changes in the following
generation.

The correlation probability for the calculated values is
equal to 0.400, while the correlation for the historic values is
0.375. Both values are significant at the 0.01 level. Both plots
illustrate that small values of probability are associated with
a No Change in the next generation, while higher values
of probability are associated with Change. However, for
444 classes that have not been changed in the next
generation, the median of their calculated probability
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values is 0.0833, while the median for the historic
probabilities increases to 0.1111. For the 117 classes that
have changed in the next generation, the median of their
probability values is 0.5 in both cases. As it can be observed,
the calculated probability values are slightly better in
predicting changes in the next generation (the box that
represents the middle 50 percent for the “Change” is shifted
slightly to the top).

To determine whether the proposed probability measure
is a useful predictor of the event of “change” or “no
change” logistic regression analysis has been performed.
As dependent variable the dichotomous value representing
“change” or “no change” in the next generation has been
used and the calculated probability value for the current
generation as the independent variable. To evaluate the
proposed model against other approaches, the same
analysis has also been performed using as independent
variable, a probability value extracted only from past data
(history), a coupling measure (CBO) that has been used in
the literature for impact analysis [7], [35], the number of
methods per class (NOO) used in [35] to check whether it
identifies change prone classes, Chidamber and Kemerer’s
metrics (WMC, DIT, RFC, NOC, LCOM) used to detect
faulty classes [5] and class size (CS) used to investigate its
relationship to the effort to implement changes [3]. Results
are shown in Table 1.

From the interpretation of the results [31], it can be
concluded that the proposed method offers, when the
propagation factor is relatively low as in the case of JFlex, a
very small improvement concerning the correctly predicted
outcomes (overall accuracy, with cutoff point set at 0.5),
compared to the simple model that relies only on past data.
Thus, regression analysis confirms the initial picture
obtained by the boxplots. However, the proposed prob-
ability measure seems to achieve a better model fitness (R2)
and a larger effect on the logit of the actual outcome in the
next version (where the logit of the dependent variable Y is

defined as logit Yð Þ ¼ ln P Y¼1ð Þ
1�P Y¼1ð Þ

� �
and according to the

simple logistic model is equal to logitðY Þ ¼ aþBX, where

B is the regression coefficient).
Although significant, the effect of all other factors (except

for class size) on the logit of the dependent variable, is
much lower than that of the proposed method and the
simple prediction model relying on history. Since the
independent variables are measured at different scales, to
compare the effect of each measure, standardized coeffi-
cients (B�) have been calculated [26]. The standardized
coefficients for all statistically significant variables are
shown in order in Table 2. The standardized coefficients
indicate how many standard deviations of change in the
dependent variable are associated with one standard
deviation of change in the explanatory variable [26].

Apart from this ranking, the low value for Nagelkerge R2

which is a pseudo-R-square analogous to OLS regression,
indicates for all most other measures (except for class size) a
low explanatory power of the corresponding model. It is
worth mentioning that for the DIT (Depth of Inheritance
Tree) metric the coefficient B is negative, which indicates
that as the depth in which a class is placed in a hierarchy
increases, the class has a lower possibility to change. A
possible explanation could be the fact that classes inheriting
from a large number of ancestors exhibit a large degree of
reuse, therefore minimizing their need to undergo changes.
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To formally demonstrate that the proposed measure can

add value over what can be achieved by a simpler

prediction model based only on the most important of

other metrics (e.g., history, coupling, and class size),

forward and backward logistic regression has been per-

formed. In forward inclusion, the four selected independent

variables (proposed, CS, history, and CBO) are initially

withheld from the model. At subsequent steps, those

variables determined to be significant are added to the

model, while all others are withheld. The opposite occurs in

backward elimination in which the four independent

variables are initially included in the model. At subsequent

steps, those variables determined insignificant are elimi-

nated from the model until the remaining variables are all

deemed important. Selection (or deletion) of variables is

based on the “drop-in-deviance” test that checks whether

the inclusion (or exclusion) of a variable makes a significant

difference in the goodness of fit. The contribution of a given

variable is obtained by computing the difference between

the -2 Log Likelihood statistic for the reduced model (the

one where the variable is eliminated) and the corresponding

value of the full model (the one that includes the variable).

The more a variable contributes to the model, the larger the

change in -2 Log Likelihood.
The results are summarized in Table 3. As it can be

observed, both during stepwise inclusion and elimination of
variables, the only two variables that at the end are
considered important to the model are the proposed
measure and the class size, as already observed by the
regression coefficients.

One of the advantages of the proposed methodology is
that it can be directly applied in order to identify classes in
the design (“hotspots”) that have a high probability of
change and at the same time can affect a large number of
other classes, in case of a change. These classes should be
easily spotted since they can degenerate the whole system’s
change proneness even if the rest of the system is relatively
stable. This notion is best captured by the product of each
class’ probability of change times the number of axis of
other classes in which it is involved. Both values are
automatically extracted by the program that has been
implemented and are easily accessible (see Fig. 7). The five

worst classes in terms of this product, for the JFlex design,
are shown in Fig. 3, which is the reengineered class diagram
for the latest version of the system. The intensity of the gray
color corresponds to the value of this product (i.e., class
LexScan is according to this measure the worst class since it
has a very large probability of change and any change in
this class can affect at most four other classes).

The reason for which someone cannot use only the
probability of change itself or the number of involved axis
alone is best explained through an example. In Table 4, the
probabilities of change, number of involved axes, and the
corresponding product are shown for the worst five classes
as well as for two other classes. It can be clearly observed,
that although class GeneratorException can affect nine other
classes, it has a probability of change equal to 0 since no
alterations have been made on this class. On the other hand,
class Main has a reasonably high probability of change, but
changes to this class can never propagate to any other class
in the system.

4.2.2 JMol

JMol [21] is an open source molecule viewer capable of
displaying high quality 3D images of chemical structures
reading a large variety of file types. Nine successive
generations have been analyzed, while the latest version
consists of 169 Java classes. This system underwent a large
number of modifications, many of them having a large
impact on the system (such as class and package renaming).
As a result, it was observed from the change history that
almost 50 percent of the changes that have occurred caused
a ripple effect to other classes.

Concerning the validity of the proposed model for
predicting changes and the efficiency against a simple
history-based model, the boxplots in Fig. 4 show the
correlation between the probability values and the event
of a change/no change in the next generation, for 1,207 data
pairs.

This time, the observed improvement in the accuracy of
the predictions is more intense, which is reasonable since
the number of propagated changes doubled from the
previous example. The calculated probability values differ
substantially from their historic ones since the effect of the
axes of changes (conditional probabilities) is larger. This is
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TABLE 3
Results of (a) Forward and (b) Backward Logistic Regression Analysis for JFlex



also evident from the shift upward of the 50 percent box for

the calculated values associated to a Change.
Logistic regression analysis has also been performed for

JMol and Table 5 summarizes the results. Although the

goodness of fit is now lower, the overall accuracy as well as

the correctly predicted changes (sensitivity) for the pro-

posed model is significantly better in comparison to all

other possible measures. It is worth mentioning that the

history variable presents a sensitivity of 50.8 which is

hardly better than that of pure random selection, while its

608 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 7, JULY 2005

Fig. 3. Class diagram of JFlex (latest version) illustrating classes with a large probability � axes product.

TABLE 4
Five Worst Classes in JFlex According to the Product of the Calculated Probability Times

the Number of Axes of Other Classes in Which They Are Involved

Fig. 4. Boxplots illustrating the correlation between (a) calculated probabilities and changes/no changes in the next generation (correl. = 0.232) and

(b) probabilities extracted from change history and changes/no changes in the next generation (corr. = 0.153).



goodness of fit (R2) is almost half that of the proposed
model. All other measures (except for class size) were found
to be statistically insignificant predictors, while class size
has both a lower R2 and a lower standardized coefficient as
shown in Table 6. Forward and backward logistic regres-
sion results, indicating as important variables the proposed
measure and the class size are shown in Table 7. (The CBO
metric is also considered significant, but the corresponding
impact measured by the change in -2 Log Likelihood is
significantly lower than that of the other two measures).

As a result, it could be concluded, that in case of a low
estimation by the development team for the number of
propagated changes, the accuracy of the change history
model could be considered sufficient. However, in case of
more “volatile” systems, the use of a model that considers
coupling, inheritance, and dependencies as axes of change
between classes can offer increased accuracy in the
prediction of changes. According to the results for JFlex
and JMol, a multivariate regression model with the
proposed measure and class size as covariates, would lead
to a higher overall accuracy. It should, however, be
mentioned that the accuracy should be viewed bearing in
mind that models considering only factors within the
bounds of the software system will have by default a
limited accuracy since it has been recognized [9] that other
conceptual axes beyond the software system (such as
common requirements) can cause ripple effects.

5 IMPLEMENTATION

One of the goals of analyzing the probabilities of change in a
system is to enable the automation of the process by means
of an appropriate parser and analyzer. To this end, a Java
program has been developed that parses the complete

hierarchy of directories that include the project under study

in order to reveal the static structure of the object-oriented

design. (An XML file that includes tags for annotating each

class with the required information concerning associations

and inheritance relationships can also be used as input.)

Next, the program applies the aforementioned methodol-

ogy to calculate each class’ probability of change. To locate

changes in the code between successive generations, any

differencing tool can be used. The user should manually

classify the changes as internal or ripple effects. This part of

the process has not been automated and relies on engineer-

ing experience. However, the exact type of change is of no

interest; only whether the change is an internal one or a

change that propagated from another class.
The probabilistic evaluation application consists mainly

of three parts: 1) a bytecode parser, 2) an XML generator

and parser, and 3) a probability calculator.
The bytecode parser is able to analyze the contents of any

object-oriented application in Java residing in a hierarchy of

directories and provides general class information required

for the calculation of the probabilities. For this purpose, the

ASM API is used, which is a Java bytecode manipulation

framework [4]. More specifically, it provides information

relevant to the relationship of each class to the other classes

of the system. The extracted information for each class

consists of:

. superclass name,

. implemented interfaces,

. field types (global declarations),

. constructors with parameter types,

. methods with return type and parameter types, and

. method/constructor invocations.

Because the dependence on library classes (such as Java

libraries or external API’s) is not considered as a source of

changes, a filtering process follows the source parsing,

which removes from the parsed information all classes

which are irrelevant to the system and all duplicate class

values. Finally, the parameter types of the constructors and

methods as well as direct instances are merged in a list,

which includes the references of a class to other classes of

the system.
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Logistic Regression Results for JMol

TABLE 6
Standardized Logistic Regression Coefficients for JMol



The XML generator, after a hierarchy of directories

containing Java classes has been parsed, produces an XML

file containing class names and their corresponding axes of

change, which constitute the required information for the

calculation of probabilities. The same kind of XML files can

also be used as primary input to the program. The axis

information for each class is represented in XML with the

following format:

<class>

<name>class-name</name>

<axis>

<description>axis-

description</description>

<to>class that axis refers to</to>

</axis>

</class>

Each axis of a class is represented in an axis tag, receiving as

values the strings “reference axis,” “inheritance axis,”

which can appear multiple times for each class, and

“internal axis” which can appear only once. For the

“internal axis,” the <to> tag has the name of the class

itself as value.
The order according to which probabilities are estimated

depends on the level of each class in an inheritance tree. For

any inheritance relationships, probabilities are calculated

starting from the classes higher in the hierarchy since the

probability of a superclass is required in order to extract the

probability of a subclass.
One issue that requires nontrivial handling concerns

mutually dependent classes. For example, consider the

hypothetical design in Fig. 5 where classes C1 and C2 are

abstract.
In the above system, the probabilities of classes C3 and

C4 have a mutual or cyclic dependence on each other. The

probability for class C3 is given by:

P ðC3Þ ¼ P ðC3 : extension axis [ C3 : reference axis

[ C3 : internal axisÞ;
where P ðC3 : reference axisÞ ¼ P ðC3jC4Þ � P C4ð Þ:

The probability for class C4 is extracted in a similar manner.

Even if the conditional probabilities have a known constant

value k, the above probabilities lead always to a set of first-
order equations of the form:

P ðC3Þ ¼ aþ ð1� aÞ � k � P ðC4Þ;
P ðC4Þ ¼ bþ ð1� bÞ � k � P ðC3Þ

that should be solved in order to calculate P ðC3Þ and

P ðC4Þ. a and b are coefficients resulting from all other

probabilities. For a worst case analysis (k ¼ 1), no matter

what the values of a and b are the solution to such a system

is always equal to 1 (P ðC3Þ ¼ P ðC4Þ ¼ 1), as a result of the

cyclic dependency between the joint probabilities. For other

values of k, the system solution would lead to the actual

values.

In order to cope with this problem without adding to the

complexity of the software, our implementation initially

considers the two or more classes as not associated (their

association is temporarily broken) and proceeds to the

estimation of probabilities as already described. Once the

probabilities are extracted, the association is restored and

the probabilities for each class are calculated again as the

joint probabilities of their prior value and that of the

associated classes.

Concerning the probability calculation, the first step is to

identify any cyclic dependencies between the classes. In

order to find cycles in the relationships between classes, a

tree is built: For each class, the classes involved in each axis

are added as children nodes and this process is repeated

recursively for the children nodes as well. While this tree is

being built, if a leaf is the same class as the root class, a cycle

is identified. In order to avoid infinite recursions, if a class

node already exists in the tree-path to the root or in a
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TABLE 7
Results of (a) Forward and (b) Backward Logistic Regression Analysis for JMol

Fig. 5. Cyclic dependencies of probabilities.



previously found cycle, then this node is not checked again.

This algorithm captures cycles which have one of the

following formats: A ! B ! C ! A or A $ B.
At the end of this process, all classes are grouped into

four categories:

1. Classes that do not participate in cycles.
2. Classes that directly participate in cycles.
3. Classes that do not participate in cycles but have an

axis to a class that participates in a cycle.
4. Classes that do not participate in cycles but have an

axis to a class of category 3.

First, the probabilities of the class category 1 are calculated,

whose values are not dependent on any unknown prob-

abilities. For the class category 2, there are two substeps in

the calculation of the probabilities: In the first step, the

probabilities of the classes are calculated taking into account

only those axes that are not involved in any cycle. In the

second step, the calculation of probabilities for the cycle

dependent axes proceeds assuming that all classes receive

as initial probabilities the values of the first step. Finally, the

probabilities of the class category 3 and then of 4 are

calculated since all other probabilities are already known.
The user can easily interact with the GUI in order to

change the internal probability of change for each class from

the default 0.5 to any other value. This task can also be

performed by loading a text file including the description of

each class and the corresponding internal probability of

change, extracted for example from past data. A sample

screenshot of the developed software with estimated

probabilities is shown in Fig. 6. As already mentioned the

tool provides for each class, the number of axes of other

classes, in which it is involved, in order to identify modules

that can be a source of change (Fig. 7).
The tool as well as all necessary data for the analysis of

all versions of JFlex and JMol can be downloaded from [32].

6 THREATS TO VALIDITY—LIMITATIONS

6.1 External and Internal Threats

Although the assumptions in the model have already been
mentioned, we list explicitly the most important threats to
internal and external validity.

As threats to internal validity we consider those factors
that may cause interferences regarding the relationship
between the dependent and the independent variable. The
proposed prediction model might have omitted other
important variables that can serve as predictors. Moreover,
the assumptions on the independence between axes of
change affect the accuracy of the probabilistic model. These
threats are valid, but the goal was to investigate whether the
proposed model (which considers both change history and
the internal structure of the system) leads to improved
accuracy. For this reason, only univariate models have been
studied.

As threats to external validity, we consider those factors
that may limit the possibility to generalize our findings
beyond the two case studies. One threat that is valid and
cannot be excluded until extensive empirical results are
collected is that the two case studies will reflect the
characteristics from their specific domain. However, the
analysis does not emphasize on the type of changes, but
rather on their number and classification as internal or
propagated. Moreover, although the collection of data was
performed by analyzing the code and without relying on
change logs, poor documentation [10] might affect the
analysis significantly: For example, undocumented dead
code or conceptual dependencies between classes that are
not explicitly listed will affect the number of propagation
axes and, therefore, the calculated probabilities.

6.2 Limitations

The main limitation of the approach is that, in any case,
predicting changes in a future generation is an ambitious
goal since many factors that determine whether a class will
be changed or not are not code related. As a result, the
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Fig. 6. Sample screenshot for the application showing calculated

probability values.

Fig. 7. Sample screenshot for the application showing axes of other

classes in which each class is referred.



correlation between the calculated probability values and
the actual outcome can hardly reach very high values.
Moreover, the proposed analysis is a heavyweight approach
with regard to the collection of data (previous versions of a
system have to be analyzed to acquire internal probability
values). This could create scalability problems for large
systems. In addition, it cannot be applied at early stages of
the development process (e.g., at the design level). Finally,
although the identification of changes can be computer-
aided, their classification as propagated or not requires
human intervention, at least with the current tools.

7 RELATED WORK

Previous attempts to assess the changeability of object-
oriented designs include a controlled experiment for
comparing responsibility-driven and control-oriented alter-
natives with regard to required change effort [2]. In [8], a
change impact model has been proposed for changeability
assessment with primary goal to investigate the relationship
between existing design metrics (e.g., Weighted Methods
per Class) and the impact of change. However, even if it is
useful to know which classes would be impacted from a
given change, one has to know the actual changes that
occurred in a system, in order to assess the probability of
change for a certain class. The relationship between metrics
and maintenance effort has also been studied in [24]. In [23],
a set of algorithms that determine what classes are affected
by a given change is proposed. The methodology represents
a systems as a set of data dependency graphs, which is a
reasonable and effective approach for object-oriented de-
signs. However, as in any change impact model, reports
about the potential impact of a given change can be
generated only after the user explicitly specifies the
changes.

Briand et al. [7] empirically investigated using a
commercial OO system, whether coupling measures are
related to ripple effects. The aim is to rank classes according
to their probability of containing ripple effects, while the
approach proposed in this paper aims at identifying classes
that are highly probable to change in a future generation,
regardless of whether the change is internal or due to a
ripple effect. An advantage of using coupling measures is
that they are inherently related to ripple effects since
common changes are usually due to relationships between
classes. However, ripple effect-prone classes cannot be used
for predicting whether they will change in a future release
since changes originating in the class itself are neglected.
Moreover, in order to perform further empirical evaluation
on the use of coupling for impact analysis, one would
require change logs listing all classes affected by a given
change, something which can hardly be found in practice.

A tool for supporting maintenance in legacy systems
has been proposed in [9]. It can assist the maintainer to
locate components where changes might propagate by
aiding in the identification of data/control flow depen-
dencies. The advantage is that the model also considers
conceptual dependencies, something which certainly in-
creases the accuracy; however, components that participate
in the same concept must be manually specified by the
user. The work of Yau and Collofello [36] and Black [6] on

the computation of ripple effects deals essentially with the
definition of a logical stability measure. Though, this
measure reflects the number of ways by which variable
values can propagate to the same or other modules (in
procedural programs) and is not a measure of probability.
However, the need for a metric system to quantitatively
measure the impact of possible changes as well as to
estimate the possibility of future changes among with
automation tools has not been addressed. In a precursor of
this work, we performed a worst case analysis for the
evaluation of probabilities [34], where it was assumed that
all changes eventually propagate to other classes. Accord-
ing to [27], our approach belongs to predictive analysis,
that is, software metrics are used for analysis before the
evolution has occurred, mainly to assess which parts are
likely to be evolved (evolution-prone parts). To this end,
release histories of the software can be investigated, as it
has been performed, for example, by means of visualiza-
tion [14]. In that work, a third dimension has been used to
visualize the software release history, while color asso-
ciated to certain module attributes (such as code size or
version number) might be helpful in identifying change-
prone parts of the system. Recently, Girba et al. [17]
proposed an approach to summarize the changes in the
history of a system that can offer a solid basis for starting a
reverse engineering effort. The methodology consists in
identifying the classes that were changed the most in the
recent history and at the same time checking whether the
same classes are among the most changed ones in the
successive versions. However, as change, only the addition
or removal of methods is considered. Arisholm et al. [3]
investigate the use of dynamic coupling measures as
indicators of change proneness. Their approach is based on
correlating the number of changes to each class (a
continuous variable which represents change proneness)
with dynamic coupling measures and other class-level size
and static coupling measures. Consequently, it cannot be
considered as a prediction model since no attempt is made
to correlate the proposed measures with changes/no
changes (which is a dichotomous variable) in the next
generation. In addition, requirement changes have been
factored out since they are not driven by design
characteristics.

8 FUTURE WORK

As already mentioned, any model considering only the
static structure of the system itself ignores other conceptual
axes that generate common changes and thus affect any
probability measure. Since conceptual dependencies cannot
be revealed by static code analysis [9], prior knowledge of
connections in the application domain or dependencies due
to data flow within library functions (which cannot be
recovered due to the unavailability of the source code)
could be manually added to the model.

Another possible contribution has to do with the fact that
the internal probability values that have been extracted
from the history of each class have been treated as data
points that present no internal structure. An alternative to
building such a prediction model would be to perform time
series analysis although there is no distribution into equally
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spaced time intervals. Such a fitting of time series models
could possibly offer improved forecasting capabilities.

One of the implementation issues that remains open for
further improvement of the accuracy of the results is the
algebraic solution of the probabilities associated with
classes that have a cyclic dependency. Such a solution,
although possible by means of a matrix manipulation
package, has not been implemented so far since the
incurred complexity was beyond the scope of this research.

Finally, we believe that by further analyzing existing
large software projects, much knowledge could be gained
by investigating the relationship of change-prone classes to
other structural characteristics or even factors such as the
number of different authors, age of each piece of code,
experience and so on.

9 CONCLUSIONS

Acknowledging the importance of change handling in the
software development process, a methodology for quantify-
ing the change proneness of an object-oriented design has
been proposed. The rationale behind this approach is that in
a well-designed software system, feature enhancement or
corrective maintenance should affect a limited amount of
existing code. The goal is to quantify this aspect of quality
by assessing the probability that each class will change in a
future generation. Apart from the probability that a change
occurs in a class itself, changes can propagate through so-
called axes of change, affecting the overall probability
value.

Statistical analysis has shown a correlation between the
extracted probabilities and the actual changes in a system.
The proposed approach improves the prediction accuracy
over a simple model that relies only on past data, while
most other structural metrics (except for class size) have
been proved to be statistically insignificant predictors. The
advantage lies in that the probability values are extracted
considering both the change history of a design as well as its
structural characteristics.

The proposed methodology has been automated and can
be applied to any object-oriented software system in order
to evaluate the evolution of a design through successive
generations and to identify “bad” classes that can cause
changes to the rest of the system.
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