
1

Refactoring-aware Block Tracking
in Commit History

Mohammed Tayeeb Hasan, Nikolaos Tsantalis, Senior Member, IEEE and Pouria Alikhanifard

Abstract—Tracking the change history of statements in the commits of a project repository is in many cases useful for supporting
various software maintenance, comprehension, and evolution tasks. A high level of accuracy can facilitate the adoption of code tracking
tools by developers and researchers. To this end, we propose CodeTracker, a refactoring-aware tool that can generate the commit
change history for code blocks. To evaluate its accuracy, we created an oracle with the change history of 1,280 code blocks found within
200 methods from 20 popular open-source project repositories. Moreover, we created a baseline based on the current state-of-the-art
Abstract Syntax Tree diff tool, namely GumTree 3.0, in order to compare the accuracy and execution time. Our experiments have
shown that CodeTracker has a considerably higher precision/recall and faster execution time than the GumTree-based baseline, and
can extract the complete change history of a code block with a precision and recall of 99.5% within 3.6 seconds on average.

Index Terms—Commit change history, Refactoring-aware source code tracking, Change oracle

✦

1 INTRODUCTION

Developers routinely track code snippets in the commit
history to facilitate various software engineering tasks.
Codoban et al. [1] surveyed 217 developers to find the
motivations behind examining software history. The most
common reasons are to a) recover the rationale behind a
snippet of code, b) find the commits that introduced a bug,
c) find who are the knowledgeable peers on certain modules
and patterns, d) reverse engineer requirements from code, e)
keep up with how the code state evolves, f) apply changes
from other branches into the main branch.

1.1 Motivation

Developers: Grund et al. [2] conducted a survey with 42
professional software developers and found that they prefer
source code history information at the method/function and
class level rather than the file level. Moreover, the tools
used by the developers to inspect code history, such as
git log and IntelliJ’s history feature, are unable to find
the commit that introduced a method or deal with complex
structural changes (e.g., method moves). Codoban et al.
[1] surveyed 217 developers and found that 85% of them
consider software history important to their development
activities and 61% need to refer to history at least sev-
eral times a day. The surveyed developers expressed some
challenges regarding the usability of existing tools, such as
their inability to detect file moves and renames, and their
difficult configuration (e.g., setting up git bisect to find
the commit that introduced a bug). LaToza and Myers [3]
surveyed 179 professional software developers at Microsoft
and asked them to list hard-to-answer questions that they
had recently asked about code. Among the collected re-
sponses, developers asked about “Where was this variable last
changed?” when debugging, “When, how, by whom, and why
was this code changed or inserted?” when they want to find
the code’s creation in history to understand its context and
motivation, and finally “How has it changed over time?” when

they want to know the entire history of a block of code,
rather than its most recent change. Fritz and Murphy [4]
surveyed eleven professional software developers to find
questions that developers ask, but have no resources that
can help to answer them. Out of the 78 recorded questions,
20 code-specific questions were highlighted in their paper.
Among them, developers were interested in knowing who
originally wrote a piece of code and who modified it last.
Ko et al. [5] surveyed seventeen software developers and
logged their activities minute by minute. They found that
developers wanted to know more about “Why was this code
implemented this way?”, so as to derive historical reasoning
for its current implementation. Another interesting point
made in this paper is that during bug fixes, developers need
specific code change history to analyze whether the error
was anticipated by the designer and explicitly ignored or
whether it was overlooked. Thus, having block-level source
code history can speed up bug-fixing efforts in cases where
bugs are known to be present in a specific block rather than
the entire method.

These findings motivate the need for developing tools
that can track change history at a more fined-grained level,
focusing on specific program elements, such as meth-
ods/functions, variables, and code blocks. Moreover, such
tools should be refactoring-aware and support complex struc-
tural changes that move the tracked program element to a
distant location within the same or a different file.
Researchers: Accurate code snippet tracking is also essential
in many areas of software engineering research. Alencar da
Costa et al. [6] pointed out that bug-inducing analysis algo-
rithms (e.g., SZZ [7], [8], [9]) suffer from broken historical
links due to file moves and renames. This further affects
the results of defect prediction techniques and empirical
studies investigating the characteristics of bug-introducing
changes, which rely on the original SZZ algorithm or its
variants [10]. Jian et al. [11] claimed that fully automated
construction of bug repositories by mining bug-fixing com-
mits from version control systems often results in inaccurate

2

patches that contain many bug-irrelevant changes, such as
overlapping refactorings and non-essential changes. Inac-
curate bug-fixing patches negatively affect several research
areas related to bugs, such as fault localization, program
repair, and software testing [11]. Shen et al. [12] showed
that automatic source code merging tools often fail to track
the changed program elements correctly due to overlapping
refactoring operations, and thus are unable to perform the
auto-merging. The automatic migration of client software to
newer library and framework versions requires tracking the
updated API program elements (i.e., methods and fields)
from the source to the target version, extracting changes
in the API signatures, and adapting the API references
in the client’s code [13], [14], [15]. API program element
tracking has been performed both at commit level [16],
[17] and release level [18], [19]. However, fine-grained pro-
gram element tracking at the commit level may be more
accurate than release level [20], as comparing two releases
involves significantly more noise from overlapping changes
performed in all commits between the two releases.

The inherent limitations of the line-based text diff and
blame tools, which are predominantly used in the aforemen-
tioned software engineering tasks, motivated researchers
to develop techniques for tracking more accurately state-
ments/lines [21], [22], [23], [24], [25], [26], as well as pro-
gram elements, such as methods/functions, attributes and
classes [2], [27], [28], [29], [30], [31], [32], [33], in the commit
history of software repositories. These techniques deal with
changes that modify the name/signature or location of a
program element and can cause a split in its history. Hora
et al. [33] found that 25% of classes and methods have at
least one untracked change (i.e., move, rename, extract, inline
refactoring) in their histories. Despite the significant accu-
racy improvements brought by the aforementioned tools,
they still have some major limitations, which are discussed
in Section 4.

In this work, we extend CodeTracker 1.0 [36], a tool that
can track with high accuracy the change history of method
and variable declarations in the commits of a Java project
repository, by supporting the tracking of code blocks. Our
solution has been designed for imperative object-oriented
code and its current implementation supports Java code.
We consider as blocks all AST statements that can contain
nested statements within their body. The complete list of
such statements is shown in Table 1. Our solution does
not support the tracking of a sequence of statements that
are not nested under a control structure, as each statement
could have its own individual change history in this case.
However, if this sequence of statements is placed within an
AST block (i.e., opening and closing curly brackets {...}
without a control statement) our solution can track the
parent block statement.
Why is tracking code blocks more challenging than other
program elements?: Methods, fields, and types have a
unique signature, as the compiler does not allow to have
multiple program elements with the same signature within
the same scope. In contrast, code blocks are structures
without a unique signature. Moreover, it is possible to have
multiple textually identical blocks within the body of the
same method. Therefore, using simple textual similarity
metrics to match code blocks would potentially result in

multiple matching candidates. Theoretically, the nesting
depth of a code block along with its index in the parent list
of statements can be used to uniquely identify the location
of this code block within its container method. However,
such a location signature is sensitive to control re-structuring,
statement re-ordering, refactorings, and addition/deletion of code
blocks within a method. Therefore, in order to reliably track a
code block between two versions, we need a statement map-
ping algorithm that can robustly handle the aforementioned
edit operations, which change the structure of a method.

For this reason, we decided to depend on Refactoring-
Miner 3.0 [34], [35] to build our code block tracking solution.
RefactoringMiner is a mature tool maintained over a period
of 8 years by members of our Refactoring Research Group
at Concordia University. It currently supports the detection
of 100 different refactoring types and API changes and
has been established as the tool with the highest accuracy
and fastest execution time among competitive tools. Under
the hood, RefactoringMiner applies a statement mapping
process. The mapped statements and the AST node replace-
ments found within the mapped statements are then used
to infer refactoring operations.

1.2 Contributions

This work has the following novel contributions:
1) We create a new oracle with the change history of 1,280

code blocks declared within 200 methods from 20 pop-
ular open-source project repositories (10 methods from
each repository). To the best of our knowledge, this is the
first oracle in the literature including change history for
code blocks. Moreover, it complements existing oracles
that include the change history of the same 200 meth-
ods [2], [36] and the variables declared within the body
of these 200 methods [36].

2) We implement CodeTracker 2.0 to support the tracking of
code blocks. To the best of our knowledge, CodeTracker
is the only tool that can construct the change history of
code blocks in a fully refactoring-aware fashion. Our tool
can track code blocks transformed to a different AST type
(e.g., for changed to while loop), and supports forks in
the evolution history of a block occurring when two or
more different blocks are merged into one. We further
improve the performance of CodeTracker 1.0 [36] in Step
5 (i.e., the most time-consuming step of the approach)
by removing from the partial source code models for the
parent and child commits all pairs of method declara-
tions that are identical within files having the same file
path. CodeTracker is publicly available on GitHub [37]
and Maven central repository [38].

3) We create a Chrome browser extension [39] that can
be used to navigate and inspect the change history of
methods, variables, and code blocks directly on GitHub.
The same extension was used to create and validate our
oracle of block changes.

4) We develop a baseline based on the GumTree AST diff
tool [40], [41] to evaluate and compare the accuracy
of our tool. Moreover, we conduct experiments show-
ing that CodeTracker has considerably higher preci-
sion/recall and faster execution time than the baseline
tool based on GumTree.

3

2 APPROACH

This section presents our approach for modeling and recon-
structing the changes applied on a code block in the commit
history of a project.

2.1 Code Block Identifier

Jodavi and Tsantalis [36] defined each code element e to
be uniquely identified in the commit history of a software
repository with the following tuple:

Ie = (Ve, CONe, SIGe) (1)

where Ve is the version of e corresponding to the SHA-1 git
commit ID in which a change took place on code element e,
CONe is the signature of the container to which e belongs,
and SIGe is the signature of e.

Building upon this design, the identifier for a code block
b is defined as follows:

Ib = (Vb, CONb, SIGb) (2)

where Vb is the version of b corresponding to the commit ID
in which b changed. The container of b is the tuple:

CONb = (CONMb
, SIGMb

) (3)

where Mb is the method declaration in which b is declared,
and CONMb

and SIGMb
are the container and signature of

Mb, respectively.
The container of a method declaration M is the tuple:

CONM = (CONCM
, SIGCM

) (4)

where CM is the type declaration to which M belongs, and
CONCM

and SIGCM
are the container and signature of

CM , respectively, as defined by Jodavi and Tsantalis [36].
The container of a type declaration C is the tuple:

CONC = (SRCC , PKGC) (5)

where SRCC is the source folder path and PKGC is the
package name to which C belongs.

Finally, the signature of code block b is the tuple:

SIGb = (Tb, SIGpb
, SIGbody) (6)

where Tb, is the block type (e.g., for, if, try, switch),
SIGpb

is the signature of b’s parent statement, and SIGbody

is the signature of b’s body, which is essentially the hash
value of the code inside b’s body.

The signature of the parent statement pb has a recursive
definition as shown in the tuple:

SIGpb
= (SIGp′p , Tp, Ipb

) (7)

where p′ is the parent of p, Tp is the statement type of p, and
Ipb

is the index of b in p’s list of statements, respectively. If p
corresponds to the body of Mb (i.e., the method in which b
is declared), then p′ is null and SIGp′p is an empty string.

This information is necessary to create a unique identifier
for each code block, as there may exist multiple blocks
within a method that are textually identical, but have a
different location in the method’s control and execution flow
structure.

2.2 Block Tracking Process

Our solution relies on the statement mappings generated
by RefactoringMiner 3.0 [34], [35] to track a code block
in the commit history of a project, and report all changes
performed on it, even if the code block itself or its parent
container has been refactored. Despite the fast execution
time of RefactoringMiner (44 ms on median and 253 ms
on average per commit), running it on the entire commit
history of the project is computationally inefficient, as the
tracked program element is changing in a relatively small
subset of commits, and furthermore, it is not always nec-
essary to analyze all modified files in a commit to track a
single program element, especially in large commits involv-
ing thousands of modified files. Therefore, we developed
some heuristics and extended RefactoringMiner to perform
partial and incremental commit analysis.
Input: CodeTracker takes as input a Git repository URL, a
starting commit SHA-1 ID (or HEAD by default), the file
path containing the code block of interest, the type of the
code block (e.g., for, if, while, try, catch), and the start
line number of the code block in the file.
Output: The output is a graph, where the nodes rep-
resent code elements with their unique identifiers, and
the list of changes between two nodes is attached to
the edge connecting them. The change history is re-
turned in the form of a graph due to the possibility of
forks. A fork occurs when two or more different blocks
are merged into one. For example, two or more catch
blocks could be merged into a single catch block us-
ing the union type feature of Java for the handled ex-
ception types, e.g., catch(ClassNotFoundException |
IllegalAccessException ex). Another example is the
extraction of two or more duplicated code blocks from the
same or different methods into a single commonly used
method (i.e., EXTRACT METHOD refactoring). The detection
of forks is possible because RefactoringMiner 3.0 supports a
novel source code diff feature, namely multi-mappings (i.e.,
the case where a statement from the child commit has more
than one corresponding statement in the parent commit, and
vice versa). The change history of a code block starts from
the commit provided as input and goes all the way back to
its introduction commit. Therefore, by traversing the graph
from the start node, we can visualize the changes that took
place in each commit, and since the graph can contain forks,
every block that was potentially merged to the tracked block
can also be traced back to its introduction commit.

Fig. 1. Hierarchy of supported change kinds for code blocks.

4

Figure 1 shows the change type hierarchy supported
by CodeTracker for code blocks. BODY and EXPRESSION
changes can be considered as the “common denominator”
for all block types, as all of them have a body, and some
of them have expressions within parentheses. All other
changes are specific to certain block types. For example, all
changes related to catch and finally blocks are applica-
ble only for try blocks, and we considered them, because
such changes are not taking place within the try body or
the try resource expressions. The REPLACE PIPELINE WITH
LOOP change [42] is particularly interesting, because this is
the only transformation that converts a block statement (i.e.,
a loop statement with a body containing nested statements)
to a leaf statement (i.e., a statement without a body contain-
ing nested statements), as a pipeline is essentially a chain of
Java Stream API calls. The reverse change is also supported
(i.e., REPLACE LOOP WITH PIPELINE). These two changes
are significant, because if not supported, then we may miss
a large portion of the change history of a block, since
many projects have migrated traditional for loops with
nested conditional logic to the Stream API, and many IDEs
offer refactoring support to automate such migrations [43].
Finally, SPLIT BLOCK typically occurs when the conditionals
of an if statement are split into two or more separate
if statements, which are nested within each other (if the
original conditionals are combined with an && operator), or
are sequentially executed (if the original conditionals are
combined with an || operator). In such case, instead of
considering the separated if statements as newly added
blocks in the child commit, we resume the tracking process
for the original if statement in the parent commit.

One interesting feature to point out is that the block
tracking process also supports the transformation of blocks
from one type to another. For example, in one case that we
found, a switch statement was used to replace a rather
cumbersome if-else-if ladder and then add a few extra
cases [44]. We support continuous tracking in such in-
stances, as the switch cases are mapped to the correspond-
ing if conditionals, and the evolution chain continues. The
complete list of such transformations includes (the inverse
transformation of all these cases is also supported):

1) if-else-if to switch cases
2) if to while loop
3) iterator-based while loop to enhanced-for loop
4) for loop to while loop
5) for loop to forEach pipeline
6) for loop to if
7) try block to try-with-resources block
8) try block to synchronized block
9) catch block to finally block

It should be noted that the change types SPLIT BLOCK
WITH EVOLUTION HOOK and EXTRACTED shown in Figure
1, serve as evolution hooks, a concept introduced in our previ-
ous work [36], allowing to pause the change history when a
block is split or extracted from another method, respectively,
and leaving the option to the user of our tool to attach
on demand the remaining evolution sub-graph if needed.
This design choice allows us to avoid computing additional
change history, which might not be needed by the user, but
at the same time inform the user about the opportunity

Step 2
Use br signature as is

Step 3
Omit body hash value

from the container
method of br

Step 4
Find best matching

container method for br

Step 5a
Check if br container

was renamed or moved

Step 5b
Check if br itself was

moved to another file

Step 1
git log --follow

filePath

input

1. Git repository URL
2. Start commit SHA-1
3. File path
4. Block type
5. Start line number

For each commit r,
in which filePath

changed, locate br in
parent commit p (bp)

If at any step bp is
located, skip all

subsequent steps
and proceed with
the next commit.

If br is found as introduced
the process terminates.

method-body-level
refactorings

intra-file-method
refactorings

input

input

input

class-level
refactorings

inter-file-method
refactorings

input

Fig. 2. Overview of the block tracking process steps.

to further explore the change history, if and when desired.
However, in the current implementation, we automatically
continue tracking the change history when a block is split
or extracted from another method, and thus these two types
are not instantiated and reported. We consider code blocks
as independent program elements, which can be moved
between methods in the same file or even different files
with refactorings, such EXTRACT, INLINE, SPLIT and MERGE
METHOD, and thus their evolution history should not be
interrupted when they are relocated to a new container.

An overview of the tracking process is shown in Figure
2 and consists of the following steps:
STEP 1. Retrieve Git history for the specified file path:

As a starting point, we locate the code block of interest
(denoted by b) within the file and the start commit specified
as input by the user. If CodeTracker is not able to locate
a valid code block with the specified input parameters, it
throws a CodeElementNotFoundException and termi-
nates the tracking process.

If a valid code block is found, we then retrieve the git
history of the specified repository and obtain all the commits
in which the file had undergone a change. We collate these
commits and process them into the next step, ignoring the
rest of the commits that do not include modifications for
the specified file. This step avoids iteratively processing
each commit in the repository. The command used for this
process is git log --follow filePath, and by using
the follow flag, we obtain the commits in which filePath
is moved or renamed as well.
STEP 2. Check if the container method is unchanged:

After obtaining the set of commits in which the file
initially containing b is modified, we iterate through each
of these commits and construct a partial source code model
for the file containing the block in the current commit r
and the same file in the parent commit p, respectively.
Alongside the partial source code models, we also construct
the signatures (SIGMr , SIGbr) and containers (CONMr ,

5

CONbr) of the method containing the block and the block
itself in commit r, as illustrated in Section 2.1. We then
look into p’s model and search for a method with the same
signature as SIGMr

. If we do find a match, it means that
the container method has remained unchanged, and thus so
has the code block contained inside its body. As a result, it
is possible to find a block bp within Mp that has the same
signature as SIGbr , excluding the version number. We then
link the type declaration containers (CONMp

, CONMr
),

method declarations (Mp, Mr) and blocks (bp, br) to each
other and continue the tracking process. If a match is not
found, we move on to STEP 3.
STEP 3. Check if the container method body changed:

Reaching this step would indicate that the container
method Mr has undergone some change in child commit
r. Therefore, in this step, we check if the method remains in
the same file in the parent commit p and has only undergone
a change in its body, that caused a change in its identifier. We
do this by relaxing the method identifier when searching for
a match. More specifically, by omitting the method body’s
hash value, SIGbody , we can now compare to see if there
is a method that matches this identifier in commit p. If we
do find a match, this would indicate that the body of the
method has changed, but its signature (i.e., method name,
parameter type list, return type) remained the same. In turn,
the block contained inside the body of this method could
potentially have also changed.

At this point, we execute RefactoringMiner on the partial
source code models for commits r and p constructed in
STEP 2. We then check to see if the block br is involved in
any method-body-level refactorings, such as REPLACE LOOP
WITH PIPELINE, INVERT CONDITION, SPLIT CONDITIONAL,
MERGE CONDITIONAL, MERGE CATCH. If that is the case,
we report the appropriate refactoring as a change on the
block and continue the tracking process with the match-
ing statement bp in commit p reported in the refactoring
instance. Note that merge-related refactorings will introduce
a fork in the evolution history of the tracked block.

In the case none of the aforementioned refactorings were
performed involving br, we obtain the statement mappings
returned by RefactoringMiner and check if br has been
mapped to a statement bp in the parent commit p. Upon
finding a match, we construct the unique identifiers of br
and bp and link the two code element nodes in the graph.
We then check if the contents of the block have remained
the same. If the expression and/or body have changed, we
report an EXPRESSION CHANGE and BODY CHANGE, respec-
tively. If the block is a try block, we separately compare
the contents of the catch blocks. We also report catch
blocks that do not have a mapping in the parent/child
commit with a CATCH BLOCK ADDED/REMOVED change,
respectively. This approach is also adopted for finally
blocks that may be present within the try statement.

If we don’t find a match for br in the above process, we
can suspect that br may have been introduced in method
Mr . There are two possible scenarios. Either br corresponds
to new functionality added in method Mr , or br has been
moved to Mr by inlining a method originally called by Mp.
To verify the latter scenario, we check if RefactoringMiner
reported an INLINE METHOD with Mr as the target, and br
has been matched with a block bp from the inlined method.

In that case, the tracking will continue with block bp located
in the inlined method from commit p. To verify the first
scenario, we check through RefactoringMiner’s list of un-
mapped blocks present in Mr and then check if any of those
correspond to br . If that is the case, we can safely say that
the block has been Introduced in commit r as part of a newly
added functionality of a bug fix. If br is not found within this
list, we need to move on to STEP 4, where we explore the
possibility of br belonging to a method whose signature (i.e.,
parameter type list, method name, return type) changed, or
method Mr is introduced as the outcome of a local intra-
file-method refactoring, such as EXTRACT METHOD, MERGE
METHOD, SPLIT METHOD.
STEP 4. Check if the container method signature changed:

At this point, we utilize the information extracted by
RefactoringMiner in STEP 3 after its execution on the partial
source code models for commits r and p. RefactoringMiner
initially matches the method pairs within type declaration
containers (CONMp , CONMr) with identical signatures
(i.e., method name and parameter type list), and then com-
pares all combinations of the remaining unmatched meth-
ods from CONMr with the remaining unmatched methods
from CONMp to find the best matching method pairs with
changes in their signatures. If Mr is found in a matching
method pair (Mp, Mr) with method signature changes (e.g.,
RENAME METHOD, ADD PARAMETER, CHANGE PARAME-
TER TYPE refactoring), we obtain the statement mappings
returned by RefactoringMiner and check if br has been
mapped to a statement bp in the parent commit p. If indeed a
statement mapping is found for br , we construct the unique
identifiers of br and bp, and link the two code element nodes
in the graph. Otherwise, we utilize the intra-file-method
refactoring information extracted by RefactoringMiner to
examine if any of the remaining unmatched methods from
CONMr has been extracted from a pair of matched method
pairs (i.e., EXTRACT METHOD refactoring), or if any subset
of the remaining unmatched methods from CONMp have
been merged to a single remaining unmatched method
from CONMr (i.e., MERGE METHOD refactoring), as well
as the reverse scenario (i.e., SPLIT METHOD refactoring). If
Mr is found being involved in any of the aforementioned
refactoring scenarios, we obtain again the statement map-
pings included in the corresponding refactoring instance
and check if br has been mapped to a statement bp in the
parent commit p. If a statement mapping is found for br , we
construct the unique identifiers of br and bp, link the two
code element nodes in the graph, and continue the tracking
process with block bp from commit p.

If no matches are found in this step, then we move on
to STEP 5, where we check if bp is located in a file other
than filePath in which br is located, since there is a
possibility that the container method Mr has been moved
to filePath from another file, or the type declaration
CONMr

containing Mr has been renamed or moved to
another package.
STEP 5. Include additional files in the partial models:

This step is the most computationally expensive step of
the tracking process, as we keep the partial source code
model for commit r as is, but add all modified and removed
files in commit p to p’s source code model (i.e., we create
the complete source code model for commit p) to enable

6

the detection of inter-file-method refactorings, such as PULL
UP, PUSH DOWN, MOVE METHOD, as well as class-level
refactorings, such as MOVE, RENAME, EXTRACT, MERGE,
SPLIT CLASS. To avoid the unnecessary processing of files
and speed-up the tracking process, we exclude from p’s
source code model all files with identical contents, and files
with only trivial changes in comments (e.g., license headers)
and import declarations [45]. Moreover, we support two
scenarios in which additional files need to be included in
r’s source code model to correctly track br:

1) br is copied into a new file: In some projects, which
are libraries with public APIs, we found that developers
tend to copy the methods they want to deprecate into a
new file, and then declare the original methods or their
container class as @deprecated. Let us assume that Mr

(i.e., the method containing br) is copied in type declaration
Tr in commit r from type declaration T ′

p in commit p.
Without additionally including the original type declaration
containing the copied method T ′

r to r’s source code model,
then Mr would be detected as moved from T ′

p to Tr , instead
of introduced in Tr as a new method. To address this issue
we use a regular expression to check if other modified files
in commit r include a @deprecated annotation with a
@link to Mr’s signature (e.g., copy methods copied from
IOUtils to CopyUtils in project commons-io [46]), or
a @deprecated annotation with a reference to Tr name
(e.g., deprecated classes IOUtil and EndianUtil refer-
ring to newly added classes IOUtils and EndianUtils,
respectively, in project commons-io [47]) and add them
to r’s source code model. Moreover, we check if other
modified files in commit r have the same name as Tr , but
a different package (e.g., methods copied from deprecated
class org.apache.commons.lang.NumberUtils to new
class org.apache.commons.lang.math.NumberUtils
in project commons-lang [48]) and add them to r’s source
code model.
2) br is extracted to a new file: In this scenario, developers
move some members of an existing class into a new class,
and instantiate the new class into the origin class in order
to access the moved functionality (i.e., EXTRACT CLASS
refactoring), or extend the origin class in order to inherit the
non-moved functionality (i.e., EXTRACT SUBCLASS refactor-
ing). Let us assume that Mr (i.e., the method containing
br) is moved in type declaration Tr in commit r from type
declaration T ′

p in commit p. Without additionally including
the original type declaration containing the moved method
T ′
r to r’s source code model, then T ′

p would be detected
as renamed to Tr (if multiple members from T ′

p have been
moved to Tr), instead of Tr being extracted from T ′

p, and
T ′
r being matched with T ′

p. To address this issue we use
a regular expression to check if other modified files in
commit r create an instance of Tr (e.g., methods moved
to extracted class SourceFileInfoExtractor from class
ProjectResolver in project javaparser [49]), or are ex-
tended by Tr (e.g., methods pushed down to extracted sub-
class AbstractNestablePropertyAccessor from ori-
gin class AbstractPropertyAccessor in project spring-
framework [50]) and add them to r’s source code model.

After including any additional files needed in r’s source
code model, we go through all pairs of files that belong in

both partial source code models for commits r and p and
remove all pairs of method declarations that are identical, as
these methods cannot serve as candidates for a move. This
optimization of the partial source code models reduces the
processing time for RefactoringMiner’s execution and also
reduces the chances of mismatching Mr with an irrelevant
but rather similar method from commit p.
STEP 5A. Check if the container class is moved/renamed:

After setting up the partial source code models for
commits r and p, we execute RefactoringMiner again. First,
we check all class-level refactorings (e.g., MOVE CLASS, RE-
NAME CLASS) to find a pair of type declarations (CONMp

,
CONMr

) involving CONMr
. If such a pair is found, we

obtain the corresponding class-level diff object from Refac-
toringMiner, which includes all pairs of matched methods.
We then check if Mr is included in the matching method
pairs. If so, we obtain the statement mappings returned
by RefactoringMiner for the (Mp, Mr) method pair, and
check if br has been mapped to a statement bp in the parent
commit p. If indeed a statement mapping is found for br ,
we construct the unique identifiers of br and bp, and link
the two code element nodes in the graph.
STEP 5B. Check if br is moved to another file:

If there is still no match found for br , this is an indication
that either br itself or its method container Mr has been
moved to another file through an EXTRACT AND MOVE
METHOD or MOVE METHOD refactoring, respectively. To
assert this scenario, we check in all inter-file-method refac-
torings reported by RefactoringMiner if method container
Mr is involved. If so, we obtain the statement mappings in-
cluded in the corresponding refactoring instance and check
if br has been mapped to a statement bp in the parent
commit p. If indeed a statement mapping is found for br ,
we construct the unique identifiers of br and bp, and link
the two code element nodes in the graph.

If by the end of STEP 5 there is still no match found for
br, we report that br has been Introduced in commit r as part
of a newly added method.

Steps 2-5 are iteratively executed until the tracked block
is found as Introduced, or until we reach the first commit of
the project, which means that the tracked block has existed
since the beginning of the project.

2.3 Tracking Algorithm Completeness

Each step of our algorithm has been designed to address a
specific scenario related to the possible location and trans-
formation state of the tracked block. Each step incrementally
broadens the search scope for the tracked block by comput-
ing additional refactoring information and including more
relevant files in the analysis.
1) STEP 2 covers the scenario where the method containing
the block remained unchanged. Note that the file containing
the method is changed, otherwise it would not be returned
by the git log command in STEP 1.
2) STEP 3 covers the scenario where the method containing
the block preserves an identical signature, but its body has
changed. There are 4 possible sub-scenarios:

a) The tracked block remained unchanged, i.e., the changes
affected other parts of the method.

7

b) The tracked block had a change within its own body, or
conditional expressions.

c) The tracked block has been migrated to a different block
structure. This sub-scenario includes all 9 block-to-block
transformations explained in Section 2.2.

d) The tracked block has been refactored with method-body-
level and block-specific refactorings, such as REPLACE
LOOP WITH PIPELINE, SPLIT CONDITIONAL, MERGE
CONDITIONAL, INVERT CONDITION, MERGE CATCH,
etc., which affect the control structure of the method.

3) STEP 4 covers the scenario where the tracked block
belongs to a method with a different signature within the same
file. There are 2 possible sub-scenarios:

a) The signature of the method containing the block changed,
due to an addition/deletion of parameter, change of
parameter type or return type, change of method name,
etc. This method already existed before.

b) Some intra-file-method refactoring affected the tracked
block. For example, the tracked block could have been
extracted from another method (possibly more than one
method in case of duplicated code extraction), or the
tracked block could be located in a new method re-
sulting after merging two or more previously existing
methods, or the tracked block could be located in a
new method resulting after splitting a previously ex-
isting method into two or more methods. In all these
scenarios, the tracked block is located in a method that did
not exist before.

4) STEP 5 covers the scenario where the tracked block is no
longer located in the same file (i.e., a file with the same file
path). It is divided in two sub-steps.

a) STEP 5A covers the case where the file containing the
block has been moved/renamed, or it has been extracted
from another file, or resulted after merging two or more
previously existing classes, or resulted after splitting a
previously existing class into two or more classes. In all
these cases, the tracked block is located in a file that did
not exist before with the same file path.

b) STEP 5B covers the case where the block itself has
been moved to another pre-existing file. This can be
done either with an inter-file-method refactoring moving
the entire method containing the block (MOVE METHOD,
PULL UP METHOD), or an inter-file-method refactoring
moving part of the method containing the block (EXTRACT
AND MOVE METHOD).

Collectively, the aforementioned steps cover every possible
scenario regarding the location of the tracked block. More-
over, the aforementioned refactorings detected by Refac-
toringMiner cover all possible ways a block and its con-
tainer method can be refactored according to Fowler’s cata-
logues [42], [51].

2.4 CodeTracker API and Chrome Browser Extension

CodeTracker [37] is available in Maven Central Reposi-
tory [38] and can be used as a library within Java projects.
It offers a set of fluent APIs for tracking code blocks,
methods, variables, and attributes. Figure 3 is a code snippet
demonstrating the fluent API usage for block tracking.
Lines 1-3 clone the repository checkstyle into the local

directory tmp/checkstyle, if the project is not already
cloned, and create the object repository as an instance
of the JGit library Repository type. Lines 5-14 create an
instance of BlockTracker using the fluent builder pat-
tern. Line 16 executes the tracking process for the specified
blockTracker. Lines 18-30 iterate over the HistoryInfo
elements within blockHistory and print commit and
change related information.
1 GitService gitService = new GitServiceImpl();

2 try(Repository repository = gitService.cloneIfNotExists("tmp/checkstyle",

3 "https://github.com/checkstyle/checkstyle.git")){

4

5 BlockTracker blockTracker = CodeTracker.blockTracker()

6 .repository(repository)

7 .filePath("src/main/java/com/puppycrawl/tools/checkstyle/Checker.java")

8 .startCommitId("119fd4fb33bef9f5c66fc950396669af842c21a3")

9 .methodName("fireErrors")

10 .methodDeclarationLineNumber(384)

11 .codeElementType(CodeElementType.ENHANCED_FOR_STATEMENT)

12 .blockStartLineNumber(391)

13 .blockEndLineNumber(393)

14 .build();

15

16 History<Block> blockHistory = blockTracker.track();

17

18 for(History.HistoryInfo<Block> historyInfo : blockHistory.getHistoryInfoList()) {

19 System.out.println("==");

20 System.out.println("Commit ID: " + historyInfo.getCommitId());

21 System.out.println("Date: " +

22 LocalDateTime.ofEpochSecond(historyInfo.getCommitTime(), 0, ZoneOffset.UTC));

23 System.out.println("Before: " + historyInfo.getElementBefore().getName());

24 System.out.println("After: " + historyInfo.getElementAfter().getName());

25

26 for(Change change : historyInfo.getChangeList()) {

27 System.out.println(change.getType().getTitle() + ": " + change);

28 }

29 }

30 System.out.println("==");

31 }

Fig. 3. Fluent API for block tracking
Moreover, CodeTracker is available as a Chrome browser

extension [39], which integrates with the GitHub web
UI to provide a visual overlay with code change his-
tory for any code element present on GitHub. Figure 4
shows a screenshot visualizing the change history of
method createChecker from project checkstyle. After
installing the Chrome extension, the user can obtain the
change history for a code element (method, variable, at-
tribute, or code block) by loading a GitHub commit page
or file blob page in the browser and double-clicking on the
desired code element. When the user selects a code element,
we capture the mouse event and obtain the text selected by
the user. This selection should be the name of a method,
attribute, variable, or a code block Java keyword (e.g., if,
for). By accessing the DOM, we then pick up the line
at which the code element is present and capture the line
number. After this, we move up in the DOM until we reach
the file container of the line, which contains the file path
of the class containing the selected code element. Finally,
we capture the commit from the webpage URL, along with
the repository name. All this information is then passed to
CodeTracker’s REST API, which is run on a Java Web Server
and can serve CodeTracker’s functionalities over the web.
The REST API endpoint GET codeElementType takes as
input the information provided above, and returns the type
of code element being selected, which is then displayed
to the user on the side panel along with the name of the
code element, as shown in Figure 4 top-left corner (i.e.,
Selected Method createChecker). This helps provide
instant feedback to the user about the validity of her se-

8

Fig. 4. CodeTracker Chrome browser extension visualizing the change history for a selected program element.

lection with just a click. When the user makes an invalid
selection, e.g., an incomplete method name, an unsupported
Java keyword, an operator, or multiple code elements at
once, we gray out the track button using the information
obtained from this API endpoint. When the user has made
a valid selection the “Track” button is enabled. Clicking on
the “Track” button initiates the tracking process using Code-
Tracker, via its REST API. Once the tracking data is obtained
from the REST API, we model the JSON response into a
graph, which is essential to render a visual representation
of the change history evolution, as displayed on the left-side
panel in Figure 4.

Fig. 5. Hovering over a node provides more semantic information about
the changes that occurred on the tracked code element.

Each green node on the left-side panel indicates a com-
mit in which one or more changes occurred on the tracked
code element. The nodes are sorted chronologically starting
from the most recent commit (on the top) and ending
with the commit in which the tracked code element was
introduced (on the bottom). As seen in Figure 5, when the
user hovers their cursor over a node, a tooltip appears with

a semantic description of the change(s) and commit-related
information, such as the commit author and time. If the
user clicks on a node, the corresponding GitHub commit
webpage will load and the user will be navigated to the
exact line of the code element within this specific commit,
by automatically scrolling and expanding hidden parts of
the GitHub diff if needed. This feature allows the user to
quickly inspect the changes, and possibly confirm a feature
implementation, a bug fix, a bug introduction, or some
behavior-preserving changes due to refactorings.

The ease of use was a key element in mind during the
design and development of the Chrome browser extension,
and our approach emphasizes this aspect. A user can obtain
the entire code change history for a code element with just
two clicks (i.e., a double-click to specify the code element
of interest and a click on the “Track” button to initiate the
tracking process), and can navigate to the exact location of
the tracked code element at any commit with one additional
click. This streamlined process aims to make the usage
of CodeTracker as a code change history generator more
efficient. Moreover, as discussed later on in Section 3.1, we
used a slightly modified version of the Chrome browser
extension to validate and create our block change oracle.

2.4.1 How can the Chrome extension help answering com-
mon developer questions about the evolution of blocks

The questions that follow have been listed as commonly
asked questions by professional developers in various sur-
veys [3], [4], [5]:
“Where was this block last changed?” The top node on the left-
side panel in Figure 4 shows the commit where the selected
block was last changed.

9

“When, how, by whom, and why was this block inserted?” The
bottom node on the left-side panel in Figure 4 shows the
commit where the selected block was initially introduced.
Hovering over the node (Figure 5) shows the developer
that first introduced the block, the date the block was
introduced, and a more fine-grained description of the block
introduction, explaining whether the block was introduced
in an already existing method, or as part of a newly added
method. Clicking on the node will load the corresponding
commit in the browser navigating the user to inspect how
exactly the block was added in its container method. The
why could be perhaps answered by the text or linked issues
in the commit message, but CodeTracker does not offer any
particular help to find why the block was introduced.
“How has this block changed over time?” All nodes shown on
the left-side panel in Figure 4 represent the change history
of the selected block. Hovering over each node (Figure 5)
shows the developer that performed the change, the date
the change was committed, and a more fine-grained descrip-
tion of the change(s) including block-to-block migrations and
block-specific refactorings. Clicking on a node will load the
corresponding commit in the browser navigating the user
to inspect how exactly the block changed.

3 EVALUATION
In our evaluation, we investigate the following research
questions:
RQ1. What is the accuracy of CodeTracker in block tracking
and how does it compare to that of a baseline approach
based on the GumTree AST diff tool?
RQ2. How does the execution time of CodeTracker compare
to that of the baseline?
3.1 Oracle creation
Grund et al. [2] created an oracle with the change history of
200 methods from 20 popular open-source project reposito-
ries. In particular, they used 100 of these methods (training
set) to optimize the threshold values used in CodeShovel
(i.e., their tool extracting method change history), until they
achieved 100% training accuracy, and the remaining 100
methods (testing set) to validate the accuracy of CodeShovel.

Later on, Jodavi and Tsantalis [36] re-validated the oracle
by Grund et al. and corrected some discrepancies. More
specifically, they found that 18 methods from the training
set and 9 methods from the testing set were matched with
a method extracted from their body at some point in their
change history. As a result, the Grund et al. oracle includes
the change history of the extracted method, instead of the
originally tracked method. Apart from correcting the afore-
mentioned discrepancies, Jodavi and Tsantalis extended the
oracle with the change history of the local variables and
parameters declared in these 200 methods (967 variables in
the training set and 378 variables in the testing set).

In this work, we further extend this oracle with the
change history of 1,280 blocks included in these 200 meth-
ods (964 blocks in the training set and 316 blocks in the
testing set). To validate the block changes, we combined two
complementary approaches. First, we leveraged information
from the method tracking oracle, as we know for sure that
the commits in which a block changed are a subset of the
commits in which its container method changed. Second,
we slightly modified our extension for the Chrome browser

discussed in Section 2.4 to help us in the change validation
process, as shown in Figure 6. The human validator (i.e.,
one of the paper authors) can navigate over the commits by
clicking on the nodes appearing on the left sidebar shown in
Figure 6. The Chrome extension loads the commit selected
by the validator and automatically scrolls the webpage to
the location of the block on the right side of the diff (this
might require expanding hidden parts of the source code
diff until the block becomes visible). The validator can
visually inspect the source code diff and confirm or reject the
left-side matching block changes reported by CodeTracker.

To consider a pair of blocks (from the left and right
side, respectively) as a true match in the ground truth,
the blocks should be sharing some common functionality.
This means that some part of the code within their bodies
and conditional expressions should implement the same
functionality, even if this code is not structurally similar
(i.e., refactored), or is using different/alternative APIs. On
the contrary, if the validated blocks implement a different
functionality, then we do not consider this pair as a true
match, even if the blocks have the same location in the
control structure of their container method.

If the validator confirms a change, this change is per-
sisted in a JSON file. Otherwise, the validator manually
edits the JSON file with an entry specifying the left-side
block that the currently tracked right-side block should have
been matched with. In such a case, to resume the validation
process, CodeTracker is re-executed with the correct left-
side block as input starting from the parent of the commit
in which the error was found. The validation process com-
pletes when one of the following termination conditions is
met:
1) The block tracking reaches the commit in which the

container method was introduced. This means that the
block has existed since the introduction of its container
method.

2) The block is introduced in a commit before reaching the
container method introduction commit. This means that
the block was added as part of some new functionality
implemented in the container method.

Fig. 6. Chrome browser extension used for validating the oracle.

We applied this process for each one of the 1,280 blocks
included within the body of these 200 methods (the num-
ber of instances per block type is shown in Table 1), and
collected a total of 6,093 changes, detailed in Table 2, which
constitute our block change oracle. Figure 7 shows the size
distribution for the 1,280 blocks in their corresponding start
commit (the y-axis is in logarithmic scale and the units
represent lines of code). The median block size is five lines,
while the average size is 12.24 lines. The largest block size is
201 lines, while there are 21 single-line blocks in our dataset.

10

Overall, the duration of the validation process was three
person-months.

TABLE 1
Number of instances per block type included in the oracle

Block Type Number of Instances

if statement 929
enhanced-for statement 87
try block 81
catch clause 80
while statement 34
synchronized statement 23
for statement 18
finally block 15
switch statement 10
do-while statement 3

Total 1280

TABLE 2
Number of instances per change type for blocks

Change Type Training set Testing set

Body Change 3310 536
Introduced 964 316
Expression Change 614 120
Catch Block Change 124 40
Finally Block Change 23 2
Block Split 14 0
Block Merge† 11 3
Catch Block Added 6 6
Finally Block Added 4 2
Catch Block Removed 2 3
Finally Block Removed 4 1
Replace Pipeline With Loop 1 0
Replace Loop With Pipeline 1 0

Total 5067 1026
† not included in the ground truth to ensure a fair compari-

son with the baseline (Section 3.2.1, last paragraph)

Mean: 12.24

Median: 5.0

Max: 201

1

10

100

Fig. 7. Block size (lines of code) distribution in start commit.

3.2 Baselines
In our previous work [36], we compared the accuracy of
CodeTracker in extracting the change history of methods
against CodeShovel [2], as it was the current state-of-the-
art at the time. However, by design, CodeShovel cannot be
easily extended to extract the change history of code blocks,
as it relies on method body textual similarity to match a pair
of methods, and thus the control structure similarity is not
taken into consideration.

3.2.1 Block tracking baseline based on GumTree
To create a competitive baseline for comparing our accuracy,
we relied on GumTree 3.0 [40], [41] for providing block
mappings, which is the current state-of-the-art Abstract
Syntax Tree (AST) diff tool. GumTree takes as input a pair of
source code files, represented as Abstract Syntax Trees, and
generates AST node mappings between the two trees, which
are then used to compute an edit script that can transform
one AST into the other.

The GumTree-based baseline implementation is essen-
tially identical to the way CodeTracker works, but instead
of using RefactoringMiner to obtain statement mappings, it
uses GumTree. GumTree can process only a pair of source
code files and does not support commit-level analysis to
find AST node mappings between different files in the case
of a tracked block being moved to another file. To assist
GumTree in this scenario, we adopted the two-round staged
tree-matching approach proposed by Fujimoto et al. [52].
When a block is moved from file f1p in the parent commit p
to file f2r in the child commit r, in the first stage of matching
we execute GumTree with the file pairs (f1p , f1r) and (f2p ,
f2r) as input. For the second stage of matching, we execute
GumTree with the unmatched nodes from f1p and the
unmatched nodes from f2r as input. This approach ensures
that only the remaining unmatched nodes can be potentially
matched in the second stage, and is applicable only if
files f1 and f2 exist in both parent and child commits. To
avoid applying this approach for all combinations of file f2r
with the parent commit files, we utilize RefactoringMiner to
detect the MOVE METHOD, EXTRACT AND MOVE METHOD,
SPLIT CLASS, or MERGE CLASS refactoring involving the
moved block, and provide directly the parent commit file
(i.e., f1p) from which the block was moved.

Moreover, Gumtree is designed under the constraint that
a given AST node can only belong to one mapping, and thus
it cannot match a merged block with each one of the original
blocks being merged, but just with one of them. To ensure
a fair comparison with the baseline, we did not include in
the ground truth the change histories for all forks (i.e., for
each one of the blocks being merged), but we included only
the change history of the fork corresponding to the original
block that has the largest overlap (in source lines of code)
with the merged block. As shown in Table 2, our dataset
includes 14 instances of block merges, 12 of them are merged
if statements and two of them are merged catch blocks.
The source code of the GumTree-based baseline is publicly
available [53].

3.2.2 Git-log baseline
As a second baseline, we use the git log -L command,
which according to Git documentation [54] it can “trace
the evolution of the line range given by <start>,<end>
within the <file>”. Grund et al. [2] used a similar ap-
proach to compare the accuracy of CodeShovel in tracking
the change history of method declarations by providing as
arguments the method start and end lines.

In our implementation, we first checkout the repositories
to their corresponding start commit, and then execute the
git log -L command for each block with the start and
end line of the block in the start commit (this range includes
the body of the block), and the file path that the block is

11

located in the start commit. The command returns a list of
commit SHA-1 ids, based on which we can compute the
precision and recall of this baseline at commit level. In some
cases, we noticed that git log -L returns commits pre-
ceding the block introduction commit in the ground truth,
which means that it continued tracing the specified line
range beyond the commit where the block was introduced.
To ensure a fair comparison, we decided to exclude such
reported commits from the computation of precision and re-
call, as we consider that git log -L succeeded in tracing
the block back to its introduction. Moreover, after some ex-
perimentation with git log -L, we realized that the trac-
ing is getting derailed in commits where the file containing
the tracked block has been entirely reformatted with CRLF
(i.e, line endings) and/or indentation (i.e., tabs to spaces)
changes [8]. To detect such commits, we execute for each re-
ported commit the git diff command with and without
the --ignore-all-space and --ignore-blank-lines
arguments enabled, and check whether over 95% of the
file lines are reformatted. In all these cases, we re-run git
log -L starting from the reformatting commit by manually
specifying the line range of the tracked block in that commit,
and append the newly reported commits to the subset of
commits returned by the previous execution of the com-
mand up to the reformatting commit. The source code of
the git log baseline is publicly available [55].

We also considered using the git blame command,
which is in the core of the SZZ algorithm [7], [8], [9], [10], as
a baseline. However, git blame operates at line level, but
a block of code spans in multiple lines. Therefore, it is not
the ideal baseline for our experiment, as each line within a
block may have its own individual change history.

3.3 RQ1: Block Tracking Accuracy

The precision and recall of CodeTracker and GumTree-
based baseline were computed at two levels of granularity,
namely commit level (i.e., finding the commits in which a
code block changed), and change level (i.e., finding the kinds
of changes that occurred in the commits in which a code
block changed). It should be emphasized that although the
results will be presented separately for two datasets, namely
training and testing sets, none of the tools was “trained” (i.e.,
optimized) on the training set. These datasets are inherited
by Grund et al. [2], who used 100 methods (training set) to
optimize the threshold values used in CodeShovel (i.e., their
tool extracting method change history), until they achieved
100% training accuracy, and the remaining 100 methods
(testing set) to validate the accuracy of CodeShovel. Both
CodeTracker and GumTree-based baseline do not depend
on thresholds to compare the similarity of program elements,
and thus there is no need for training to tune the thresholds.
We preserved the two datasets for the sake of compatibil-
ity with previous works that were evaluated on the same
datasets [2], [36].

By design, CodeTracker heavily depends on the state-
ment mapping information generated by RefactoringMiner
to match the currently tracked block from the child commit
to the corresponding block from the parent commit. As a
result, the false positives (i.e., invalid changes) are due to
incorrect statement mappings, while the false negatives (i.e.,

missed changes) are due to RefactoringMiner’s inability to
match some pairs of blocks.

TABLE 3
Block tracking precision/recall at commit level

Dataset Tool TP FP FN Precision Recall

Training
GumTree 3873 220 840 94.62 82.18
git log -L 3922 1419 791 73.43 83.22
CodeTracker 4701 8 12 99.83 99.75

Testing
GumTree 862 51 89 94.41 90.64
git log -L 808 270 143 74.95 84.96
CodeTracker 950 4 1 99.58 99.89

Overall
GumTree 4735 271 929 94.59 83.60
git log -L 4730 1689 934 73.69 83.51
CodeTracker 5651 12 13 99.79 99.77

Based on the results shown in Table 3, our tool, Code-
Tracker, has a consistent performance in both training and
testing sets at commit level, with an overall precision of
99.79% and recall of 99.77%. The GumTree-based baseline
has a lower overall precision of 94.55%, which remains
consistent in both training and testing sets. However, there
is a considerable difference in recall (8.5%) for the GumTree
baseline between the training set (82.15%) and the testing set
(90.64%). This difference can be attributed to two reasons:
1) The missed block mappings are encountered earlier in

the commit change history of the training set compared
to the testing set, leading to a longer history of subse-
quent commits being unprocessed (i.e., false negatives)
due to the early miss. As a matter of fact, the training set
has longer commit histories (median: 52.5, average: 59.3
commits) compared to the testing set commit histories
(median: 31.5, average: 48 commits). Thus, an early miss
in the training set costs more false negatives than an early
miss in the testing set.

2) GumTree is a language-agnostic AST diff tool, and thus
it can only match nodes of the same AST type. As
a result, all cases where a control structure is trans-
formed to another type (e.g., for loop to while loop)
are missed mappings for the GumTree-based baseline,
as the AST nodes in these mappings have a different
type. The training set has a total of 16 such control
structure transformations, while the testing set has only
6. As a result, there is a larger number of broken change
histories in the training set than in the testing set due to
control structure transformations, consequently leading
to a larger number of unprocessed subsequent commits
(i.e., false negatives).
As shown in Table 3, git log -L has a recall that

is quite close to that of the GumTree-based baseline, but
has a precision that is considerably lower than the other
tools. By inspecting some results in which git log -L
has a large number of false negatives, we found that it
prematurely ends the tracing process when the methods in
a file get reorganized (i.e., reordered) and the block belongs
to a method shown as newly added code in git diff, as
happened in project checkstyle for method fireErrors()
[56]. On the other hand, CodeTracker and the GumTree-
based baseline are able to correctly match methods within
a file, even if they have been reordered. Furthermore, by
inspecting some results in which git log -L has a large
number of false positives, we found that it completely
derails the tracing process when the control flow within the

12

body of a method is restructured (e.g., method configure
in hibernate-orm [57], method diff in jgit [58]), or when
the tracked block is moved to a distant location within the
file due to EXTRACT METHOD refactoring (e.g., extracted
method applyRemovedDiffElement in javaparser [59]).

TABLE 4
Block tracking precision/recall at change level

Dataset Tool TP FP FN Precision Recall

Training GumTree 3933 493 1135 88.86 77.60
CodeTracker 5042 23 26 99.55 99.49

Testing GumTree 865 114 161 88.36 84.31
CodeTracker 1021 8 5 99.22 99.51

Overall GumTree 4798 607 1296 88.77 78.73
CodeTracker 6063 31 31 99.49 99.49

Based on the results shown in Table 4, our tool, Code-
Tracker, has a consistent performance in both training and
testing sets at change level, with an overall precision and re-
call of 99.5%. This is a remarkable accuracy that can mainly
attributed to the highly accurate statement mappings gen-
erated by RefactoringMiner 3.0. The accuracy difference be-
tween the GumTree-based baseline and CodeTracker is even
more intense at the change level, as CodeTracker has +11%
in precision and +21% in recall compared to the baseline.
Next, we will discuss a few indicative false positives and
false negatives from both tools to understand better their
weaknesses.

Figure 8 shows a false negative case reported by
CodeTracker in project checkstyle [60]. In this commit, the
entire body of block if(mAllowUndeclaredRTE)
ranging between lines L611-621 has been deleted
and replaced with a single method call reqd =
!isUnchecked(documentedClass); in line R619.
RefactoringMiner requires at least one matched pair of
statements within the bodies of two blocks (i.e., child
statements) in order to match the parent blocks. In this
case, it was not able to establish any child statement
mappings, and thus failed to match the parent if blocks
L610-622 7→ R618-620. Although, it supports the scenario of
having the entire body of a block being extracted/inlined
to/from a method, in this case isUnchecked() in
an already existing method inherited from superclass
AbstractTypeAwareCheck. Moreover, RefactoringMiner
can exceptionally match blocks without any child statement
mappings if they have identical expressions, but in this case
the condition mAllowUndeclaredRTE was updated by
adding && documentedClass != null.

Insight #1: CodeTracker is unable to match two blocks
when 3 conditions hold at the same time:
1) There are zero pairs of nested statements matched

within the block bodies
2) The blocks have non-identical conditional expressions
3) RefactoringMiner cannot establish that the statements

within the body of one block have been extracted
to or inlined from another method (i.e., there is an
unmatched statement within the other block body
calling an extracted or inlined method).

Figure 9 shows a false positive case reported by Code-
Tracker in project commons-lang [61]. In this commit, there

is some control re-structuring that eliminates the if state-
ment ranging between L612-617 and introduces a new if
statement ranging between R608-610. At the same time,
the if statement ranging between L614-616 is moved to a
shallower nesting level ranging between R606-612. Refac-
toringMiner finds two candidate mappings for L614-616,
namely L614-616 7→ R608-610 and L614-616 7→ R606-612.
When there are multiple candidate mappings Refactoring-
Miner uses some ranking criteria to select the best one.
The mapping L614-616 7→ R608-610 has two if statements
with an identical body (i.e., return d;), and thus its child
match ratio is perfect (i.e., equal to 1). On the other hand, the
mapping L614-616 7→ R606-612 has a child match ratio equal
to 0.25, because only one out of four child statements in the
body of R606-612 is matched. Therefore, mapping L614-616
7→ R608-610 is ranked higher than the other one. However,
the correct mapping is L614-616 7→ R606-612, because the
expressions of the corresponding if statements are equiv-
alent by simplification (i.e., in R606-612 the ! operator and
the outermost parenthesis are eliminated).

Insight #2: CodeTracker will mismatch two blocks when
3 conditions hold at the same time:
1) The control structure of the container method has

been restructured
2) The correct block mapping has a lower child match ratio

than the mismatched block mapping
3) The correct block mapping has non-identical condi-

tional expressions.
When there are multiple candidate matches for a block
and all of them have non-identical conditional expres-
sions, RefactoringMiner ranks the candidates based on
their child match ratio.

Figure 10 shows a false positive and at the same time
false negative case reported by the GumTree-based baseline
in project commons-lang [62]. In this commit, there is some
control re-structuring that moves the statements ranging
between L506-510 within the else branch (in lines R537-
541) of a newly added if statement ranging between R533-
542. GumTree generates mapping L505-511 7→ R536-542,
instead of L505-511 7→ R531-543, which is the correct one.
The reason behind this mistake can be attributed to the way
GumTree matches abstract syntax trees in two phases. In the
first phase, GumTree aims to find the largest identical sub-
trees in a top-down fashion. In the second phase, GumTree
aims to match in a bottom-up fashion the trees that are
not matched previously, but at least half of their children
are matched. Since the else blocks L505-511 and R536-542
are identical subtrees, GumTree matches them in the first
top-down phase, without checking whether their parent if
statements (i.e., L503-505 and R533-536) are similar enough.
GumTree is designed as a language-agnostic diff tool that
matches AST nodes of the same AST type, regardless of
their context and semantic role in the program. However,
else branches should not be treated as regular blocks, as
they cannot exist in a program without being attached to
a parent if statement. As a result, GumTree should have
some language-specific exceptions for matching AST nodes
with special characteristics, such as the else branches.

13

Fig. 8. Missed mapping by CodeTracker between L610-622 and R618-620 in commit [60]

Fig. 9. False mapping reported by CodeTracker between L614-616 and R608-610 in commit [61]

Fig. 10. False mapping reported by the GumTree-based baseline between L505-511 and R536-542 in commit [62]

14

RQ1 finding: CodeTracker exhibits an overall precision
and recall of 99.5%. Compared to the GumTree-based
baseline, CodeTracker has +11% in precision and +21%
in recall.

3.4 RQ2: Execution Time

Figure 11 shows the execution time of CodeTracker and
GumTree-based baseline for tracking the entire change his-
tory of each code block in the training and testing sets,
respectively (the y-axis is in logarithmic scale and the units
are in milliseconds). Each tool was executed separately on
the same machine with the following specifications: AMD
Ryzen 7 5800H CPU @ 3.20GHz × 8, 16 GB 3200 MHz DDR4,
512 GB PCIe SSD, Windows 11 Home operating system, and
Java 11.0.15 x64 with a maximum of 8GB Java heap memory
(i.e., -Xmx8g). All 20 project repositories used in the oracle
were locally cloned before running the tools. For each tool,
we recorded the total time taken for tracking a code block
in its entire commit change history, including the time taken
for parsing the source code files and detecting the changes
that took place on the tracked block in each commit, using
the System.nanoTime Java method.

As explained in Section 3.2.1, the GumTree-based base-
line relies on RefactoringMiner to detect possible MOVE
METHOD, EXTRACT AND MOVE METHOD, SPLIT CLASS, or
MERGE CLASS refactoring involving the tracked block. To
ensure a fair comparison with respect to execution time,
we decided to avoid the overhead of RefactoringMiner’s
execution by persisting into a JSON file the commits in
which such refactorings took place and querying this cache
during the execution of the GumTree-based baseline to
retrieve the origin file path of moved code blocks in constant
time. As we can observe from Figure 11, CodeTracker has a
stable execution time in both training and testing sets (being
slightly faster in the testing set), with an overall median
execution time of 2 seconds and an average execution time
of 3.6 seconds, which makes it suitable for real-time usage
when a developer wants to inspect on-demand the change
history of a block (assuming the developer is working on a
locally cloned repository).

The GumTree-based baseline is significantly slower than
CodeTracker (5 times slower on median and 6 times slower
on average) with an overall median execution time of 10
seconds and an average execution time of 21 seconds.
Moreover, we can observe a significant difference in the
execution time between the training and testing sets. The
GumTree-based baseline is around 4 times slower on both
median and average in the training set compared to the
testing set. Table 5 explains this difference in execution time.
The second column shows the total number of commits
processed in the training and testing sets, respectively. The
third column shows the number and percentage of commits
in which the container method did not change, and thus
there is no need to execute GumTree or RefactoringMiner
(this corresponds to STEP 2 of CodeTracker’s approach).
The fourth column shows the number and percentage of
commits in which the container method changed, and thus
GumTree and RefactoringMiner need to be executed on a
pair of files (this corresponds to STEP 3 and STEP 4 of
CodeTracker’s approach). Finally, the fifth column shows

the number and percentage of commits in which the tracked
block is moved to another file, and thus GumTree and
RefactoringMiner need to include additional files to perform
staged tree matching and move detection, respectively (this
corresponds to STEP 5 of CodeTracker’s approach).

TABLE 5
Percentage of commits processed in each step of the tracking process.

Dataset #Commits No change Change Move

Training 61,495 39,022 (63.45%) 21,282 (34.61%) 1191 (1.94%)

Testing 16,104 13,420 (83.33%) 2,302 (14.29%) 382 (2.37%)

As we can observe from Table 5, the testing set has a
larger percentage of commits (83.3%) that do not require
the execution of GumTree or RefactoringMiner to match the
tracked block in the parent commit compared to the training
set (63.5%). On the other hand, the training set has a larger
percentage of commits (36.6%) that require the execution of
GumTree or RefactoringMiner to match the tracked block
in the parent commit compared to the training set (16.7%).
This explains the reason why the GumTree-based baseline
is slower in the training set compared to the testing set. The
main reason CodeTracker does not exhibit such a big differ-
ence in the execution time between the training and testing
sets is because it handles the scenario in which the container
method changed in two steps, namely STEP 3 and STEP 4.
STEP 3 has less computation cost than STEP 4, as STEP 3
computes statement mappings just between a single pair
of methods, while STEP 4 computes statement mappings
between multiple method pair combinations within a file
to find intra-file-method refactorings. On the other hand, the
GumTree-based baseline handles the scenario in which the
container method changed by computing the AST diff on
a pair of whole files, which has a higher computation cost
than simply computing the AST diff on a pair of method
declarations. This implementation choice for the GumTree-
based baseline was inevitable, as GumTree does not utilize
language-specific information to recognize methods with
common signatures and intra-file-method refactorings that
would allow to narrow down the scope of the matching
process.

To give more insights about the performance of Code-
Tracker, we computed for each of the 1,280 blocks in our
dataset the percentage of the total execution time spent on
commits in which the container method did not change
(“No change” column in Table 5), commits in which the
container method changed (“Change” column in Table 5),
and commits in which the tracked block is moved to another
file (“Move” column in Table 5). Figure 12 shows the distri-
bution of execution time percentages for 699 out of 1,280
blocks that have at least one commit in their change history
where they have been moved to another file. On average,
30% of the total execution time is spent on “No change”
commits, 44% on “Change” commits and 26% on “Move”
commits. Although “No change” commits constitute 67%
of the total commits, only 30% of the total execution time
is spent on them. On the other hand, “Move” commits
constitute only 2% of the total commits, but 26% of the total
execution time is spend on them.

Figure 13 shows the distribution of execution time per-
centages for 581 out of 1,280 blocks that have no commit in

15

Mean: 3683.87

Median: 2231.5

Max: 48090

Mean: 25975.78

Median: 15337.5

Max: 376186

Mean: 3450.91

Median: 1697.0

Max: 30192

Mean: 6081.88

Median: 3722.0

Max: 48756

Mean: 3626.35

Median: 1973.5

Max: 48090

Mean: 21064.4

Median: 10211

Max: 376186

Tracker_train GumTree_train Tracker_test GumTree_test Tracker_all GumTree_all
2

5

100

2

5

1000

2

5

10k

2

5

100k

2

5

Fig. 11. Block change history extraction time in milliseconds.

Mean: 0.30

Median: 0.24

Max: 0.88

Mean: 0.44Median: 0.43

Max: 0.94

Mean: 0.26

Median: 0.16

Max: 0.96

no_change change move

0

0.2

0.4

0.6

0.8

1

Fig. 12. Percentage of CodeTracker’s execution time spent on “No
change”, “Change” and “Move” commits.

Mean: 0.40
Median: 0.38

Max: 0.98

Mean: 0.60
Median: 0.62

Max: 1.00

no_change change

0

0.2

0.4

0.6

0.8

1

Fig. 13. Percentage of CodeTracker’s execution time spent on “No
change” and “Change” commits.

their change history where they have been moved to another
file. On average, 40% of the total execution time is spent on
“No change” commits and 60% on “Change” commits.

RQ2 finding: CodeTracker can retrieve the complete
change history for a given block within 2 seconds on
median and 3.6 seconds on average. The achieved ex-
ecution time can warrant applications in both research
(e.g., large-scale MSR and software evolution studies)
and practice (e.g., blame-like tracking of block change
history within the context of maintenance and program
comprehension tasks). The GumTree-based baseline was
considerably slower in the training set, which had a
larger percentage of commits where the method contain-
ing the tracked block changed.

3.5 Limitations and Threats to Validity

Language specificity: CodeTracker depends on Refactoring-
Miner 3.0 [34], [35] for the detection of refactorings and
changes on the tracked program element, which limits its
applicability to Java programs. Recently, there have been
efforts to extend RefactoringMiner for supporting other pro-
gramming languages, e.g., Python [63], [64] and Kotlin [65],
[66]. Assuming RefactoringMiner supports more program-
ming languages in the future, then extending CodeTracker
to support these languages would require adjusting the
program element signature definitions and the regular ex-
pressions used in STEP 5 to the characteristics and structure
of these particular languages. Any language-specific block
transformations, such as replacing a when expression with
an if-else-if statement in Kotlin, should be supported in
the RefactoringMiner core algorithm. However, we should
make clear that making RefactoringMiner support more
programming languages is not an easy task. Although the
core statement mapping algorithm is based on string re-
placements and is not language-specific, the algorithm that
determines how program element declarations (i.e., method,
field declarations) are getting matched is language-specific

16

and depends heavily on the structure and characteristics of
Java programs.
Internal validity: The main threat to internal validity is
related to the construction of the oracle used for evaluating
precision and recall. To mitigate this threat we relied on an
existing oracle, which was originally constructed by Grund
et al. [2] and included the change history of 200 methods,
and was later extended by Jodavi and Tsantalis [36] by
including the change history of 1,345 variables declared
within these 200 methods. Based on this reliable oracle,
which was validated independently by two different re-
search groups, we constructed the change history of 1,280
code blocks declared in the body of these 200 methods
following a semi-automated approach, as explained in Sec-
tion 3.1, and manually inspecting all change instances with
the help of our Chrome browser extension. The overall
time dedicated to manually inspecting and validating the
change history of 1,280 code blocks was approximately three
person-months.
External validity: Our experiments were conducted on a
relatively small dataset including 200 methods from 20
different open-source projects (i.e., 10 methods from each
project), which might affected the generalizability of our
findings. However, we decided to design our evaluation ex-
periments on this dataset, as we were already familiar with
these methods from our previous work [36], and thus this
prior knowledge would speed up the validation process.
Verifiability: We make the source code of CodeTracker and
our extended oracle publicly available [37] to enable the
replication of our experiments and facilitate future research
on source code tracking techniques. Moreover, CodeTracker
is also available as a Maven library [38] and as a Chrome
browser extension [39] to make easier its usage by re-
searchers and practitioners.

4 RELATED WORK

4.1 Line and Statement Tracking

Canfora et al. [21], [22] explain that the main problem
with the CVS/SVN diff command is that it cannot de-
tect semantical changes, moves, splits, and merges of line
ranges. Therefore, they use the output of a CVS/SVN diff
command on a pair of files and overcome its limitation by
iterating two steps. The first step compares ranges of deleted
source code lines with ranges of added source code lines,
known as diff hunks, by computing their cosine similarity,
i.e., the cosine of the angle between two weighted term
vectors extracted from the deletion and addition line sets.
Ranges with a similarity greater than a given threshold are
assumed to be in change relation. The second step (change
relation thinning) further reduces the change relation, with
the aim of improving the precision, by computing line-
by-line differences using the Levenshtein edit distance. This
approach (Ldiff) permits the detection of line range moves
or composition of moves and changes also between different
files, otherwise not detectable by using CVS/SVN diff.

Reiss [23] compared 18 different methods for tracking
source locations as their underlying files evolve, and found
that the best-performing method is W BESTI LINE, which
compares lines using whitespace-insensitive normalized

Levenshtein edit distance and four lines of context surround-
ing each line, with a success rate of over 97%.

Apiwattanapong et al. [24] defined a new graph rep-
resentation (enhanced control-flow graph) and a differenc-
ing algorithm that identifies and classifies changes at the
statement level between two versions of a program. The
enhanced CFG representation is able to model behaviors
caused by object-oriented features in the program, such
as dynamic binding, variable and object types, exception
handling, synchronization, and reflection. The algorithm
consists of five steps. First, it matches classes, interfaces,
and methods in the two versions. Second, it builds enhanced
CFGs for all matched methods in the original and modified
versions of the program. Third, it reduces all graphs to a
series of nodes and single-entry, single-exit subgraphs called
hammocks. Fourth, it compares, for each method in the orig-
inal version and for the corresponding method in the mod-
ified version, the reduced graphs, to identify corresponding
hammocks. Finally, it recursively expands and compares
the corresponding hammocks. Their hammock matching
algorithm is based on Laski and Szermer’s algorithm [67] for
transforming two graphs into their respective isomorphic
graphs and takes as input a threshold for deciding whether
two hammocks are similar enough to be considered a match.

Spacco and Williams [25] proposed statement mapping, a
hybrid technique that combines the line-based and struc-
tural approaches. Statement mapping exploits the abstract
syntax trees of source files to break up code into a series
of import statements, class declarations, field declarations,
static initializers, and methods, each of which is made up
of a collection of statements. Statement Mapping effectively
ignores any changes to non-functional aspects of code, such
as whitespace, curly braces, and comments. It is also re-
silient to statement reformatting, i.e., when a programmer
breaks a statement across multiple lines. The algorithm for
mapping methods first finds method pairs from the left and
right versions of the file having a matching signature and
transforms each method into a canonical form. Each version
of the method is represented as a series of statements, which
are in turn represented by a series of tokens. The lists of
statements are then compared using the DiffJ algorithm [68],
which generates hunks of differences. Each diff hunk is
treated as a bipartite graph, i.e., each statement is a node
on the appropriate side of the graph and the nodes are
connected to each node on the other side of the graph
with a weighted edge. The weight is a similarity metric
between the endpoint statements, computed as one of three
following metrics: normalized Levenshtein edit distance, token-
based normalized Levenshtein edit distance, and the minimum
of the two.

Servant and Jones [26] developed a history-slicing frame-
work, named Chronos. To build a history graph, Chronos
initially utilizes the SCM system’s diff functionality to de-
termine the added, deleted, and changed individual lines
and form diff hunks. In the second phase, it utilizes the
Hungarian method for the assignment problem, coupled
with Levenshtein distance, to compute an optimal line-to-
line mapping within the diff hunks. The user of Chronos can
specify a slicing criterion by opening any revision of any file
and selecting any set of lines (contiguous or fragmented).
Next, the history slicer traverses the history graph from the

17

most recent revision of each line in the slicing criterion, and
traces their evolution going backward in time, recording
the revisions that contain changes. The computed history
slice is visualized in a zoom-able canvas that depicts all
snapshots for all lines in the slicing criterion, with mappings
between them. In addition, timelines are presented to show
proportionally, in time, when changes were made.
Limitations: A major limitation of all aforementioned works
is that they rely on similarity thresholds to match statements
or lines. This makes them susceptible to overlapping refac-
torings, such as RENAME VARIABLE and EXTRACT/INLINE
VARIABLE that lower the textual similarity of the statements
and even change the original number of statements. On the
other hand, CodeTracker relies on RefactoringMiner, which
does not use any similarity threshold to match statements.
Instead, it performs syntactically valid replacements of AST
nodes within the statements, until the statements become
textually identical. These replacements are then used to
infer overlapping edit operations, such as variable renam-
ing, type generalization, and parameter merging. Moreover,
most of the tools rely on the SCM system’s diff to obtain
change hunks, which are not accurate when code is moved
to a distant location, or when code is merged/split. On
the other hand, CodeTracker does not rely on any diff
information from the SCM, but only uses the git log
command to retrieve the commits in which a file changed.

4.2 Program Element Tracking
Along with the line of work that focuses on tracking specific
lines of code or statements, there is a line of work that
addresses the same problem at the program element level
(i.e., tracking method, attribute, type declarations).

CodeShovel [2], is the most accurate tool for uncovering
Java method histories to date, as it produces complete
and accurate commit change histories for 90% of meth-
ods, including 97% of all method changes. CodeShovel is
partially refactoring-aware. It supports the tracking of meth-
ods with changes in their signature (e.g., method rename,
parameter addition/deletion), methods whose parent file
has been moved/renamed, and methods moved to another
file. However, Jodavi and Tsantalis [36] have shown that
it fails to track properly methods from which a significant
part of their body has been extracted to new methods, as
it uses a 75% body similarity threshold to match modified
methods, and thus erroneously matches the original method
with the extracted one. The same limitation holds when
methods with a relatively large body are inlined to the
tracked methods.

FinerGit [28] and Historage [27] create a finer-grained
Git repository, in which each Java method exists in its
own file, and take advantage of Git mechanisms to track
changes in each individual method’s corresponding file.
FinerGit improves on the limited capability of Historage
to track renamed or moved methods, especially for small
methods, by formatting each file to include a single token
from the corresponding method in each line. This formatting
makes Git’s line-based similarity computation mechanism
more robust in matching small methods, which have been
renamed or moved. Pre-processing an entire repository to
place each method in its own file, is computationally ex-
pensive and requires additional hard disk space, which can

be prohibitive, especially for large repositories with many
files and a long commit history. As a matter of fact, Grund
et al. [2] found that FinerGit ran out of memory or did
not finish pre-processing within 15 minutes for the four
largest repositories in their validation data set. Moreover,
this pre-processing cost did not contribute to an accuracy
improvement, as the recall of FinerGit was 65% compared
to 90% of CodeShovel [2].

Kim et al. [29] proposed an approach to identify function
mappings across revisions even when a function’s name
changes. Their approach considers the similarity of the
following factors: function name, incoming and outgoing
calls, signature, function body text diff, complexity metrics,
and the results of two clone detection tools (CCFinder and
MOSS). The computation of text diff and the execution of
multiple clone detection tools may have a considerable cost,
especially when there are many combinations of deleted and
newly added functions to be compared.
Limitations: A common limitation of all aforementioned
tools is that they are designed to support only the tracking
of methods, and cannot be extended to support the tracking
of other program elements, such as variables and attributes,
whose evolution is also interesting for the developers. Sev-
eral studies have shown that developers frequently refactor
variables and attributes, which makes their tracking in
the commit history challenging. Negara et al. [69] found
that RENAME LOCAL VARIABLE and RENAME FIELD are
among the most popular refactorings applied by developers.
Negara et al. [70] surveyed 420 developers, who ranked
CHANGE FIELD TYPE as the most relevant and applicable
transformation that they perform. Ketkar et al. [71] found
that developers who changed the type of a variable or
attribute also renamed it in 55% of the examined instances.

Godfrey and Zou [30] implemented a tool, named Bea-
gle, that can detect structural changes like rename, move,
split, and merge at function, file, and subsystem levels.
They rely on origin analysis to decide if a program entity is
renamed or moved and a function call analysis to discover
merges and splits of program entities. Although Beagle
supports the tracking of program elements at different levels
of granularity (i.e., function, file, subsystem), it requires
as input two complete versions of a software system in
order to extract static relations between program entities
(e.g., function calls), and calculate various metrics. This
makes Beagle impractical for program element tracking at
the commit level.

Steidl et al. [31] proposed an incremental origin analysis
that applies some heuristics to find moved, renamed, split,
and merged source code files. In contrast to Beagle, their
approach is commit-based and incrementally reconstructs
the history based on clone information and file name sim-
ilarity. However, the proposed origin analysis is limited to
files and thus does not support the tracking of statements
and program elements at a more fine-grained level.

Lee et al. [32] implemented a tool named Tempura,
enabling code completion and navigation to operate on mul-
tiple revisions of code at a time. To support these features,
Tempura pre-processes the commit history of a Git repos-
itory, and for each added, modified, renamed, or deleted
Java file extracts and records its API information (i.e., type,
method, field declarations) indexed by the enclosing type’s

18

fully qualified name. Temporal navigation is performed by
a simple index lookup to list the revisions in which the
selected program element changed. A major limitation of
Tempura is that it requires pre-processing and indexing the
repository under analysis, which can take several minutes,
especially for large repositories. Moreover, Tempura is not
fully refactoring-aware, as it infers only Class Rename and
Move refactorings by leveraging Git’s file rename/move
detection capability.

Hora et al. [33] introduced the concept of change graph to
model the evolution of classes, methods, and their related
changes in the commit history of a project, and study the
phenomenon of untracked changes. In this graph, each class
or method is represented as a node, while each tracked or
untracked change is represented as an edge between two
nodes. However, Hora et al.’s change graph is limited in
modeling only the evolution of classes and methods, sup-
ports a limited number of refactoring types (5 class-level and
6 method-level refactorings), and uses RefDiff [72] for the
detection of refactoring operations, which has inferior preci-
sion, recall, and performance than RefactoringMiner [34],
[73]. Finally, the graph edges model only a small subset
of refactoring operations, while other kinds of changes,
such as method body and signature changes are omitted.
Thus, Hora et al.’s change graph cannot be used to find all
commits where a program element changed, i.e., the graph
can provide only the commits in which a program element
is involved in refactorings.

Jodavi and Tsantalis [36] developed the initial version of
CodeTracker, which supports the tracking of method and
variable declarations with remarkably high precision and
recall (over 99.7%). Their work was the first to tackle the
program element tracking problem in a fully refactoring-
aware fashion and introduced heuristics for performing par-
tial and incremental commit analysis to reduce the execution
time. Our current work builds upon the initial version of
CodeTracker to solve a way more challenging problem,
namely tracking code blocks.

5 CONCLUSIONS AND IMPLICATIONS

In this work, we presented the newer version of our source
code tracking tool, CodeTracker 2.0, which is currently the
only tool that can construct the commit change history of
code blocks in a fully refactoring-aware fashion. Moreover,
our tool can track code blocks transformed to a different
AST type (e.g., for changed to while loop), and supports
forks in the evolution history of a block occurring when two
or more different blocks are merged into one. CodeTracker
can extract the complete change history of a code block
with a precision and recall of 99.5% within 3.6 seconds on
average and 2 seconds on median. Finally, a comparison
with a baseline based on the GumTree AST diff tool, showed
that CodeTracker has +11% in precision and +21% in recall
over the baseline, and a faster execution time.
Implications for developers:

As illustrated in Section 2.4.1, our tool can potentially
help developers understand when, how, and by whom a
specific block of code has been changed or introduced.
This is useful for new developers joining a project who
want to get familiar with past design choices/changes in

the evolution history of an existing software system. More
importantly, our tool supports the migration of code blocks
to new language features, such as migrating loops to Java
Steam API pipelines, merging catch blocks using the union
type for the handled exception types, as well as the conver-
sion of blocks to another block type, such as iterator-based
while loops to enhanced-for loops and if-else-if
to switch cases. This feature helps avoid interruptions in
the change history due to language migrations and block-
type conversions while enabling the tracking of code blocks
to their initial introduction, which might have occurred
several years ago. Further user studies must be conducted to
evaluate the practical usefulness of the tool in an industrial
setting, and assess to what extent the tool supports the
actual needs of the developers.

Our tool models change history as a graph allowing
forks, and thus it can be used to track the individual change
history of merged code blocks. This feature is particularly
useful for clone evolution analysis [74]; when developers
want to verify if some duplicated code fragments evolved
consistently before they were merged.
Implications for researchers:

Our tool enables several research directions related
to Mining Software Repositories (MSR). For example, re-
searchers can investigate how new language features are
getting adopted by developers [43], [75], [76], how and why
developers change code blocks to a different block type [77],
or extract migration change patterns that could be used to
automate similar migrations in other projects.

Finally, our change oracle [37] can be used to evaluate
the accuracy of novel program element tracking tools that
will be developed in the future.
Implications for educators:

Our change oracle [37] includes real-world examples
of changes and migrations applied on code blocks that
could be used for educating software engineering students
and novice developers about the evolution of programming
languages and how open-source projects adapt their code-
base to new language features. Each change in our oracle
includes the commit, file path, and exact lines in the file
where it took place.

ACKNOWLEDGMENTS

This research was partially supported by NSERC grants
RGPIN-2018-05095 and RGPIN-2024-04302.

REFERENCES

[1] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software
history under the lens: A study on why and how developers
examine it,” in Proceedings of the 2015 IEEE International Conference
on Software Maintenance and Evolution, 2015, p. 1–10.

[2] F. Grund, S. Chowdhury, N. C. Bradley, B. Hall, and R. Holmes,
“CodeShovel: Constructing method-level source code histories,”
in Proceedings of the 43rd International Conference on Software Engi-
neering, 2021, p. 1510–1522.

[3] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about
code,” in Workshop on Evaluation and Usability of Programming
Languages and Tools, 2010.

[4] T. Fritz and G. C. Murphy, “Using information fragments to
answer the questions developers ask,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, 2010, p. 175–184.

19

[5] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in col-
located software development teams,” in Proceedings of the 29th
International Conference on Software Engineering, 2007, p. 344–353.

[6] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho,
and A. Hassan, “A framework for evaluating the results of the
SZZ approach for identifying bug-introducing changes,” IEEE
Transactions on Software Engineering, vol. 43, no. 7, pp. 641–657,
July 2017.

[7] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” in International Workshop on Mining Software Reposi-
tories, 2005, pp. 1–5.

[8] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead,
“Automatic identification of bug-introducing changes,” in 21st
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2006, pp. 81–90.

[9] C. Williams and J. Spacco, “SZZ revisited: Verifying when changes
induce fixes,” in Workshop on Defects in Large Software Systems, 2008,
pp. 32–36.

[10] G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota,
M. Lanza, and R. Oliveto, “Evaluating szz implementations
through a developer-informed oracle,” in Proceedings of the 43rd
International Conference on Software Engineering, 2021, p. 436–447.

[11] Y. Jiang, H. Liu, X. Luo, Z. Zhu, X. Chi, N. Niu, Y. Zhang, Y. Hu,
P. Bian, and L. Zhang, “Bugbuilder: An automated approach to
building bug repository,” IEEE Transactions on Software Engineering,
vol. 49, no. 4, p. 1443–1463, apr 2023.

[12] B. Shen, W. Zhang, H. Zhao, G. Liang, Z. Jin, and Q. Wang,
“IntelliMerge: A refactoring-aware software merging technique,”
Proc. ACM Program. Lang., vol. 3, no. OOPSLA, pp. 170:1–170:28,
Oct. 2019.

[13] D. Dig and R. Johnson, “How do apis evolve? a story of refactor-
ing,” J. Softw. Maint. Evol., vol. 18, no. 2, p. 83–107, Mar. 2006.

[14] P. Kapur, B. Cossette, and R. J. Walker, “Refactoring references
for library migration,” in Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and
Applications, 2010, p. 726–738.

[15] B. E. Cossette and R. J. Walker, “Seeking the ground truth: A
retroactive study on the evolution and migration of software
libraries,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, 2012.

[16] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Why and how java
developers break apis,” in IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering, mar 2018, pp. 255–
265.

[17] ——, “Apidiff: Detecting api breaking changes,” in IEEE 25th Inter-
national Conference on Software Analysis, Evolution and Reengineering,
mar 2018, pp. 507–511.

[18] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API
stability and adoption in the android ecosystem,” in IEEE Interna-
tional Conference on Software Maintenance, 2013, pp. 70–79.

[19] M. Mahmoudi and S. Nadi, “The android update problem: An
empirical study,” in 15th International Conference on Mining Software
Repositories, 2018, pp. 220–230.

[20] A. Brito, M. T. Valente, L. Xavier, and A. Hora, “You broke
my code: understanding the motivations for breaking changes in
apis,” Empirical Software Engineering, vol. 25, pp. 1458–1492, 2020.

[21] G. Canfora, L. Cerulo, and M. D. Penta, “Identifying changed
source code lines from version repositories,” in Proceedings of the
Fourth International Workshop on Mining Software Repositories, 2007,
p. 14–22.

[22] G. Canfora, L. Cerulo, and M. Di Penta, “Tracking your changes:
A language-independent approach,” IEEE Softw., vol. 26, no. 1, p.
50–57, jan 2009.

[23] S. P. Reiss, “Tracking source locations,” in Proceedings of the 30th
International Conference on Software Engineering, 2008, p. 11–20.

[24] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Jdiff: A differenc-
ing technique and tool for object-oriented programs,” Automated
Software Engg., vol. 14, no. 1, p. 3–36, mar 2007.

[25] J. Spacco and C. Williams, “Lightweight techniques for tracking
unique program statements,” in Proceedings of the 2009 Ninth
IEEE International Working Conference on Source Code Analysis and
Manipulation, 2009, p. 99–108.

[26] F. Servant and J. A. Jones, “History slicing: Assisting code-
evolution tasks,” in Proceedings of the ACM SIGSOFT 20th Inter-
national Symposium on the Foundations of Software Engineering, 2012.

[27] H. Hata, O. Mizuno, and T. Kikuno, “Historage: Fine-grained ver-
sion control system for java,” in Proceedings of the 12th International

Workshop on Principles of Software Evolution and the 7th Annual
ERCIM Workshop on Software Evolution, 2011, p. 96–100.

[28] Y. Higo, S. Hayashi, and S. Kusumoto, “On tracking java methods
with git mechanisms,” Journal of Systems and Software, vol. 165, p.
110571, 2020.

[29] Sunghun Kim, Kai Pan, and E. J. Whitehead, “When functions
change their names: automatic detection of origin relationships,”
in 12th Working Conference on Reverse Engineering (WCRE’05), 2005,
pp. 143–152.

[30] M. W. Godfrey and L. Zou, “Using origin analysis to detect
merging and splitting of source code entities,” IEEE Transactions
on Software Engineering, vol. 31, no. 2, p. 166–181, Feb. 2005.

[31] D. Steidl, B. Hummel, and E. Juergens, “Incremental origin analy-
sis of source code files,” in Proceedings of the 11th Working Confer-
ence on Mining Software Repositories, 2014, p. 42–51.

[32] Y. Y. Lee, D. Marinov, and R. E. Johnson, “Tempura: Temporal
dimension for ides,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, 2015, pp. 212–222.

[33] A. Hora, D. Silva, M. T. Valente, and R. Robbes, “Assessing the
threat of untracked changes in software evolution,” in Proceedings
of the 40th International Conference on Software Engineering, 2018, p.
1102–1113.

[34] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE
Transactions on Software Engineering, vol. 48, no. 3, pp. 930–950,
2022.

[35] P. Alikhanifard and N. Tsantalis, “A novel refactoring and
semantic aware abstract syntax tree differencing tool and a
benchmark for evaluating the accuracy of diff tools,” ACM
Transactions on Software Engineering and Methodology, sep 2024.
[Online]. Available: https://doi.org/10.1145/3696002

[36] M. Jodavi and N. Tsantalis, “Accurate method and variable
tracking in commit history,” in Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2022, p. 183–195.

[37] M. Jodavi, M. T. Hasan, and N. Tsantalis. (2023) Codetracker
source code and oracle. [Online]. Available: https://github.com/
jodavimehran/code-tracker

[38] ——. (2023) CodeTracker maven repository. [On-
line]. Available: https://mvnrepository.com/artifact/io.github.
jodavimehran/code-tracker

[39] M. T. Hasan and N. Tsantalis. (2023) CodeTracker visualizer
github repository. [Online]. Available: https://github.com/
flozender/codetracker-extension

[40] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Mon-
perrus, “Fine-grained and accurate source code differencing,”
in Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, 2014, p. 313–324.

[41] M. Martinez, J.-R. Falleri, and M. Monperrus, “Hyperparameter
optimization for AST differencing,” IEEE Transactions on Software
Engineering, vol. 49, no. 10, pp. 4814–4828, 2023.

[42] M. Fowler, Refactoring: Improving the Design of Existing Code,
2nd ed. Boston, MA, USA: Addison-Wesley, 2018.

[43] D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig, “Understand-
ing the use of lambda expressions in java,” Proceedings of the ACM
on Programming Languages, vol. 1, no. OOPSLA, pp. 85:1–85:31,
Oct. 2017.

[44] T. Rohrmann and S. Ewen. (2016) Apache flink. [Online].
Available: https://github.com/apache/flink/commit/72b295b3b

[45] D. Kawrykow and M. P. Robillard, “Non-essential changes in
version histories,” in Proceedings of the 33rd International Conference
on Software Engineering, 2011, p. 351–360.

[46] J. Märki. (2021) Apache commons-io. [Online]. Available:
https://github.com/apache/commons-io/commit/6a1bb4d53

[47] ——. (2021) Apache commons-io. [Online]. Available: https:
//github.com/apache/commons-io/commit/7748ed364

[48] S. Colebourne. (2021) Apache commons-lang. [Online]. Available:
https://github.com/apache/commons-lang/commit/2d06a7ce8

[49] F. Tomassetti. (2021) Javaparser. [Online]. Available: https:
//github.com/javaparser/javaparser/commit/37f93be64

[50] S. Nicoll. (2021) Spring framework. [Online]. Avail-
able: https://github.com/spring-projects/spring-framework/
commit/2dc674f35

[51] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[52] A. Fujimoto, Y. Higo, J. Matsumoto, and S. Kusumoto, “Staged
tree matching for detecting code move across files,” in Proceedings

https://doi.org/10.1145/3696002
https://github.com/jodavimehran/code-tracker
https://github.com/jodavimehran/code-tracker
https://mvnrepository.com/artifact/io.github.jodavimehran/code-tracker
https://mvnrepository.com/artifact/io.github.jodavimehran/code-tracker
https://github.com/flozender/codetracker-extension
https://github.com/flozender/codetracker-extension
https://github.com/apache/flink/commit/72b295b3b
https://github.com/apache/commons-io/commit/6a1bb4d53
https://github.com/apache/commons-io/commit/7748ed364
https://github.com/apache/commons-io/commit/7748ed364
https://github.com/apache/commons-lang/commit/2d06a7ce8
https://github.com/javaparser/javaparser/commit/37f93be64
https://github.com/javaparser/javaparser/commit/37f93be64
https://github.com/spring-projects/spring-framework/commit/2dc674f35
https://github.com/spring-projects/spring-framework/commit/2dc674f35

20

of the 28th International Conference on Program Comprehension, 2020,
p. 396–400.

[53] M. T. Hasan and N. Tsantalis. (2023) GumTree-based CodeTracker.
[Online]. Available: https://github.com/flozender/code-tracker/
tree/add-gumtree-mappings

[54] (2024) git-log. [Online]. Available: https://git-scm.com/docs/
git-log#Documentation/git-log.txt--Lltstartgtltendgtltfilegt

[55] M. T. Hasan and N. Tsantalis. (2024) git log baseline. [Online].
Available: https://github.com/jodavimehran/code-tracker/tree/
master/experiments/gitLog-baseline

[56] Z. Alexey. (2016) Checkstyle. [Online].
Available: https://github.com/checkstyle/checkstyle/
commit/6273f207202078c76b8451a841ceb62ef6fe05ed#
diff-650e834bca871d6bf6c1b3800ff4116b2d7ab4fe5de6489a042652c2f72e024dR297-R314

[57] B. Meyer. (2015) Hibernate orm. [Online].
Available: https://github.com/hibernate/hibernate-orm/
commit/b70bc0080e8e206f83debf8f456fe323caccc01b#
diff-e03f6efdbc202305b99b13f62655e731a8409517725386ad7e0ada0b23a9ab1b

[58] M. Sohn. (2015) Eclipse jgit. [On-
line]. Available: https://github.com/eclipse-jgit/
jgit/commit/0e73d395061d1bfee365acaa2f79c392175d13bf#
diff-412275d04b0bd690cda01a7775aa1eb076e7d1cd385d80bdb831f885891d9c5d

[59] ThLeu. (2018) Javaparser. [Online]. Avail-
able: https://github.com/javaparser/javaparser/commit/
b7bd15d12e107c85e29912960f7b4e48aac4dc38

[60] O. Sukhodolsky. (2003) Checkstyle. [Online].
Available: https://github.com/checkstyle/checkstyle/
commit/cd89321522d9bf7fc10547e743fb8bbb4c993791#
diff-fea9f91af0be0914b80d0451274454c2dbf87da35662aa256201ddb897d08c81R618

[61] N. Manley and P. Schumacher. (2016) Apache commons-lang.
[Online]. Available: https://github.com/apache/commons-lang/
commit/8d6bc0ca625f3a1a98b486541fa613b2fac4b41c#
diff-70a900e0a87c944e8eac8b0fe2b8ffb95bef4d8bc9bb405dc5b84e21cd6e7835R608

[62] P. Schumacher. (2013) Apache commons-lang. [Online].
Available: https://github.com/apache/commons-lang/
commit/2e9f3a80146262511ca7bcdd3411f095dff4951d?diff=split#
diff-ce5a57a53db3c36f63b8ccba1a964842ec299c2cc5e6959dd746ead01d6be382R533

[63] H. Atwi, B. Lin, N. Tsantalis, Y. Kashiwa, Y. Kamei, N. Ubayashi,
G. Bavota, and M. Lanza, “Pyref: Refactoring detection in python
projects,” in Proceedings of the 21st IEEE International Working
Conference on Source Code Analysis and Manipulation, ser. SCAM
2021, 2021, pp. 136–141.

[64] ——. (2021) Pyref. [Online]. Available: https://github.com/
PyRef/PyRef

[65] Z. Kurbatova, V. Kovalenko, I. Savu, B. Brockbernd, D. Andreescu,
M. Anton, R. Venediktov, E. Tikhomirova, and T. Bryksin, “Refac-
torinsight: Enhancing ide representation of changes in git with
refactorings information,” in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering, nov 2021, pp. 1276–
1280.

[66] Z. Kurbatova and D. Zhuravlev. (2021) Kotlinrminer. [Online].
Available: https://github.com/JetBrains-Research/kotlinRMiner

[67] J. Laski and W. Szermer, “Identification of program modifications
and its applications in software maintenance,” in Proceedings of the
Conference on Software Maintenance, 1992, pp. 282–290.

[68] J. Pace. (2023) Diffj. [Online]. Available: https://github.com/
jpace/diffj

[69] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig,
“A comparative study of manual and automated refactorings,”
in Proceedings of the 27th European Conference on Object-Oriented
Programming, 2013, p. 552–576.

[70] S. Negara, M. Codoban, D. Dig, and R. E. Johnson, “Mining fine-
grained code changes to detect unknown change patterns,” in Pro-
ceedings of the 36th International Conference on Software Engineering,
2014, p. 803–813.

[71] A. Ketkar, N. Tsantalis, and D. Dig, “Understanding type changes
in java,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, p. 629–641.

[72] D. Silva and M. T. Valente, “RefDiff: Detecting refactorings in ver-
sion histories,” in 14th International Conference on Mining Software
Repositories, 2017, pp. 269–279.

[73] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and
D. Dig, “Accurate and efficient refactoring detection in commit
history,” in Proceedings of the 40th International Conference on Soft-
ware Engineering, 2018, pp. 483–494.

[74] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of software
clone management: Past, present, and future (keynote paper),” in
2014 Software Evolution Week - IEEE Conference on Software Mainte-
nance, Reengineering, and Reverse Engineering (CSMR-WCRE), 2014,
pp. 18–33.

[75] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining
billions of AST nodes to study actual and potential usage of
java language features,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, p. 779–790.

[76] C. Parnin, C. Bird, and E. Murphy-Hill, “Java generics adoption:
How new features are introduced, championed, or ignored,” in
Proceedings of the 8th Working Conference on Mining Software Reposi-
tories, 2011, p. 3–12.

[77] M. Allamanis, E. T. Barr, C. Bird, P. Devanbu, M. Marron, and
C. Sutton, “Mining semantic loop idioms,” IEEE Transactions on
Software Engineering, vol. 44, no. 7, pp. 651–668, 2018.

Mohammed Tayeeb Hasan is a Software Engi-
neer at Volvo Cars. He holds a Master’s degree
in Computer Science from Concordia University,
Montreal. His research interests include soft-
ware engineering, refactoring detection, static
code analysis, optimization, and algorithms. He
has been awarded Concordia’s International Tu-
ition Award of Excellence and has served as the
Vice President for Academic Affairs for the Data
Innovation Playground at Concordia University,
Montreal. Additionally, he holds fellowships from

Meta and Amazon Web Services.

Nikolaos Tsantalis is a Professor in the de-
partment of Computer Science and Software
Engineering at Concordia University, Montreal,
Canada. His research interests include software
maintenance, software evolution, empirical soft-
ware engineering, refactoring recommendation
systems, refactoring mining, and software qual-
ity assurance. He has been awarded with three
Most Influential Paper awards at SANER 2018,
SANER 2019 and CASCON 2023, and two ACM
SIGSOFT Distinguished Paper awards at FSE

2016 and ICSE 2017. He has served as a program co-chair for various
tracks in ICSME, SANER, SCAM and ICPC conferences, and serves
regularly as a program committee member of international conferences
in the field of software engineering, such as FSE, ASE, ICSME, MSR,
SANER, ICPC, and SCAM. He currently serves as an Associate Editor
for the IEEE Transactions on Software Engineering editorial board.
Finally, he is a senior member of the IEEE and the ACM, and holds
a license from the Association of Professional Engineers of Ontario.

Pouria Alikhanifard is a PhD student at Concor-
dia University, specializing in Software Evolution
with a focus on AST differencing. He is the re-
cipient of the International Award of Excellence
from Concordia. He holds a Master’s degree in
Algorithms and Computation from University of
Tehran.

https://github.com/flozender/code-tracker/tree/add-gumtree-mappings
https://github.com/flozender/code-tracker/tree/add-gumtree-mappings
https://git-scm.com/docs/git-log#Documentation/git-log.txt--Lltstartgtltendgtltfilegt
https://git-scm.com/docs/git-log#Documentation/git-log.txt--Lltstartgtltendgtltfilegt
https://github.com/jodavimehran/code-tracker/tree/master/experiments/gitLog-baseline
https://github.com/jodavimehran/code-tracker/tree/master/experiments/gitLog-baseline
https://github.com/checkstyle/checkstyle/commit/6273f207202078c76b8451a841ceb62ef6fe05ed#diff-650e834bca871d6bf6c1b3800ff4116b2d7ab4fe5de6489a042652c2f72e024dR297-R314
https://github.com/checkstyle/checkstyle/commit/6273f207202078c76b8451a841ceb62ef6fe05ed#diff-650e834bca871d6bf6c1b3800ff4116b2d7ab4fe5de6489a042652c2f72e024dR297-R314
https://github.com/checkstyle/checkstyle/commit/6273f207202078c76b8451a841ceb62ef6fe05ed#diff-650e834bca871d6bf6c1b3800ff4116b2d7ab4fe5de6489a042652c2f72e024dR297-R314
https://github.com/hibernate/hibernate-orm/commit/b70bc0080e8e206f83debf8f456fe323caccc01b#diff-e03f6efdbc202305b99b13f62655e731a8409517725386ad7e0ada0b23a9ab1b
https://github.com/hibernate/hibernate-orm/commit/b70bc0080e8e206f83debf8f456fe323caccc01b#diff-e03f6efdbc202305b99b13f62655e731a8409517725386ad7e0ada0b23a9ab1b
https://github.com/hibernate/hibernate-orm/commit/b70bc0080e8e206f83debf8f456fe323caccc01b#diff-e03f6efdbc202305b99b13f62655e731a8409517725386ad7e0ada0b23a9ab1b
https://github.com/eclipse-jgit/jgit/commit/0e73d395061d1bfee365acaa2f79c392175d13bf#diff-412275d04b0bd690cda01a7775aa1eb076e7d1cd385d80bdb831f885891d9c5d
https://github.com/eclipse-jgit/jgit/commit/0e73d395061d1bfee365acaa2f79c392175d13bf#diff-412275d04b0bd690cda01a7775aa1eb076e7d1cd385d80bdb831f885891d9c5d
https://github.com/eclipse-jgit/jgit/commit/0e73d395061d1bfee365acaa2f79c392175d13bf#diff-412275d04b0bd690cda01a7775aa1eb076e7d1cd385d80bdb831f885891d9c5d
https://github.com/javaparser/javaparser/commit/b7bd15d12e107c85e29912960f7b4e48aac4dc38
https://github.com/javaparser/javaparser/commit/b7bd15d12e107c85e29912960f7b4e48aac4dc38
https://github.com/checkstyle/checkstyle/commit/cd89321522d9bf7fc10547e743fb8bbb4c993791#diff-fea9f91af0be0914b80d0451274454c2dbf87da35662aa256201ddb897d08c81R618
https://github.com/checkstyle/checkstyle/commit/cd89321522d9bf7fc10547e743fb8bbb4c993791#diff-fea9f91af0be0914b80d0451274454c2dbf87da35662aa256201ddb897d08c81R618
https://github.com/checkstyle/checkstyle/commit/cd89321522d9bf7fc10547e743fb8bbb4c993791#diff-fea9f91af0be0914b80d0451274454c2dbf87da35662aa256201ddb897d08c81R618
https://github.com/apache/commons-lang/commit/8d6bc0ca625f3a1a98b486541fa613b2fac4b41c#diff-70a900e0a87c944e8eac8b0fe2b8ffb95bef4d8bc9bb405dc5b84e21cd6e7835R608
https://github.com/apache/commons-lang/commit/8d6bc0ca625f3a1a98b486541fa613b2fac4b41c#diff-70a900e0a87c944e8eac8b0fe2b8ffb95bef4d8bc9bb405dc5b84e21cd6e7835R608
https://github.com/apache/commons-lang/commit/8d6bc0ca625f3a1a98b486541fa613b2fac4b41c#diff-70a900e0a87c944e8eac8b0fe2b8ffb95bef4d8bc9bb405dc5b84e21cd6e7835R608
https://github.com/apache/commons-lang/commit/2e9f3a80146262511ca7bcdd3411f095dff4951d?diff=split#diff-ce5a57a53db3c36f63b8ccba1a964842ec299c2cc5e6959dd746ead01d6be382R533
https://github.com/apache/commons-lang/commit/2e9f3a80146262511ca7bcdd3411f095dff4951d?diff=split#diff-ce5a57a53db3c36f63b8ccba1a964842ec299c2cc5e6959dd746ead01d6be382R533
https://github.com/apache/commons-lang/commit/2e9f3a80146262511ca7bcdd3411f095dff4951d?diff=split#diff-ce5a57a53db3c36f63b8ccba1a964842ec299c2cc5e6959dd746ead01d6be382R533
https://github.com/PyRef/PyRef
https://github.com/PyRef/PyRef
https://github.com/JetBrains-Research/kotlinRMiner
https://github.com/jpace/diffj
https://github.com/jpace/diffj

	Introduction
	Motivation
	Contributions

	Approach
	Code Block Identifier
	Block Tracking Process
	Tracking Algorithm Completeness
	CodeTracker API and Chrome Browser Extension
	How can the Chrome extension help answering common developer questions about the evolution of blocks

	Evaluation
	Oracle creation
	Baselines
	Block tracking baseline based on GumTree
	Git-log baseline

	RQ1: Block Tracking Accuracy
	RQ2: Execution Time
	Limitations and Threats to Validity

	Related Work
	Line and Statement Tracking
	Program Element Tracking

	Conclusions and Implications
	References
	Biographies
	Mohammed Tayeeb Hasan
	Nikolaos Tsantalis
	Pouria Alikhanifard

