
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

Research and practice have shown that the cost of performing maintenance

activities highly depends on the underlying design quality of the software

systems. In the past, several techniques have been developed for the

detection of design problems as a means to support the improvement of

design quality in software systems. However, most of these techniques lack

the ability to communicate the detected problems to the developers in a

comprehensible and effective way. This is one of the reasons justifying the

slow and hesitant adoption of preventive maintenance (i.e., maintenance

activities aiming to improve future maintainability) as a practice in the

software industry.

In this poster, we demonstrate two code smell visualizations for the

Feature Envy and God Class design problems. The visualizations have

been integrated in JDeodorant Eclipse plug-in, a code smell detection and

refactoring tool.

Why Do We Need Visualization?

How Does it Work?

Feature Envy occurs when a method references another class through

methods and fields more often than it references its own class.

Solution: Move the method to the class that it is most envious of, passing

any parameters the new method requires

FEATURE ENVY

God Class usually violates the single responsibility principle and controls

a large number of objects implementing different functionalities.

Solution: Extract all the methods and fields which are related to a specific

functionality into a separate Class

GOD CLASS FEATURES

• Select Connections

By using the checkbox, you can make the different types of connections 

appear and disappear allowing for a clearer picture

• Highlight Connections
By moving the mouse pointer over a method or field, you can highlight the 

outgoing connections from that specific entity

After installing JDeodorant from the website (see below) , you must select

the God Class or Feature Envy option from the “Bad Smells” tab. After

selecting which class or package you wish to refactor, click on the

“Identify Bad Smells” button. A list of possible refactoring suggestions

will be displayed in a table at the bottom of your screen.

The “Code Smell Visualization” Tab opens when you double-click on one

of the refactoring suggestions. This tab is easily moveable to anywhere you

want in Eclipse. This allows you to view the visualization and the actual

code at the same time which makes for a better understanding of what is

happening. This is shown in the diagram below:

The following example is also a good refactoring suggestion: The majority

of the calls made by the extracted methods are to methods and fields in the

Extracted Class.

Examples

The following example illustrates an excellent refactoring suggestion: the

methods and fields in the Extracted Class are tightly connected and make

no reference to any field or method in the Source Class.

Examples

The following example illustrates an excellent refactoring suggestion: the

Moved method makes no reference to anything in the Source Class but

calls four different methods from the Target Class

The following example is also a good refactoring suggestion: The majority

of the calls made by the Moved Method are to methods in the Target

Class.

The Visualization

The Visualization shows the Source Class on the left which originally

contained all of the extracted methods and fields. On the right is the

Extracted Class which now contains all of the extracted methods and

fields.

The extracted methods have connections to all the methods and fields they

reference. The number on the connections indicates the number of times

this method or field was accessed. There is a legend to indicate the

different types of connections.

To learn more about Jdeodorant and to see the Code Smell Visualization for 

yourself, please visit and download Jdeodorant at the following website :

http://www.jdeodorant.com/

The Visualization

The Visualization shows the Source Class on the left which originally

contains the method to be extracted (shown with a white background). On

the right, is the Target Class where the method is going to be moved to. In

the middle, is the (potentially) Moved Method.

The Moved Method has connections to all the methods and fields it

references. The number on the connections indicates the number of times

this method or field was accessed. There is a legend to indicate the

different types of connections

• Tooltips
A tooltip displaying the full name of the method or field appears when you 

move the mouse pointer over it

Department of Computer Science and Software Engineering

Kimberly Dextras-Romagnino, Nikolaos Tsantalis

Code Smell Visualization

How does it help?

If the extracted methods have the majority of its connections to the

Extracted Class in comparison to the Source Class, then it is a good

refactoring suggestion.

How does it help?

If the Moved Method has the majority of its connections to the Target

Class in comparison to the Source Class, then it is a good refactoring

suggestion.

ACKNOWLEDGEMENTS


