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Abstract

Studying and Detecting Log-related Issues

Mehran Hassani

Logs capture valuable information throughout the execution of software systems. The rich knowl-

edge conveyed in logs is leveraged by researchers and practitioners in performing various tasks, both

in software development and its operation. Log-related issues, such as missing or having outdated

information, may have a large impact on the users who depend on these logs. In this paper, we first

perform an empirical study on log-related issues in two large-scale, open-source software systems.

We found that the files with log-related issues have undergone statistically significantly more fre-

quent prior changes, and bug fixes. We also found that developers fixing these log-related issues are

often not the ones who introduced the logging statement nor the owner of the method containing

the logging statement. Maintaining logs is more challenging without experts. Finally, we found that

most of the defective logging statements remain unreported for a long period (median 320 days).

Once reported, the issues are fixed quickly (median five days). Our empirical findings suggest the

need for automated tools that can detect log-related issues promptly. We conducted a manual study

and identified seven root-causes of the log-related issues. Based on these root causes, we developed

an automated tool that detects four types of log-related issues. Our tool can detect 78 existing inap-

propriate logging statements reported in 40 log-related issues. We also reported new issues found by

our tool to developers and 38 previously unknown issues in the latest release of the subject systems

were accepted by developers.
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Chapter 1

Introduction

1.1 Motivation

Developers write logging statements in the source code to expose valuable information of runtime

system behavior. A logging statement, e.g., LOG.warn(“Cannot access storage directory ” + root-

Path)1, typically consists of a log level (e.g., trace/debug/info/warn/error/fatal), a logged event

using a static text, and variables that are related to the event context. At runtime, the invocation

of these logging statements generates logs that are often treated as the most important, sometimes

only, source of information for debugging and maintenance of large software systems.

The importance of logs has been widely identified [KP99]. Logs are used during various software

development activities such as bug fixing [XHF+09], anomaly detection [TPK+08], testing results

analyses [MHH13], and system monitoring [YZP+12, BKQ+08]. The vast application and usefulness

of the logs motivate developers to embed large amounts of logging statements in their source code.

For example, the OpenSSH server contains 3,407 logging statements in its code base [YPZ12a].

Moreover, log processing infrastructures such as Splunk [Car12] and ELK stack [elk17] are developed

for the ease of systematic log analyses.

To improve logging statements, similar to fixing bugs, developers report their issues with the

logging statement and fix it by changing the source code or other artifacts (e.g., configuration)

during development. For example, in an issue in Apache Hadoop-HDFS, HDFS-33262, with the title

“Append enabled log message uses the wrong variable”, developers replace the recorded variable in

the logging statement to provide more meaningful information. We consider such issues that are

fixed to improve logging statements as log-related issues.

Prior empirical studies examine the characteristics of logging practices [YPZ12a] and the places

1https://issues.apache.org/jira/browse/HDFS-4048
2https://issues.apache.org/jira/browse/HDFS-3326

1



where developers embed logging statements [FZH+14]. Also, prior research aims to enhance log-

ging statements by automatically including more information [YMX+10, YZP+12], and provide

suggestions on where to log [ZHF+15]. However, these empirical results and the above-mentioned

approaches do not help developers write an issue-free logging statement. In fact, there exist limited

guidelines that developers can follow to write appropriate logging statements.

1.2 Problem Statement

The issues with logging statements have become one of the major concerns, due to the vast usage of

logs in practice. Examples of such issues include missing to embed important logging statements3

have misleading text in logging statements4, and generating overwhelming information5. Logging

statements with issues may significantly reduce usefulness of the logs and bring extra overhead

to practitioners. For example, missing logging statements in the critical part of the source code

may cause developers not to have enough knowledge about the system execution; the misleading

textual description in logging statements may lead to wrong decisions made by system operators;

and overwhelming information in logs would prevent practitioners from identifying the truly needed

information [LSH17]. Recent research on Github projects claims that over half of the Java logging

statements are “wrong” [Hen17]. Moreover, for automated log analyses, the issues may have an even

larger impact by rather simple mistakes like a typo. For example, in the issue HADOOP-41906 with

Blocker priority, developers missed a dot in a logging statement, leading to failures in log analysis

tools.

In this work, we conduct an empirical study on the real log-related issues from two large, open

source software systems that extensively use logging statements, i.e., Hadoop and Camel. Studying

log-related issues can lead us in devising an automated technique that will aid developers to improve

logging statements. We extract 563 log-related issues from the JIRA issue tracking systems of the

two subject systems and study these issue reports and their corresponding code changes. Our study

aims to answer the following research questions:

RQ1 What are the characteristics of files with log-related issues?

Files with log-related issues have undergone, statistically significantly more frequent changes

and more frequent bug fixes. Developers should prioritize their efforts on such files to identify

logging statements with potential issues.

RQ2 Who reports and fixes log-related issues?

3https://issues.apache.org/jira/browse/HDFS-3607
4https://issues.apache.org/jira/browse/HDFS-1332
5https://issues.apache.org/jira/browse/CAMEL-6551
6https://issues.apache.org/jira/browse/HADOOP-4190
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We found that in 78% the cases, logging statements are added and fixed by different people.

There exists no systematic responsibility for developers to maintain logging statements in the

subject systems. This may make it difficult to identify an expert to ensure whether a logging

statement is appropriate.

RQ3 How quickly are log-related issues reported and fixed?

By examining the time between the introduction of logging statements, the report, and fixed

time of the log-related issues, we find that log-related issues are often reported a long time (on

a median of 320 days) after the logging statements were introduced into the source code. Once

reported, however, the issues are fixed in a short time (on a median of five days). Therefore,

practitioners may benefit from automated tools that detect such issues promptly.

RQ4 What are the root-causes of the log-related issues?

Through a manual analysis on log-related issues and their corresponding fixes, we identify seven

root-causes of log-related issues, namely: inappropriate log messages, missing logging state-

ments, inappropriate log level, log library configuration issues, runtime issues, overwhelming

logs, and log library changes. Many root-causes (like typos in logs) of these issues are rather

trivial, suggesting the opportunity of developing automated tools for detecting log-related

issues.

Our empirical study results highlight the needs and opportunities for automated tooling support

for detecting evident log-related issues. Therefore, we developed an automated tool7 to detect four

types of log-related issues. Our tool detected 40 of the 133 known log-related issues. Moreover, we

reported 78 detected potential log-related issues from the latest releases of the subject systems. Out

of 78, 38 of them had been accepted by their development team through issue reports and the rest

of them are still under review.

1.3 Contributions

Our most significant contributions are listed as follows:

• We perform a characteristic study on different aspects of log-related issues, namely the files

that contain log-related issues, report and fix time, and developers’ involvement in the process.

• We manually identify seven root-causes of log-related issues.

• We propose an automated tool that can detect four different types of evident log-related issues

from source code.
7https://mehranhassani.github.io/LogBugFinder/
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1.4 Thesis Organization

The rest of the study is organized as follows. Chapter 2 discusses the related works of our study

in two categories of log analysis and logging enhancement. Chapter 3 presents the subject systems

under study and our approach to identify and collect log-related issues. Chapter 4 explains the

empirical study on different aspects of log-related issues. We motivate each research question and

demonstrate our approach to perform our analysis. Then, we present and discuss the results of

our study and its implications. Chapter 5 demonstrates our proposed tool and its approach to

automatically detects log-related issues. We present how these checkers are designed and the issues

that we were able to detect using these them. We also compare our approaches with the state of

the art tools where ever the they were applicable. Chapter 6 discusses the potential threats to the

validity of our study. Finally, Chapter 7 includes the conclusion of this study and suggestion for

future works.

1.5 Related Publication

Earlier version of the work done in this thesis has been published in the following paper:

• Mehran Hassani, Weiyi Shang, Emad Shihab, Nikolaos Tsantalis. Studying and Detecting

Log-Related Issues. Empirical Software Engineering.

4



Chapter 2

Related Work

In this chapter, we discuss the prior research which is related to the work conducted in this thesis.

We have divided the related work into two categories, namely 1) the works concerning log analysis,

and 2) the studies that aim at devising techniques for improving logs in the source code.

2.1 Log analysis

Logs are widely used in software development and operation to ensure the quality of large software

systems. Valuable information is extracted from logs, including event correlations [NKN12, FRZ+12],

component dependency [OA11], and causal paths [YZP+12]. In this section, we first review the works

that discuss the importance of log analysis, and then list the related work that shows the status of

log analysis research in the literature.

2.1.1 The importance of logs and log analysis

Barik et al. [BDDF16]

In a study at Microsoft, Barik et al. [BDDF16] performed a mixed-method study on how teams at

Microsoft use event data, which also includes logs. The authors interviewed software engineers in

various roles in the company, including software developers, program managers, operations engineers,

content creators, data scientists, and managers. Interview participants are selected based on a

recruitment survey from 1,897 randomly-selected employees at Microsoft. Doing so, they made sure

that participants are familiar with event data and have already use it in the past to fulfill their

daily tasks. The authors used grounded theory guidelines to analyze the interview data, and also

performed a follow-up survey to increase the reliability of their qualitative findings.

The results showed that participants in any role extensively use event data in their activities.

5



Furthermore, the study found that software engineers share event data among different roles, since

event data is by nature flexible and can be utilized for different purposes. For instance, one can use

event data to find the root cause of a crash, while the other can use the same event data to rank

the most used feature by users. Finally, the study revealed several challenges associated with using

event data, including the complexity of combining data from different sources, the high amount of

clerical work required, the length of time needed for the activities which are based on event data,

and the presence of limited or difficult-to-use tools.

This study emphasizes the use of log data in various software engineering activities, and the

challenges that software engineers face in their activities when using log data. In this thesis, we focus

on identifying and fixing log-related issues, the presence of which can add even more complexity to

the already-challenging activities performed by software engineers using logs.

Oliner et al. [OGX12]

Oliner et al. [OGX12] discuss the most common applications of log analysis in practice, as summa-

rized below:

• Debugging. Most logs are used to facilitate debugging. Developers commonly use simple

approaches to use log information for debugging, like using grep to search for messages with

specific pattern that may reveal useful information. For instance, if a server crashes because

of network drop, developers might try to search for “connection dropped” message in the logs.

However, in many scenarios, these simple approaches will not help users to solve their problem,

since, among the other reasons, logs can become overwhelmingly large in practice. Thus, devel-

opers and operators might use more sophisticated approaches, like PCA (principal component

analysis) or SVM (support vector machines) to battle this complexity. Such approaches are

especially helpful in networked or large-scale distributed systems, e.g., Hadoop.

• Performance. Log analysis also helps users in improving or debugging the performance of

a software system. Logs can be used to find performance anomalies and pinpoint their root

causes.

• Security. Oliner et al. also discuss the use of logs in security applications. For example, users

can analyze logs to find evidence for security breaches or misbehaviors. Furthermore, logs can

be utilized to perform postmortem inspection of security incidents. Log messages are evidence

of various events, such as the execution of a code block or the creation or destruction of an

SSH session. Log analysts can aid to investigate logs in order to find out if an SSH connection

constitutes a security breach or not.

6



• Prediction. Oliner et al. mention prediction as another usage for log analysis. Logs can

be used to predict and plan for the future. Predicative models are widely used in workload

management, scheduling, configuration optimization, and other tasks.

• Profiling and reporting. Another use for log analysis is profiling and reporting the resources’

or users’ behavior. Log analysts can employ a verity of statistical techniques for profiling and

reporting activities on log data.

Consequently, issue-free logs – which is the focus of this study – will improve the results of log

analysis tools, considering their wide use.

2.1.2 Existing log analysis tools

DISTALYZER (Nagaraj et al. [NKN12])

Nagaraj et al. [NKN12] presented “DISTALYZER”, a tool used to analyze logs of distributed software

systems to find the components that cause performance degradation. DISTALYZER compares two

sets of logs, generated before and after the system exhibits degraded performance, and generates a

summary showing the events that diverge the most across the sets of logs, and therefore, potentially

affect the overall system’s performance. The tool uses machine learning techniques to automatically

find the strongest associations between system components and performance. DISTALYZER also

provides the ability to interact with the results and the exploration for extra analysis. The authors

evaluated DISTALYZER on three large-scale distributed systems (namely TritonSort, HBase, and

Transmission), and identified the root causes of six performance problems in these subject systems.

SherLog (Yuan et al. [YMX+10])

Yuan et al. [YMX+10] introduced SherLog, which is a postmortem error diagnosis tool that auto-

matically infers what must or may have happened during a failed execution. SherLog takes the log

output and the source code of the software system and tries to find the execution path that leads to

the failure. To do so, SherLog first parses the log output. Then, using the information provided by

logs, it statically walks through the execution path that leads to the failure. The authors used eight

real-world failures from seven applications to evaluate their approach. They manually reproduced

and diagnosed each failure and collocated the runtime logs. The authors then compared the results

generated by SherLog with their manual diagnoses. If a subset of the information collected during

the manual study is generated by SherLog, the authors consider it as useful. If all the essential

information in the manual investigation is generated by SherLog, they consider it as complete. In all

the experiments, SherLog generated complete information. The results demonstrate that SherLog is
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effective in zooming into the paths that are relevant to the failure. The authors also evaluated the

performance of SherLog, and showed that the longest SherLog diagnostic took around 40 minutes.

LogMaster (Fu et al. [FRZ+12])

Fu et al. [FRZ+12] proposed a correlation mining system and an event prediction system called

LogMaster. LogMaster parses the logs into event sequences and uses an algorithm, named Apriori-

LIS that can mine event rules form these event sequences. They also designed an abstraction of the

log events called Events Correlation Graphs (ECGs) to represent event rules, and used it for event

prediction. They validated their approach on three logs of production cloud and HPC systems with

average precisions of over 80%. The authors also showed that their approach needs significantly less

time comparing to related studies.

Oliner et al. [OA11]

Oliner et al. [OA11] proposed an online method for analyzing large software systems, which can detect

the interactions among the components of the target system and identify unexpected behavior. The

approach uses logs for its analysis. Logs have timestamps, i.e., they can be seen as time-varying

signals. In this approach, consequently, the authors exploit this fact for devising a technique for

identifying unexpected system behavior. Logs are converted into real-valued functions of time,

called anomaly signals. In the first stage of the proposed approach, an online Principal Component

Analysis (PCA) is employed to summarize these anomaly signals by finding correlated groups of

signals. Then, the approach uses these compressed signals to identify time-delayed correlations (i.e.,

surprising behavior) in logs using an online approximation algorithm. The authors show that the

results of their approach can be valuable for system administration tasks in real use cases from eight

unmodified production systems.

2.1.3 Summary

The extensive usage of logs motivates our study, since quality logs are extremely important for the

effectiveness of prior log analysis research. None of the mentioned works have looked into this issue

specifically. The outcome of this thesis would help in reducing log-related issues, and hence improves

the adoption of advanced log analysis techniques in practice.

8



2.2 Logging enhancement

2.2.1 Chen et al. [CJ17]

The closest recent research to this study is the work by Chen et al. [CJ17]. The authors studied

the problem of how to log, by looking into anti-patterns in the logging code. They manually studied

logging code changes in three popular open source software systems over the period of more than

six years. The authors focused on changes that occurred independently of the feature code that

contains the logging statement. In order to identify these changes, the authors extract the fine-

grained code changes from source code repositories. Then, they used heuristics to automatically

extract the code changes which contain logging code modifications. Finally, they used dependency

analysis to categorize the logging code changes into 1) changes due to modifications on the feature

code, and 2) independent logging code changes. After extracting the independent logging changes,

they manually went through a statistically significant sample of the changes. The authors found, in

total, nine reasons for independently changing the logging code, categorized into two groups: first,

“what to log”, and second, “how to log”. In this study, the authors only focus on the rationales in

the category of “how to log’. They found five rationales in this category, each corresponding to the

different fixes to the anti-patterns in the logging code. Based on these five rationales, they describe

five logging anti-patterns as follows:

1. Nullable Objects. Logging statements use variables to log the runtime information through-

out the execution of the system. However, the objects used in the dynamic contents can be

null. If not checked for, this would cause a NullPointerException and crash the system.

2. Explicit Casting. Explicit casting converts an object into a particular type. If the object

is not convertible to the requested type, explicit casting will cause runtime type conversion

errors and the system will crash.

3. Wrong verbosity level. Logging libraries use verbosity levels to control the type and amount

of information appeared in the log. Wrong verbosity level can hide important information from

the users, or in contrast, it can result in flooded log output with unwanted logs.

4. Logging Code Smells. Code smells are symptoms of bad design and implementation

choices [FB99]. In a similar fashion, the logging code smells are defined as poor design and

implementation choices when developing logging code.

5. Malformed Output. Some objects do not have a human-readable format defined. If they

are printed directly to the log output, the generated logs can be useless and pollute the output.

For instance, printing a byte array in the logging statement.
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To show the usefulness of identifying these anti-patterns, the authors also proposed a static

analysis tool called LCAnalyzer. LCAnalyzer uses Eclipse’s Java Development Tools (JDT) to flag

anti-patterns in the target source code’s ASTs. For instance, in order to find Wrong Verbosity Level

anti-pattern, their checker extracts the static part of the logging statement in the logging code and

compares it against its logging level: if developers explicitly mention, in the static part of the logging

statement, that it is a debug-level logging statement, they check the logging level of the statement

and if it doesn’t match the static part, they report it as an anti-pattern.

To evaluate LCAnalyzer, the authors conduct two case studies. First, they evaluated the perfor-

mance of their tool using an oracle and reported the precision and recall. The overall average recall

for LCAnalyzer in finding the mentioned anti-patterns is 95%. To calculate the precision, they man-

ually examined the detected anti-patterns from the oracle. The average precision for LCAnalyzer is

60%.

The authors also applied their tool on the latest releases of ten different open source software

systems. They found instances of the mentioned anti-patterns on various types of systems like clients,

servers, and frameworks. They also found that there is a medium to strong correlation between the

amount of logging code and the number of anti-pattern instances. Finally, the authors manually

selected 64 representative instances of anti-patterns in the aforementioned ten open source systems

and reported them as issues to the developers. Out of these, 46 instances (71.9%) were accepted by

the developers.

Our study complements this work in many ways. Chen et al. explore anti-patterns in logging

code by mining logging code changes in three open-source systems. In particular, they identified

six anti-patterns and proposed static code checkers to detect these patterns. However, instead of

detecting anti-patterns (like logging code smells [CJ17]) that have the possibility to be an issue, we

focus on the reported issues that are more certain. In fact, by comparing our study to the research

by Chen et al., only one anti-pattern/root-cause (which is Wrong Log Level) overlaps across the

two studies. The reason may be the different focus on anti-patterns and evident issues, and that

we identify log-related issues from issue reports while Chen et al. leverage code changes to identify

anti-patterns. Moreover, the results of our empirical study on log-related issues provide more in-

sights on these issues.

2.2.2 Yuan et al. [YPZ12a]

Yuan et al. [YPZ12a] performed a characteristic study on log practices by mining the revision

histories of four open-source software projects. This was the first attempt to study the practice

of software logging. Based on their analysis on the historical data from four open-source software
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projects. They provided several insights on logging:

• Logging is a pervasive practice during software development. On average, every 30 lines of

code contains a logging statement.

• Logging is beneficial for failure diagnosis. Logging, on average, reduces diagnoses time of

run-time failures on a median of 2.2X times.

• Developers actively maintain logging statements. The average churn rate of logging code is

almost two times (1.8) compared to the entire code base.

• Logging code takes a significant part of software evolution. Despite relatively smaller density

compared to the other parts of the code, a significant amount of commits (18%) modify logging

code.

• Developers usually change logging statements since they do not write the appropriate logging

statement in the first attempt. 36% of all logging statements are changed after they introduced

to the system.

Furthermore, the authors studied code changes that occurred on logging code. They used simple

heuristics to filter out code changes related to the feature changes in the commit history. The authors

found that developers do not delete or move the logging statements unless they introduce serious

problems: only 2% of the logging modifications are deletions. In contrast, 98% of modifications are

done on the content of the log messages, such as their verbosity level, static text, and variables.

Due to the large number of modifications occurred on the verbosity level of the logs (2,389 of the

changes are only on the verbosity level), the authors also investigated these changes in more detail.

The results showed that 72% of the verbosity level changes are due to the change of developers’

judgment about an error event. Thus, tools that automatically expose error conditions can help

identifying logging behaviors. In other words, exposing code to different error conditions can help

developers in making better decisions when selecting verbosity level for logs. Even for none-error

logging statements, developers reconsider the trade-off between multiple verbosity levels. The au-

thors propose that adaptive logging verbosity can help to reduce problems regarding verbosity levels.

In another finding, the authors show that more than one fourth of the logging modifications are

related to variables in logs, suggesting that automatic approaches can help developers in choosing

what variables should be logged. Finally, the authors show that more than one third (39%) of the

changes to the static part of the logging statements are because of inconsistencies between logs and

the execution information intended to be recorded, motivating tool support for automatically fixing

such inconsistencies.
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By identifying these manual efforts for modifying logging statements, the authors motivated

opportunities for tools, compiler and programming language support to improve the current logging

practices. The authors also built a simple checker that can help developers to write better logging

statements. We looked into the changes in logging statements by examining log-related issues.

We provided insights into the nature of the faulty logging statements and the source code that

contains them. Furthermore, we built static analysis tools to help developers improve their logging

statements.

2.2.3 Errlog (Yuan et al. [YPH+12])

Yuan et al. [YPH+12] investigate a sample of 250 real-world failure reports from five large and

widely used software systems (namely, Apache, squid, PostgreSQL, SVN, and Coreutils). Across

each system, the authors manually extracted the log messages and their relation to the failure

that was identified. The authors show that, under the default verbosity mode among the software

systems, almost all (97%) logging statements are Error and Warning level messages, approving

that Error/Warning are usually the only source of information in case of failures in the field. By

comparing the duration of each report, the authors found that reports supported by log messages

are fixed 2.2X faster on average. This confirms the hypothesis about the importance of appropriate

logging. However, more than half (57%) of the failures do not have failure-related log messages.

Furthermore, the programs themselves have caught early error-manifestations in the majority (61%)

of the cases, meaning that programs decided to tolerate the errors incorrectly. Making it worse, in

most of these cases (85%) developers did not log the incorrectly-tolerated error. These findings show

the need for automated tools that inject logs to error handling logic of the programs. Driven by

these findings, the authors introduced a tool called Errlog. Errlog analyzes the code for potential

unlogged exceptions and inserts logging statements in them. To do so, Errlog looks for seven generic

exception patterns, driven from the authors manual study on real-world failures. The tool then

examines whether the exception check already exists, and whether it contains a log message. If

there are no logging statements in the target exception, Errlog will insert appropriate code to log

the exception. To provide more control to the users on the overhead of the logging inserted to the

system, Errlog provides three logging modes that will control the overhead introduced by the tool.

The authors evaluated their proposed tool in two ways. First, they performed an in-lab experi-

ment to see how many of the error logs proposed by the tool are also manually added by developers

in the original source code. They show that, by configuring the tool to medium overhead mode,

Errlog was able to automatically generate an average of 84% of existing log points across all the

evaluated subjects. Even on the lowest overhead setting, 52% of the existing logs are generated by

the tool with only 1% overhead. Second, they performed a controlled user study to measure the
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effectiveness of Errlog. The authors asked 20 programmers with extensive and recent experience in

C/C++ to fix five failures as best as they could. They provided half of the participants with the

error-log-inserted programs and half of them with the original one. They show that, on average,

programmers took 60.7% less time to diagnose failures when they where using the logs added by

Errlog.

In this thesis, we also proposed an exception log message checker, similar to Errlog. However,

we were not able to compare Errlog with our proposed tool since Errlog works on C/C++ code.

Notwithstanding, we used a different approach to suggest enhancements for logging statements in

the exception handling code: our tool uses the source code to find the instances of each exception

type and provides a suggestion based on previous decisions from the developers of the system. This

approach is specially helpful for the developers with less experience since it helps them to make

decisions based on the well-reviewed and tested source code. Our proposed tool also can suggest

improvements to already-existing logging statements in the code. Yet, our tool cannot provide any

suggestion if the code has no previous logging statements while Errlog can be used to add logs to

the systems with no logging statement in them. We will discuss about our tool in more details in

Chapter 5.

2.2.4 LogEnhancer (Yuan et al. [YZP+12])

The authors propose a tool, named LogEnhancer [YZP+12], to automatically detect valuable infor-

mation from the source code and inject this information to logging statements. In essence, LogEn-

hancer is a enhancement tool that takes the existing source code as input and produces a newer

version with improved logging statements. To accomplish this goal, LogEnhancer uses a three-step

approach. In the first stage, it performs a Uncertainty Identification analysis. At this stage, the tool

starts from the log and works its way backward on the code and finds the conditions that needed

to be satisfied in the control flow to allow the program to execute the log. In the second stage,

the tool identifies the key values that will help in solving the uncertain paths leading to the logging

statement. Finally, in the last stage, LogEnhancer inserts a procedure before each log to recorded

the variable values that are identified in the previous step.

To evaluate LogEnhancer, the authors enhanced the logging statements in 8 different real-world

applications. The authors performed three experiments to ensure the usefulness of LogEnhancer. In

the first experiment, the authors compared the results of the tool with the variables selected manually

by the developers of the subject systems. They found that, on average, 95% of the variables selected

by developers are also recorded by LogEnhancer. Furthermore, the authors evaluated the diagnostic

effectiveness of the tool by analyzing 15 real-world failures. They found that in all the 15 cases,

the original logs were not helpful enough to diagnose the failure since they faced many uncertainties
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in the path that caused the error. However, the variables added from LogEnhancer significantly

reduced the uncertainty, leading to easier diagnosis of the failures.

Our exception checker tool proposed in this thesis also aims at enhancing logging statements by

suggesting addition and deletion of variables in the logging statements. With our tool, we suggest

developers adding the exception variable to a logging statement, if the thrown exception type always

includes the exception variable in the logging statement all across the source code of the subject

system. Even though we couldn’t run LogEnhancer, from the description of their approach, we can

infer that LogEnhancer is guaranteed to solve the issues fixed by adding variables to the logging

statements, as well as the issues with missing exception variables (28 log-related issues). However,

LogEnhancer can potentially produce noise to the log output. In fact, seven log-related issues were

fixed by removing variables from the logging statements, i.e., LogEnhancer may result in worsening

the issues. Zhu et al. [ZHF+15], also mention that adding all variables to logging statement pollutes

the log output and is not recommended by developers.

2.2.5 Yao et al. [KY18]

Yao et al. [KY18] proposed an approach that recommends proper locations to place logging state-

ments in order to improve performance monitoring on web-based software systems. In this approach,

the authors use improvements of the explanatory power of statistical performance models as a heuris-

tic to suggest logging statement placement. Their approach contains several steps. To reduce the

performance overhead, the approach parses the existing web logs and identifies the web requests that

have significantly higher performance impact on the system. Using the web logs, the authors built a

statistical performance model and measured the significance of the log metrics on the model’s output.

Since the log metrics represent the number of times each code block is executed, the authors used

them as a proxy to identify the performance-influencing code. In the next step, they automatically

injected logging statements into the beginning of the methods in the source code identified in the

previous step. After injecting the logging statements, they rebuilt and re-run the performance tests.

Then, they made a similar statistical model using both existing web logs and the newly-injected logs.

In this step, they use the new model to remove the methods that do not have a significant impact on

the performance. Afterwards, they injected logging statements to every basic block of the remaining

methods. Finally, they used the logs injected in basic blocks as well as the previous logs to make

a newer version of the statistical performance model. Using the impact of the log metrics on the

model, they identified performance-influencing basic blocks and suggest adding logging statements

to them.

The authors evaluated their approach on three different aspects of two open source and one

enterprise software system as subject systems. First, they evaluated the statistical model proposed
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by their approach. The authors measured the model fit to understand the quality of their statistical

models. They showed that their models with R2 between 26.9% and 90.2% and can well explain

the system performance. Second, they evaluated the performance influence of the recommended

logging locations in the code. To measure the influence, they set all the metrics in the model to

their mean value and computed the predicted performance. Then, they doubled the value of one

metric while keeping all the other ones in their median value and computed the difference in the

model’s output. They found that while their suggested logging locations have a significant influence

on the performance, the impact can be positive or negative. Finally, the authors performed a manual

study on the suggested locations to understand their characteristics. They found that the suggested

locations are not in complex methods. Moreover, most of the suggested locations are not in the

performance hotspots.

Our study finds that missing logging statements are one of the root-causes of log-related is-

sues. However, the proposed approach by Yao et al. is only suitable when considering performance

monitoring.

2.2.6 Log2 (Ding et al. [DZL+15])

Ding et al. [DZL+15] proposed a novel cost-aware logging mechanism called Log2. Ding et al.

performed a preliminary survey on logging practices in Microsoft. They found that developers at

Microsoft believe that the overhead of logging is not negligible. Furthermore, the majority of the

developers are not satisfied with the existing approaches to control this overhead. In fact, 83% of

the participants agreed that many log messages are redundant for diagnosing performance issues.

Motivated by the results of their survey, the authors proposed Log2, a logging mechanism that

allows the system to adjust logging dynamically to achieve the maximum effectiveness, given an

overhead threshold. Log2 uses two filtering phases to achieve this goal, a local filter and a global

filter. Each local filter is responsible to discard trivial logging requests. The usefulness of each

logging request for performance diagnoses is determined by a dynamically-calculated utility score.

Local filters discard logging requests with low utility score. Afterwards, global filter writes the top-

ranked logging requests to the disk according to the global overhead threshold. The global threshold

will be adjusted dynamically based on the environment dynamics.

To evaluate Log2, the authors performed a four-stage experiment on a popular open source blog-

ging platform, namely BlogEngine. In the first step, they marked code regions with high potential

to cause performance issues and instrument it with Log2. In the second step, the authors deployed

BlogEngine and two other machines as clients. They used a tool name WebTest to simulate user

behavior on BlogEngine. Using WebTest, they generated five typical usage scenarios, namely read

blogs, write comments, search, download files and upload files. Then, in the third step, the authors
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injected three performance issues, namely upload an extremely large file, search a strange term, and

exhaust CPU by another process. Finally, in the last step, the authors monitored the I/O throughput

by counting the number of times that Log2 flushes the logs to disk in each time interval. They also

measure other performance metrics, like CPU and memory overhead of the Log2. In this experiment,

they compared Log2 with a baseline that included outputting all the logs executed. They found that,

on average, Log2 writes 104 logs per interval, while 3,800 logs are outputted in the baseline approach.

Moreover, although Log2 used slightly more memory comparing to the baseline approach, it offered

less CPU usage since a large number of logs are excluded in the process. The authors also showed

that with a budget size of 120 logs per interval, one can cover all the manually-identified useful logs

form the baseline approach.

Log2 proposes a filtering mechanism to reduce the I/O consumption of the logs at runtime. It

performs the filtering with having performance problem diagnoses as the main usage of the logs in

mind. The approach is deeply integrated into the source code as an API to reduce the number of

logs saved during the runtime. However, in this work, we aim to provide a recommender to help

developers improve logging statements in their source code rather than introducing a new logging

approach.

2.2.7 Log20 (Zhao et al. [ZRL+17])

Zhao et al. introduced a tool called Log20. Log20 is a performance-aware tool to inject new logging

statements to the source code. It is also capable of adding variables to the injected logging statements

without any domain knowledge. The authors introduced an approach to measure the informativeness

of each added logging statement. They used informativeness to compute a near-optimal placement

of logging statement given a specific performance overhead. The authors measured informativeness

of each logging statement placement by its ability to differentiate different execution paths during

runtime. Furthermore, they used Shannon’s information theory to measure the entropy of a pro-

gram by considering all possible execution paths and their probability during runtime. Since each

logging statement placement can reduce the entropy by disambiguating these execution paths, they

calculated informativeness of logging statements by the reduction in the entropy of the program,

given its placement. The authors used this setup to compute near-optimal placement of the logging

statements given an overhead threshold. Their approach is rather dynamic and can react to different

workloads during runtime.

Zhao et al. evaluated their approach on four widely used distributed systems namely HBase,

HDFS, YARN, and ZooKeeper. They found that Log20 is considerably more efficient in disam-

biguating execution paths compared to the existing standard logging libraries. By outputting 0.08

log enriches per request, Log20 was as informative as info level logs with 1.58 log entities per request.
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They also compared their approach with Ball-Larus path profiling algorithm[BL96]. They found that

Log20’s instrumentation is at least 3X more efficient than the Ball-Larus algorithm. Furthermore,

Zhao et al. evaluated the usefulness of Log20 for debugging activities using 41 randomly selected

user-reported HDFS failures. The authors found Log20 is helpful in debugging 68% (28/41) of the

real-world failures while existing info level logging statements are helpful in 27 cases.

Log20 dynamically inject logging statements with variables to the byte-code of the program. In

essence, they introduced a new logging mechanism. We focused on the existing logging practices.

Especially, we studied the log-related issues and proposed static analysis tools to help developers

improve their existing logging statements.

2.2.8 Fu et al. [FZH+14]

Fu et al. [FZH+14] systematically studied the logging practices of developers in the industry, with a

focus on where developers log. The authors investigated two large-scale industrial software systems

from Microsoft. They first performed source code analysis to investigate logging characteristics of

the subject systems. Based on a manual examination, they categorized logging statements into five

groups, namely assertion-check logging, return-value-check logging, exception logging, logic-branch

logging, and observing-point logging. The authors used the results of their manual examination to

automatically group all the logging statements in the code. Moreover, they confirmed their identified

categories by conducting a survey on developers’ opinions about their results. The results of their

automatic classification showed that about half of the logged snippets belonged to the first three

categories, as they logged due to the unexpected situations, while other half belongs to the next two

categories where they logged in expected situations to log execution trace information.

Supported by their findings from the characteristic study, the authors trained a classifier based

on contextual information and features of training code snippets to predict whether the tested code

snippets need to be logged. They performed 10-fold cross-validation on their classifier to evaluate

the accuracy of their results. They showed that, by using contextual information, their classifier can

achieve 80.8% to 90.4% recall, while having 81.1% to 90.2% precision.

In this work, we also provide suggestions to the developers about whether they need to log

exceptions or not, using our catch block checker tool. However, we were not able to compare the

results of our tool to the Fu et al.’s, since they work on different programming languages. Our catch

block checker tool also provides suggestions on whether developers need to log the exception trace

as well as whether they need to add logging statements in the catch block. In this study, we focus

on finding log-related issues. Thus, we emphasized on preventing developers to write faulty logging

statements rather than giving a general recommendation on the code. Therefore, we evaluated our

tool on the faulty logging statements in catch blocks rather than all the catch blocks in the source
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code. Nevertheless, we were able to preserve high precision for our recommendations.

2.2.9 LogAdvisor (Zhu et al. [ZHF+15])

Zhu et al. [ZHF+15] proposed a framework which helps in providing informative guidance on where to

insert logging statements. The authors leveraged these guidelines to automatically learn the common

logging practices using machine learning algorithms to suggest logging decisions for developers.

Focusing on logging for error handling, the authors extracted code snippets from the source code of

the subject systems code snippets with exception code, or return-value-check code, and used them as

training data to learn logging practices. Then, they extracted code features, such as exception type,

from the collected code snippets. If they found too many features, they removed redundant features

using frequency and information gain thresholds. Moreover, they used noise detection approach

proposed by Kim et al. [KZWG11] to eliminate data noises. They used the extracted features to

train machine learning algorithms (e.g., Decision Tree) to learn common logging practices. This

approach was implemented in a tool called LogAdvisor. LogAdvisor can provide online suggestions

based on different features of the code snippet.

Zhu et al. evaluated their approach by conducting several experiments. The authors showed

that their approach can achieve 84.6% to 93.4% precision when they performed a 10-fold cross-

valuation. They also compared different machine learning algorithms while they trained on their

data. They found that Decision Tree achieves the best overall accuracy. Furthermore, they evaluated

the impact of their noise-handling approach by comparing the prediction results with and without

noise handling. They found that most of their data (88%) has a noise degree value close to 0,

revealing the quality of the data. Nevertheless, the noise-handling approach improves the prediction

accuracy of their approach. Lastly, they performed cross-project validation by training and testing

their algorithms on a different project. By utilizing this approach, they were able to achieve 81.5%

accuracy, compared to 93.4% in within-project learning.

While LogAdvisor shows promising results, it is only usable for C# projects. Moreover, our

checker has very little overhead comparing to their multi-step framework. Our checker only needs

the information about the exception types. Although we have a lower recall, we still do not give

wrong suggestions in any of the issues. Furthermore, we aim to find multiple patterns rather than

focusing on one, as Zhu et al. did in their study.

2.2.10 Li et al. [LSH17]

Li et al. [LSH17] proposed an approach which helps developers in choosing the best log level when

they are adding a new logging statement. They studied the logging levels among four open source

software projects: Hadoop, Directory Server, Hama, and Qpid. The authors extracted all the added
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logging statements of the systems from the historical data and extracted process and product metrics

related to them. They started with a preliminary empirical study on the use of log levels in the

studied subject systems. They found that although each project has a different distribution of log

levels, no single log level dominates other ones in any of the studied projects. Furthermore, different

code blocks have different distribution of log levels. For instance, logging statements directly added

to catch blocks tend to have less verbose logging levels than the logging statements added to try

blocks. They also found that not all the logging statements added to catch blocks have warn, error,

or fatal level. These results demonstrate difficulties in suggesting logging levels. Inspired by their

empirical study, they introduce a regression model to help developers choose appropriate log level

for newly added logging statements. They used five sets of metrics to model the log levels, logging

statement metrics, file metrics, change metrics, historical metrics, and containing block metrics.

Furthermore, they re-encoded categorical metric to a quantitative variable, combined metrics with

strong interaction, and removed strongly correlated metrics. Then, they build an ordinal regression

model to suggest logging levels for a given logging statement.

They measured the performance of their model using multi-class Brier score and AUC metrics.

Brier score is used to measure the accuracy of probabilistic predictions. AUC (area under the curve)

is the area under the Receiver Operating Characteristic curve (i.e., the plot of the true positive rate

against the false positive rate). The authors show that, while accounting for optimism, their ordinal

regression model achieves a Brier score ranging from 0.44 to 0.66 and an AUC of 0.75 to 0.81. They

also show that the characteristics of the containing block, the existing logging statements in the file,

and the content of the newly-added log can play an important role in determining the appropriate

logging level for the added logging statements.

As mentioned, we also proposed a log-level checker to help developers in identifying inappropriate

log levels in their code. We demonstrate the comparison between our approach and the model

introduced by Li et al. in Section 5.5.

2.2.11 Li et al. [LSZEH17]

Li et al. [LSZEH17] also provided a model to suggest just-in-time suggestions for code changes in

logging statements occurring in each commit. The authors performed a manual study to investigate

the rationales behind logging statement changes. They studied 32,480 logging statement changes

from four open source subject systems. They sampled 380 log changes with 95% confidence level

and ±5% confidence interval. Furthermore, they manually investigated the log change, code change,

commit message, and the issue report, in order to understand the reason for a log change. They

categorized the changed logs into four groups. Logging statements changed because of code changes
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in the containing block are marked as bock change. Log improvement category includes logging state-

ments modified to achieve better logging practices. Another category includes logging statements

which are changed because they depend on modifications on other code elements (e.g., variables in

a log). Finally, logging statements changed because of the issues reported by users and developers

constitute the fourth category of log changes.

Driven by this formative study, the authors designed Random Forest classifiers to provide just-in-

time suggestions for log changes. For each code change, the classifiers provide a binary respond that

shows the likelihood of a log change occurring in a commit. They reported that their Random Forest

classifiers can tell whether a log change is required for a commit or not, with an average accuracy

of 0.76 to 0.82 even when using commits from other projects as training data. Furthermore, the

authors show that their classifier can reach a medium classification power using 192 commits on

average.

They also examined the results of their classifier to find the most influential factors that best

explain log changes. They found that change measures and product measures are among the most

influential factors. In fact, the strong influence of change and product measures indicates that log

changes are highly associated with other code changes, and furthermore, the current snapshot of the

source code plays an important role in the logging decision for developers. Last but not least, the

authors found that different projects follow different log change practices. For instance, catch clause

measure is one of the most influential factors in Hadoop, Directory Server, and Qpid projects, while

in HttpClient, it ranks the 7th most influential factor.

In this work, we have focused on the log-related issues and studied their characteristics, while Li

et al. looked into the rationale behind log changes. We also proposed a set of tools to help developers

in avoiding straightforward log-related issues.

2.2.12 Li et al. [LCSH18]

Li et al. performed a case study on six open source Java systems: Hadoop, Directory-Server, Qpid-

Java, CloudStack, Camel and Airavata to investigate the relationship between logging decisions and

the functionality of the source code. The authors used topics as a proxy for the functionality of

the code. For each system, they first extracted the methods in the source code and filter them

base on size. Then, they removed the logging statements from the method before performing topic

modeling. Afterwards, they extracted linguistic data such as variable names and code comments

and performed LDA to unigrams as well as bigrams in each method.

They found that a small set of the extracted topics are much more likely to be logged. In fact,

most of the log heavy topics are related to communication between machines or interaction between

threads. Furthermore, the authors found that studied systems share a portion (12% to 62%) of
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their topics with each other. Meaning that developers can use other systems while making logging

decisions or developing logging guidelines. Finally, the authors built regression models to study the

relationship between the topics in a method and the likelihood of a method being logged. They

found that adding topic-based metrics to baseline model result in improvements form 3% to 13%

on AUC and 6% to 16% on Brier score. In fact, five to seven of the top ten important metrics for

determining the likelihood of a method being logged were topic-based metrics. They showed that

developers can use topically to predict the likelihood of a method being logged.

Li et al. suggest that there is a strong relationship between the topics of a code snippet and the

likelihood of a code snippet containing logging statements. In essence, they focus on the problem of

“where to log”. We take a more general approach to improve the quality of the logging statements by

providing insights on log-related issues. We also proposed static analysis tools to help developers in

different aspects of logging such as “where to log” and “what to log” as well as “how to log”. However,

our tools focus on specific issues in the logging code rather than providing general solutions to these

questions.

2.2.13 Kabinna et al. [KBSH16]

Kabinna et al. [KBSH16] studied the logging library migration in Apache Software Foundation

(ASF) projects. The authors identified all the JIRA issues that attempt to migrate logging libraries.

Then, they manually analyzed JIRA issues to find the rationales behind logging library migrations.

They also collected churn metrics for the related commits as well as developers’ metrics from the

repositories of the subject systems to identify the effort needed to perform the migrations. The

authors found 49 attempts to migrate logging libraries in 33 among the 233 projects under study.

They also reported that on median, each logging library migration took 26 days to complete and

in the majority of them (66%) at least one top contributor was involved during the migration. The

improvements offered by the new library often motivates developers to justify the effort needed

to migrate the logging library. The developers mentioned flexibility, performance improvements,

code maintenance, functionality, and dependencies as their drivers for migrating logging libraries.

Interestingly, 14 attempts for logging library migrations were abandoned by developers. In six

projects the developers failed to provide the patches needed for migration. Two of the projects

delayed their migration for a better release of the targeted library. Moreover, two projects faced

dependency issues during their migration.

Kabinna et al. also found that the performance improvement is one of the primary reasons

for developers for logging library migrations. Thus, they measured the performance improvements

observed after the migrations. They run performance tests before and after each migration in

“Debug” and “Info” log levels. Afterwards, they used Mann-Whitney U test to find statistically
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significant performance differences between pre- and post-migration tests. Furthermore, they also

calculated the effect size to quantify the differences in performance. Two subject systems experienced

28-44% performance improvement while in two systems the improvements were negligible.

The authors found that 14% of the ASF projects had at least one logging library migration in

their lifetime. They also showed that 70% the migrated projects had at least two issues related to

the logging library migration. Although they provided useful insights for logging library migration,

they do not propose an approach to automatically aid developers in the process.

Results of our study confirm the findings of Kabinna et al.’s. We showed that logging library

migrations are one of the root causes of log-related issues. Furthermore, we found that logging library

migrations introduce inconsistencies and new issues to the software systems. We also introduced a

tool that can help developers in improving the performance of software systems by simply checking

for the enabled logging level before executing the logging statement, while using specific logging

libraries. Our checker can fix such common issues related to logging library configurations.

2.2.14 Kabinna et al. [KSBH16]

Kabinna et al. [KSBH16] also studied the stability of logging statements. First, they performed

a preliminary study to find how often logging statements go under modifications in their lifetime.

They used the historical data stored in the repositories of the subject systems to track the changes on

logging statements. They performed their analysis on four open source projects namely ActiveMQ,

Camel, Cloudstack, and Liferay. They found that 20% to 45% of the logging statements in the

studied applications at least went through one modification. Furthermore, they observed that on

median, logging statements change 17 times after they were introduced into the system. Motivated

by the empirical results, the authors trained a Random Forest classifier based on metrics related to

context, the content, and the developers of the logging statements to predict the likelihood of a log

change in the future. Furthermore, the authors reported the performance of their classifier using

precision, recall, AUC and Brier Score. They also calculated the optimism of their performance

measures and reduced it from their evaluation results. The Random Forest classifier achieved 0.83

to 0.91 precision and 0.65 to 0.85 recall, leading to AUC of 0.94 to 0.95. They also achieved a

Brier Score of 0.042 to 0.61 among the applications under study. Finally, the authors showed that

developer experience, file ownership, SLOC, and log density are the most important metrics for

predicting the stability of a logging statement.

Kabinna et al. focus on predicting the stability on the logging statement without considering

the nature of the changes introduced. We aim to study faulty logging statements and provide useful

insights on the characteristics of these logging statements and their surrounding code. Furthermore,

we provided a set of tools to help developers to find and fix such issues.
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2.2.15 Summary

Previous researches mainly focused on suggesting and improving existing logging statements. We,

on the other hand, focus on studying log-related issues and aim to improve the quality of the logging

statements by automatically detecting these issues. We provide a comparison of related work that

aim to improve logging code in Table 1.
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Table 1: Comparing our work with prior research on logging suggestions and improvements

Study Goal Code Element Level Notes

Learning to log: Helping developers make informed Adding or removing logging Catch Block level, Providing a tool named Log Advisor to help developers of

logging decisions [ZHF+15] statements to catch blocks Return-value check C# determine whether a log needed or not in a catch block.

Improving software diagnosability via log Adding variables Method Level Injecting all accessible variables to the

enhancement [YZP+12] to logging statements logging statement in the source code.

Characterizing and detecting anti-patterns in the Finding anti-patterns Statement Level Studying the anti-patterns in logging code in several

logging code. [YPZ12a] in logging statement Java projects by analyzing log changing commits.

Which log level should developers choose Predicting verbosity level Statement Level Providing a model to predict appropriate

for a new logging statement? [LSH17] logging level using code metrics.

Towards just-in-time suggestions for log changes [LSZEH17] Predicting the need for log changes Commit level Built random forest classifiers using software measures to

predicting the need of log change in each commit.

Studying and detecting log-related issues (This study) Detecting log-related issues Statement Level Studying characteristics of the log-related issues and

providing a checker to detect evident errors in logging code.



Chapter 3

Study Design

In this section, we present our case study setup. In particular, we present the subject systems of our

case study and their characteristics as well as our approach to select them. Furthermore, we explain

our approach for collecting log-related issues.

3.1 Subject systems

Our case study focuses on two large-scale open-source software systems, namely Hadoop and Camel.

To select our subject systems, we picked the top 1,000 most popular Java projects from Github

based on the number of stars. Then, we cloned them and counted the number of logging statements

in each project using the source code. To count the number of logging statements, we checked the

types of the logger variables and whether their corresponding method calls (e.g., trace, debug, info,

warn, error, fatal) are standard log librarie’s levels. Then, we picked the top two software systems

as our subjects. Our approach to select the subject systems is depicted in Figure 1.

Hadoop is a well-known parallel computing platform that implements the MapReduce paradigm.

Hadoop has been widely adopted in practice. Hadoop is written in Java with around two million

SLOC and nearly 33K issues stored in its issue tracking system for all of its sub-systems. Camel is

an open-source integration framework based on known Enterprise Integration Patterns with Bean

Integration containing more than 1.1 million SLOC and 10K issues in its issue tracking system. Like

all other products of Apache, Hadoop and Camel use JIRA as their issue tracking system. Both

subject systems have extensive logging statements in their code and logs are heavily used in their

development and operation activities. In particular, Hadoop has more than 11K logging statements

and Camel has more than 6K logging statements in their latest revision of source code.
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3.2 Collecting log-related issues

In order to conduct the study, we first needed to collect log-related issues from issue tracking system

of Camel and Hadoop. There exists no explicit flag in JIRA issue reports that label an issue as a

log-related issue. Thus, we extracted all available issue reports of our subject systems to performed

further investigation and extracted issues that are more likely to be related to logging mechanism

of the subject systems. Then, we leveraged a keyword based heuristic to filter such issues, by

searching for keywords like log, logging, or logger. Note that we performed our filtering based on the

issues’ summary rather than issues’ description. Issue descriptions usually provide more information

about each report. However, because of the nature of logging, many reports include logging related

keywords. In fact, logging is one of the most important tools in debugging activities and most of the

issue reports include logs and its related keywords in their description. However, most of the issues

only use logging as a tool to fix other problems and are not related to logging mechanism of the

system. Moreover, we only selected the issues that are labeled as bug or improvement and that are

also resolved and fixed. We only used fixed and resolved issues since we required the corresponding

fix for these issues to understand their characteristics and the root-causes. We included the issues

with label improvement because, from our preliminary manual exploration of the issue reports, we

found that many log-related issues are labeled as improvement while they were in fact bugs.

Figure 1: An overview of our approach to select the subject systems

Table 2: The Number of Issues in Hadoop and Camel

Subject systems # all fixed issues # Issues with log-related keywords # Manually verified

Hadoop-HDFS 3,863 253 178 (4.6%)

Hadoop-Common 5,999 221 170 (2.8%)

Camel 6,310 163 85 (1.3%)

Hadoop-YARN 1,542 133 71 (4.5%)

Hadoop-MapReduce 2,906 145 61 (2.1%)

For example, in HADOOP-80751, a developer reports that “Lower native-hadoop library log from

info to debug”. The title clearly shows that the log level in this case is wrong. However, this issue

1https://issues.apache.org/jira/browse/HADOOP-8075
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is labeled as an improvement in the system. Since we wanted to study the issues that are related

to logging, but not the corresponding new logging with new features, we also excluded other issue

types like Task or Sub-task that are usually used to implement new features rather than fixing a

bug. Afterwards, we further verified each issue to make sure they are indeed log-related issues.

For example, we do not include the issues if developers added new functionality to the code while

modifying logging statements since the modification is due to the functionality change instead of an

issue related to the logging statement itself. We also exclude the issues that are not fixed or not

closed as well as duplicated and invalid issues. Eventually, 563 log-related issues remained, which we

manually investigated (Table 2). For each issue, we checked the issues report and their discussion.

Furthermore, we investigated their corresponding fix for the issue. We also recorded the information

regarding the people interacting with the issue as well as the priority, report date, and fix date.
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Chapter 4

Empirical Study

In this section, we present our case study results by answering four research questions. For each

research question, we show the motivation of the research question, our approach to answer the

question and the corresponding results. Figure 2 presents an overview of our approach to answering

the research questions.

Figure 2: An overview of our approach to answer the research questions
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4.1 RQ1: What are the characteristics of files with log-related

issues?

4.1.1 Motivation

The first step towards understanding log-related issues is to find out where they are located. In this

research question, we study the characteristics of files that contain log-related issues. Knowing these

characteristics might help developers prioritize their efforts when identifying and fixing log-related

issues.

4.1.2 Approach

To answer this research question, we first extracted the files related to each issue according to its

fix. Then, we calculated the following product and process metrics for Java files with and without

log-related issues.

• Normalized source lines of code (NSLOC): We use SLOC to measure the size of a file. We

do not calculate a complexity metric since, as previous studies have shown before, most of

the software complexity metrics are highly correlated with SLOC [HRGB+06, HH10, Zha09].

However, larger files tend to contain more logging statements [SNH15]. Having more logging

statements increases the probability of having more log-related issues. Thus, we normalized

SLOC by the number of logging statements in each file.

• Fan-in: We used fan-in to measure dependency between files. Fan-in measures the number of

files that depend on a given file. To calculate fan-in, we first constructed the call graphs of

all the methods in each file using an open source tool named “java-callgraph”[Gou17]. Then,

we counted the number of methods from other files that call methods from a particular file

using the call graph. Files with higher fan-in values have more files in the system depending

on them, and thus, have more impact on the system. By calculating the Spearman correlation

between Fan-in and number of logging statements in a file, we find that the correlation is low

(0.19). Thus, we did not normalize fan-in with the number of logging statements in the files.

• Frequency of prior commits: We used the frequency of prior commits to measure the stability

of the files. Operators may need better logs to be aware of the changes on the files that are less

stable. We used the total number of prior commits of each file divided by the lifetime length

(in number of days) of the file to calculate the frequency of prior commits. The lifetime length

of the file is calculated by measuring the time difference between the first commit of the file

and the date when we extract data from the Git repository.
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• Frequency of prior bugs: We also used the frequency of prior bugs to measure the quality of

the files. Developers may depend on logs to ensure the quality of these files. Same as the

frequency of prior commits, we use the lifetime length to normalize the total number of prior

bugs of a file. We used the JIRA reports for each subject system to collect the number the

prior bugs of each file.

Note that we did not include test files since we only wanted to focus on the production code.

We used statistical tests to compare metrics between files with log-related bugs and without log-

related bugs. More specifically, we used a two-tailed statistical test, namely the Wilcoxon rank-sum

test [WW64]. We performed four comparisons on each dataset. To better control for the randomness

of our observations, we used Bonferroni correction [DMCSO05]. We adjust our p-value by dividing

it by the number of comparisons (four). The results are significant at the significance level alpha

= 0.05/4 (p-value < 0.0125). This shows that the two populations are different. However, studies

have shown that when the size of the populations is large, the p-value will be significant even if the

difference is very small. Thus, we calculated the effect size using Cliff’s delta [KDHS07, CSJ+14]

to measure how large the difference between two populations is. The value of Cliff’s delta ranges

from zero to one. According to Kampenes et.al. [KDHS07], Cliff’s delta values can be interpreted

as shown in Table 3:

Table 3: Cliff’s delta effect size interpretation.

Effect size Cliff’s delta value

Trivial if Cliff ’s d ≤ 0.147

Small if 0.147 < Cliff ’s d ≤ 0.33

Medium if 0.33 < Cliff ’s d ≤ 0.474

Large if 0.474 < Cliff ’s d

4.1.3 Results

Table 4 presents the median of our studied metrics for files with and without log-related issues. We

found that for all subject systems in our case study, files with log-related issues have statistically

significantly more prior bugs and prior commits with large effect sizes. However, the difference of

our product metrics (NSLOC and fan-in) with and without log-related issues is either statistically

indistinguishable or their effect sizes are small or trivial (except for fan-in for Camel and Hadoop-

Yarn). These results imply that files that are more actively under development or bug fixing tend

to contain more log-related issues.

However, we found that a large portion of the files does not include any logging statements in
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them. Thus, they are less likely to have any log-related issues in them. In order to reduce the

impact of these files on our results, we also calculated mentioned metrics only for the files with at

least one logging statement. Table 5 presents the median of our studied metrics for files with and

without log-related issues which at least include one logging statement in them. The ratio of files

with logging statements are mentioned in Table 5 subject system. We found that similar to the

previous results, files with log-related issues have statistically significantly more prior bugs and prior

commits with medium to large effect sizes. However, the difference of our product metrics (NSLOC

and fan-in) with and without log-related issues is statistically indistinguishable or their effect sizes

are small or trivial (except for fan-in only for Hadoop-Yarn). This implies that although removing

files without logging statements reduced the effect sizes, the difference is still significant in process

metrics.

One possible reason can be that changes and bug fixes in the files make the code inconsistent with

the logging statements in the files. Thus, the logging statements become outdated and eventually

are reported as issues. In our manual study in RQ4, we found one file called FSNamesystem.java

with 6K SLOC, 51 contributors and 250 issues, of which 12 are log-related. One of these log-related

bugs1 was specifically reported to clean-up the unnecessary logging statements in the file that be-

came outdated and the corresponding source code no longer existed in the system. In the discussion

of another log-related issue in HDFS2, developers mention that “the comments and logs still carry

presence of two sets when there is really just one” which specifically shows that the source code

and logging statements are inconstant. The results suggest that after finishing development or bug

fixing tasks, developers may consider verifying the consistency of the source code and the logging

statements to reduce such log-related issues.

�

�

�

�

RQ1 Conclusions: Files with log-related issues have undergone statistically significantly more

frequent prior changes, and bug fixes. Developers should prioritize effort of maintaining logging

statements on these files.

4.2 RQ2: Who reports and fixes log-related issues?

4.2.1 Motivation

RQ1 shows that log-related issues often occur in files with less stable source code. Experts of

these files may be one of the most important vehicles to ensure the quality of logs. Prior research

demonstrates the importance of experts in resolving these log-related issues [SNHJ14]. Furthermore,

studies show the importance of developer ownership and its impact on code quality [BNM+11].

1https://issues.apache.org/jira/browse/HDFS-9528
2https://issues.apache.org/jira/browse/HDFS-2729
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Table 4: Medians (Med.) and effect sizes (Eff.) of the normalized process and product metrics for files with and without log-related issues. Effect

sizes are not calculated if the difference between files with and without log-related issues is not statistically significant.

Metric Type

Camel Common Yarn HDFS Mapreduce

Med. Eff. Med. Eff. Med. Eff. Med. Eff. Med. Eff.

Fan-in

With log-related bug 8.0

Medium(0.37)

15.0

-

14.0

Large (0.54)

27.5

Small (0.27)

7.5

-

Without log-related bug 3.0 15.0 5.0 12.5 5.0

NSLOC

With log-related bug 21.3

-

24.1

-

21.2

Small (-0.16)

24.0

-

30.4

-

Without log-related bug 20.4 25.0 20.0 27.0 25.0

Frequency of Prior Commits

With log-related bug 0.014

Large (0.49)

0.008

Large (0.68)

0.026

Large (0.84)

0.018

Large (0.63)

0.017

Large (0.93)

Without log-related bug 0.005 0.002 0.003 0.004 0.001

Frequency of Prior Bugs

With log-related bug 0.002

Large ( 0.83)

0.004

Large (0.73)

0.008

Large (0.88)

0.007

Large (0.74)

0.006

Large(0.91)

Without log-related bug 0.000 0.001 0.000 0.001 0.001



Table 5: Medians (Med.) and effect sizes (Eff.) of the normalized process and product metrics for files with and without log-related issues. Files

without logging statements are excluded. Effect sizes are not calculated if the difference between files with and without log-related issues is not

statistically significant. The percentage of files with log-related bugs shown in front of each subject system.

Metric Type

Camel (19%) Common (22%) Yarn(18%) HDFS (27%) Mapreduce (16%)

Med. Eff. Med. Eff. Med. Eff. Med. Eff. Med. Eff.

Fan-in

With log-related bug 5.0

-

19.0

-

14.0

Large (0.48)

28.0

-

9.0

-

Without log-related bug 4.0 23.00 7.0 16.0 6.0

NSLOC

With log-related bug 19.2

-

30.3

Small (-0.29)

22.3

-

24.9

Small (-0.18)

35.1

-

Without log-related bug 24.0 38.0 27.8 35.7 39.0

Frequency of Prior Commits

With log-related bug 0.015

Medium(0.36)

0.008

Medium (0.40)

0.031

Large (0.67)

0.021

Medium (0.41)

0.017

Large (0.75)

Without log-related bug 0.008 0.004 0.006 0.010 0.004

Frequency of Prior Bugs

With log-related bug 0.002

Large ( 0.63)

0.005

Large (0.48)

0.009

Large (0.71)

0.007

Large (0.55)

0.007

Large(0.79)

Without log-related bug 0.001 0.002 0.001 0.002 0.001
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Studies showed that when more people are working on a file, it is more likely to have failures in the

feature [BND+09, NMB08]. Therefore, if experts of the log-related issues can be identified, these

issues can be fixed with less impact. Therefore, in this research question, we investigate people

involved during the lifetime of log-related issues.

4.2.2 Approach

To answer this research question, we first needed to know who introduced the logging statement.

Thus, for all the log-related issues in Java files, we first searched for JIRA issue IDs in Git commit

messages to identify the commit that fixes the issue. Some log-related issues do not have their

issue ID mentioned in a commit message. In particular, we can only find commits for 254 of the

log-related issues. Then we analyze the history of the files, which contain the logging statements

and are changed in the commit, to identify the commit where the logging statement was introduced.

We performed our analysis on 1,071 logging statements extracted from these issues fixing commits

in our case study.

Furthermore, in our subject systems, the committer of each commit is usually not the actual

author of the commit. Instead, the author information is mentioned in the commit message. To

extract the author names in the commit message, we looked for names after with terms like “Thanks

to”, “Contributed by”, or “via”. Whenever we could not find the names using these heuristics, we

tried to find the issue key from the commit message and use the assignee of that issue as the original

author of the commit. Finally, if we could not find any links in the message, we use the committer

as the actual author of that commit. In total, we only used the committer as the actual author in

12% of the commits. We identified the developers who introduced the logging statements, and we

counted the prior number of commits by developers to measure the expertise and the ownership of the

code in the repositories. Figure 3 demonstrates the lifetime of an inappropriate logging statement.

Based on the Figure 3, we named the author of the commit that added the logging statement to the

system (A) as the introducer and the author of the commit that fixes a reported log-related issue

by modifying the logging statement (D) as the fixer. Furthermore, we named the top contributor of

the file which contains the logging statement the owner of the file [BNM+11].

4.2.3 Results

We found that 78% of the time, logging statements are introduced and are fixed by different people.

Furthermore, 78% of the log-related issues are fixed by someone other than the owner of the file that

contains the logging statement. Moreover, 73% of the fixes to log-related issues are done by the same

person who reported the issue (57% of the all the issues). The results show that one may report and

fix a logging statement not being an owner of the file nor the person who introduced the logging
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statement initially. Such findings suggest the lack of systematic ownership of the logging statements.

On one hand, the developers who introduce the file realize the importance of placing the particular

logging statement in the source code [SNHJ14]. On the other hand, once the logging statements are

in the source code, other people would observe the value in the logs and start to depend on these

logs in their daily activities. Hence, the users of these logs also have valuable knowledge about what

should be included/or not in these logs. Our results show that there are cases when the original

author of the logging statement may not understand the needs of other users of the log, leading

to the report of log-related issues. However, the users of logs who do not own the file nor initially

introduced the logging statement may change the logging statement without notifying the owner of

the file or the original developer who introduced the logging statement. Such update may become a

log-related issue that causes other people’s log analyses to fail [SJA+14, SJA+11].

�

�

�

�

RQ2 Conclusions: Developers contributing to the log-related issues are usually not the de-

veloper who introduced the log or the owner of the code containing the logging statements. It

is difficult to identify the expert for each logging statement. Thus, the impact of log-related

issues cannot be minimized by referring to their experts.

4.3 RQ3: How quickly are log-related issues reported and

fixed?

4.3.1 Motivation

The results of RQ1 and RQ2 illustrate the potential impact of log-related issues and the challenges

of mitigating them by experts. Practitioners, such as dev-op engineers, who use the information

in logs usually do not have access to the source code. Thus, a simple mistake like wrong verbosity

level in a logging statement can hide important information from them. If the logging statements

with these issues stay in the software for a long time, they become considerably harmful since they

are more likely to impact all the people who depend on them. Whereas, if log-related issues are

diagnosed and fixed easily, they might not be as harmful. Therefore, in this research question, we

study the time required to report and fix log-related issues.

4.3.2 Approach

We aimed to find out how fast log-related issues were reported and fixed. Figure 3 demonstrates

the lifetime of an inappropriate logging statement which ended up being reported as a bug. Using

the results of our analysis on the history of changes for each logging statement, we estimate how

fast log-related issues were reported by calculating the time difference between when the logging
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developer fixed it and changed the level to debug. Although the fix was small (only one change), it

took a long time for developers to figure out that this logging statement is at an inappropriate level.

However, it took only five days to fix after it was reported. Figure 3 shows all the changes made to

a logging statement during its lifetime which led to issue HDFS-7890.

Table 6: Number of days before an inappropriate logging statement being reported

Subject systems Min 1st Qu. Median 3rd Qu. Max

Common (changes) 0.17 159.9 459.3 482.4 1516.0

HDFS (changes) 0.17 41.4 229.2 431.3 1576.0

YARN (changes) 0.17 258.2 615.8 959.4 1357.0

MapReduce (changes) 0.17 41.67 41.67 91.1 1850.0

Camel (changes) 0.17 61.7 390.1 423.6 2689.0

Table 7: Number of changes before an inappropriate logging statement get fixed

Subject systems Min 1st Qu. Median 3rd Qu. Max

Common (changes) 1 2 2 2 5

HDFS (changes) 1 2 2 4 10

YARN (changes) 1 2 2 2 6

MapReduce (changes) 1 2 2 2 5

Camel (changes) 1 2 3 2 10

Furthermore, we analyzed the priority of log-related issues and found that more than 46% of the

log-related issues are labeled as Major, Critical, or Blocker. Thus, many of these issues are not likely

to be the ones that developers are not interested in reporting and fixing them. The long time needed

to expose a log-related issue signifies the potential harm of these issues over such long time periods,

people might make decisions based on the inappropriate or incomplete information provided by the

logs. These results illustrate the need for automated tools that detect such log-related issues in a

timely manner.

�

�

�

�

RQ3 Conclusions: It takes a long time for log-related issues to surface and be reported.

However, most of the log-related issues took less than two weeks to fix. Automated tools are

needed to assist developers in identifying log-related issues in a timely manner.
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4.4 RQ4: What are the root-causes of log-related issues?

4.4.1 Motivation

Previous RQs showed the need for automated tools to assist developers in finding inappropriate

logging statements in code. Automatic tools can use the historical data and other information in

the system to provide useful suggestions. Thus, we decided to perform a manual investigation on the

root causes of the log-related issues, such that we gain a deeper understanding of log-related issues

and find repeated patterns that can automatically expose evident log-related issues in the source

code.

4.4.2 Approach

To answer this research question, we used the issue reports and their code changes we extracted from

JIRA. Stol et al. [SRF16] suggest that researchers should describe how they analyzed data rather

than dressing it up as other well known scientific approaches. To avoid method slurring [BWS92],

we explain our approach in details in this section.

We started to examine log-related issues based on their title, description, and other information

stored in every issue report. The first two authors independently read all the comments and dis-

cussions in each issue report and manually investigated the patches that fix the issue. Then, they

grouped log-related issues into categories based on their root causes. More specifically, we manually

examined the issue report, discussion and the paths for each log-related issue and added a summary

and related key-words to them. Then, issue reports were labeled based on all the information in

the related artifacts. Then, we revisited the extracted information and grouped similar labels into

categories. Next, based on our observations from previous iterations, similar categories were merged

into a new one. This process was repeated iteratively until the categories cannot be merged anymore.

In case of conflict, a proper label is selected after a discussion between the first two authors.

4.4.3 Results

The results of our manual study are shown in Table 8. We categorized log-related issues to seven

categories based on their root causes namely, inappropriate log message, missing logging statements,

inappropriate log level, log library configuration issues, runtime issues, overwhelming logs, and log

library changes. We will discuss each category in details. In Table 9, we show the distribution of

each of the mentioned types of log-related issues.

Inappropriate log message. As shown in Table 8, logging statements with incorrect log messages

constitute the majority of log-related issues. We consider every issue regarding log messages (such
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Figure 4: Cumulative distribution of issue report time in days. Outliers that are greater than 1.5

time of the value of the third quartile of the data are not shown in this figure.
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Figure 5: Cumulative distribution of issue fix time in days. Outliers that are greater than 1.5 time

of the value of the third quartile of the data are not shown in this figure.
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Table 8: Categories of log-related issues

Category # of log-related issues Example

Inappropriate log messages 182 HADOOP-2661,“Replicator log should include block id”

Missing logging statements 110 HADOOP-5365, “Currently, only failed accesses are logged. Need to log successful accesses as well.”

Inappropriate log level 96 HADOOP-3399, “A debug message was logged at info level”

Log library configuration issues 70 HADOOP-276,“The problem is that the property files are not included in the jar file.”

Runtime issues 53 HADOOP-7695, “RPC.stopProxy can throw an configuration file for unintended exception while logging error”

Overwhelming logs 35 HADOOP-3168 ,“reduce the amount of logging in Hadoop streaming”

Log library changes 19 HADOOP-211, “it’s a huge change from older ones to common logging and log4j”



Table 9: Distribution of the root causes of log-related issues

Subject system Inappropriate Missing logging Inappropriate Log library Runtime issues Overwhelming Log library

log messages statements log level configuration issues logs changes

Hadoop-Common 26.2% 14.9% 14.9% 17.9% 14.3% 7.1% 4.8%

Hadoop-HDFS 34.8% 21.9% 16.3% 10.1% 5.1% 8.4% 3.4%

Hadoop-YARN 40.8% 16.9% 22.5% 5.6% 7.0% 5.6% 1.0%

Hadoop-Mapreduce 41.0% 18.0% 14.8% 13.1% 4.9% 6.6% 1.6%

Camel 25.9% 25.9% 20.0% 11.8% 5.9% 8.2% 2.4%
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as missing or incorrect variable, or incorrect string literals) in this category. As an example, in

the issue HADOOP-2661, developers mentioned “Replicator log should include block id”. Here, the

developers asked to add the missing information (i.e., block ID) to the log message.

Missing logging statements. There were some cases where developers requested additional log-

ging statements or asked for logging a specific event that had not been logged. We considered

all corresponding issues that are fixed by adding logging statements as Missing logging statements.

HADOOP-5365 is an example of this type of issue, where the developers asked to add new logging

statements to capture more information: “Currently, only failed accesses are logged. Need to log

successful accesses as well.”.

Inappropriate log level. Another interesting type of issues was problems associated with the level

of the log. Log messages have levels that show their importance, verbosity, and what should happen

after the event is logged. These levels include fatal (abort a process after logging), error (record error

events), info (record important, but normal events), debug (verbose logging only for debugging), and

trace (tracing the steps of the execution, the most fine-grained information). Developers use log levels

based on the information that they need to print, and considering the overhead that more verbose

log messages can impose on the system’s execution. These log levels are widely used by analysis

tools and operators to filter out unwanted logs and extract relevant information. In some issues, the

level of a logging statement was thought to be incorrect and needed to be changed. For example,

in the issue HADOOP-3399, the developers clearly mentioned that “A debug message was logged at

info level”. Setting a lower log level could cause missing important information in the execution log

output. In contrast, setting a higher log level will add redundant information to it. In other words,

setting an inappropriate log level may lead to confusing log messages.

Log library configuration issues. Developers use different APIs in their software system’s lifetime

to print log messages. Each API uses different configuration files and interfaces to perform logging

in the system. We consider any problem in the implementation and configuration of the used APIs

as an Configuration issue. For instance, in the issue HADOOP-276, developers found out that they

needed to add a configuration file for log4j, as the description of the issue reads “The problem is that

the property files are not included in the jar file.”

Runtime issues. A considerable number of log-related issues are runtime issues. We consider an

issue to be on this category if it causes a runtime failure or misbehavior of the system at execution

time. For example, in the issue Hadoop-7695, the developers mentioned that “RPC.stopProxy can

throw a configuration file for unintended exception while logging error”. Here, the developers logged

a variable that can throw Null Pointer Exception, and the issue was introduced to ask the developers

to check the value of the variable against null, before logging it.

Overwhelming logs. In contrast to Missing logging statements, in some issues, the developers

43



requested to remove a logging statement since it was useless, redundant or made the log output

noisy. As an example, in HADOOP-3168 one of the developers mentioned that “reduce the amount

of logging in Hadoop streaming”. In order to fix this specific issue, the developers removed log

messages until they reached one log message per 100,000 records since the information of all the

records was useless.

Log library changes. Eventually, the last category of log-related issues contains the changes that

were requested from developers to change or upgrade the logging API in their system (e.g., for

upgrading to a newer version of the logging library, log4j ); these changes fall in the corresponding

category.

Based on our experience from the manual investigation, we found repeated patterns in the log-

related issues. Some of the patterns are trivial and evident patterns, which raise the opportunity

of automatically detecting potential inappropriate logging statements. These patterns can help us

develop approaches to automatically expose inappropriate logging statements in the source code. In

the next section, we will demonstrate our approach to detect these issues.

�

�

�

�

RQ4 Conclusions: We categorized log-related issues into seven categories based on their

root causes. We observed evident root-causes of the log-related issue during our manual inves-

tigation. Such evident root-causes show the opportunity of making automated tools to detect

log-related issues.
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Chapter 5

Automatic detection of inappropriate

logging statements

In our empirical study, we found that although log-related issues are likely to be impactful, they are

reported much later than the introduction of the logging statement. Our study results indicate the

need for automated tools to help developers detect log-related issues in their code.

Based on our results of the manual study on log-related issues, we found that some of these issues

are evident and are due to careless mistakes. We found some patterns and similar suggestions to

automatically find defect-prone logging statements and show developers what may cause an issue in

such statements. We built four different checkers for four types of log-related issues: Typos, missed

exception messages, log level guards, and incorrect log levels. All these four types are evident in

root-causes that are identified in RQ4.

• Incorrect log levels As explained in RQ4, messages with incorrect log level can make issues,

such as providing too little or too much information, to users of the logs.

• Missed exception message. Missed exception messages are the catch blocks that do not

contain any logging statements, or do not log the exception message inside them. Missed

exception message can belong to missing logging statement category or inappropriate log mes-

sage.

• Log level guards. Log level guard issues happen when there is an expensive computation

in log messages and developers do not check which level is enabled in the configuration before

execution. Log level guard belongs to log library configuration issues.

• Typos. As a subset of inappropriate log message category, typos are simple mistakes in

spelling inside the log strings.
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Figure 6: An overview of log-related issue checker.



We will explain how these checkers are designed and the issues that we were able to detect using

these checkers. An overall summary of our approach is depicted in Figure 6.

5.1 Log level checker

In our empirical study, we found that 76 issues are due to incorrect log level in logging statements,

which were fixed by merely changing the log level. Figure 7 demonstrate a patch to such issues.

As depicted in Figure 7, they only change needed to fix the issues is a change in verbosity level.

To suggest log levels, we focused on the rich dataset of all log messages in the source code of our

subject systems. Hadoop and Camel contain more than 10K and 6K logging statements in their

source code, respectively. Thus, we tried to use the text in the log message to suggest the level of

the log.

- LOG.info("Loaded the native-Hadoop library");

+ LOG.debug("Loaded the native-Hadoop library");

//…

//...

- LOG.info(mode.toString() + "Loaded TrustStore:"

- + truststoreLocation);

+ LOG.debug(mode.toString() + "Loaded TrustStore:"

+ + truststoreLocation);

Figure 7: A patch to fix inappropriate logging level

Information Theory deals with assessing and defining the amount of information in a mes-

sage [Yin13]. The theory seeks to reveal the amount of uncertainty of information. For example,

consider that we analyze the words and the combination of words in logging statements. To ease the

explanation, we call words and combination of words as phrases. For each new logging statement,

we want to guess the log level using the phrases in the logging statement. At first, we were uncertain

about our guess. Every time we observe a phrase appearing in a level, our uncertainty decreases. In

other words, whenever we observe the phrase “exit” in a fatal level logging statement, we are more

certain that the logging statement with the phrase “exit” should be in fatal level.

Shannon entropy is a metric used to measure the amount of uncertainty (or entropy) in a dis-

tribution [Has09]. We used the Normalized Shanon’s Entropy to calculate the level of the logging

statements, based on the probability of appearance of phrases in the log message. We calculated the

entropy of the phrases from existing logging statements. We consider the phrases with two or more

appearances.

47





Table 10: A five-number summary for the lowest entropy of the phrases in each logging statement

Subject systems Min 1st Qu. Median 3rd Qu. Max

Hadoop 0.00 0.00 0.33 0.50 0.87

Camel 0.00 0.00 0.25 0.45 0.83

of words is zero. However, the new logging statement with this token is in debug level. Given this

information, the tool will suggest that the current level debug is wrong.

To evaluate our approach, we run the tool on existing issues that were fixed by changing levels.

For each issue, we trained the checker with the revision before the issue fixing commit. Out of

76 log-related issues containing 209 log level changes we were able to fix 22 logging statements

with inappropriate logging level in seven log-related issues with four false positives. A prior study

showed that static analysis tools suffer from providing false positive results to practitioners [CSH+16].

Therefore, we opt to avoid false positives and to have excellent precision but low recall over lower

precision with a higher recall.

5.2 Catch block checker

In 21 issues developers simply missed to log the exception inside the catch blocks. Exception messages

contain necessary information that is used by the developers while debugging the code. These issues

can be fixed simply by adding or removing the exception message in a new logging statement or the

end of an existing logging statement. In several issue discussions, the developers mentioned they

faced situations in which they needed information related to the exceptions in the log output. In

contrast, sometimes they found the information unnecessary and removed them. Issues with these

fixes are considered as inappropriate log messages issues or missing logging statement in our study.

Figure 9 demonstrates and example of such issues and its corresponding fix.

We provided a checker to recommend developers to add logging statements or log the exception

message inside the catch blocks based on historical information of the source code. We used Eclipse’s

JDT (Java Development Tools) to parse the Java code and generate its Abstract Syntax Tree (AST).

Using the AST, all the catch blocks, and their logging statements are extracted. Afterward, we

calculated the percentage of catch blocks that log the exception messages for each exception type.

To minimize false positives, we only detected the issue if either all the catch blocks with the same

exception type are logged, or none of them are logged (threshold 100%). Using this threshold, we

were able to fix 4 logging statements with inappropriate logging level in 2 log-related issues.
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HADOOP-9358

Title : "Auth failed" log should include exception string

Fix:

- AUDITLOG.warn(AUTH_FAILED_FOR + clientIP + ":" +

- attemptingUser);

+ AUDITLOG.warn(AUTH_FAILED_FOR + clientIP +":"+attemptingUser +

+ " (" + e.getLocalizedMessage() + ")");

Figure 9: An example of faulty logging statements that fixed by adding exception message

5.3 Log level guard checker

Logs provide valuable information for developers and operators of the software system. However,

each logging statement has some performance overhead to the system. Especially, if the log message

contains many variables and method calls in it, the overhead can be costly. Hence, log libraries

provide a conditional guard for the logs, such that developers can avoid executing the logging

statement if logging in that level is disabled at runtime. When developers feel that creating the log

message has a considerable performance overhead, they can use an if statement as a log level guard.

In some of the libraries like Self4j this log level guard is implemented inside the logger method, but

for other libraries, developers should add an if statement as a log guard manually. We found nine

issues that developers forgot to add log level guards before executing logging statements. Thus,

logging statements were executed but never shown in the output. Based on these findings, we made

a simple checker to find missed log level guards. First, we analyze the logging library of each file.

If the logging library does not perform the log level check before executing (i.e. Log4j ), a log level

guard needed for each debug level logging statement. Thus, we checked all the debug level logging

statements in the file and if a logging statements have a significant computation in its message (i.e.,

more than three string concatenations or includes method calls), our tool suggests that developers

should add a log level guard to the logging statement or consider migrating to libraries like SLF4J.

Using this tool we were able to find all nine issues reported on issue trackers of our case studies. We

also run this tool on the last revision of our case studies. We found 62 new cases that developers

need to add a log level guard. A false positive case would be when developers remove log level

guards while our tool suggests keeping the log level guard. We identified two issues (HDFS-81161

and HDFS-89712) where developers remove log level guards and our tool did not suggest to keep

the guard in either case.

1https://issues.apache.org/jira/browse/HDFS-8116
2https://issues.apache.org/jira/browse/HDFS-8971
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5.4 Typo checker

We had 24 issue reports for which the solution was just fixing the typos in log messages. Typos

do not have a large impact if the logs are read by operators and developers. However, automated

log analysis may be impacted if they depend on these log message. To fix these typos, we need to

examine the string literal (i.e., fixed) part of log messages to find the typos in them. Log messages

often contain non-English words that might be in-house names or code identifiers. Thus, a simple

English spell checker will return many false positives and find actual typos among them can be

frustrating for developers. In our tool, we tried to improve the dictionary using the data inside the

system. To reduce the number of false positives, we extracted string messages inside all the logs

and counted the number of appearances of each word. Then, we added the repeated words inside

the log messages to the list of known words. Furthermore, we added identifier names and words in

code comments in the file to our dictionary. Using this new dictionary, we check the strings in log

messages and report the inappropriate ones as possible typos.

With the typo checker, we were able to find 20 out of 24 reported typos issues in our case study.

Among the four issues that are not detected, one of them was due to having extra white space

between words, three of them were a typo in the log configuration file that we do not support at the

moment. We also run our tool on the last revision of our case studies to find new issues that are not

reported yet. In total, we found 25 new typos in log messages. After manual validation, we found

seven false positives. One of the false positives was an abbreviation that was not mentioned in the

code comments. The other one was a log with a text automatically generated, hence we missed that

part and considered that the statement contains a typo. The rest of the false positives were informal

words that were meaningful, but not included in our English dictionary.

5.5 Results of applying the tool

In order to evaluate our tool, we first tried to detect our manually verified log-related issues. We

run our checker on the source code snapshot before each issue fix. The overall results are shown

in Table 11. We reported the number of issues and logging statements successfully covered by our

tool. Note that the number of issues is different from the number of logging statements since issues

can be fixed by changing multiple logging statements. We were able to successfully detect 23% of

inappropriate logging statements in 30% of the log-related issues. We also apply our tools to find

other possible log-related issues in the latest source code from our subject systems. In total, we

identified 226 potential inappropriate logging statements in the latest version of our case studies

source code. For each checker, we ranked the suggestions in order to provide the most accurate

detection to developers. The suggestions to change the level are ranked based on the entropy and
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number of occurrence word combination in the last stable version of source code. Catch block logging

suggestions are ranked based on the number of occurrences of the exception type and percentage

of similar behavior. Eventually, the results of log level guard checker are ranked by the number of

method calls and string concatenations in the logging statements. We did not rank the typos since

the suggestions were under 20 (i.e. 18 suggestions). Then, we reported the top 20 suggestion of each

checker (18 for typos) for all the subject systems. Issues regarding typos in logging statements were

accepted immediately and fixed by the author of the thesis. Issues regarding log level guards are also

accepted by the developer of the Hadoop and Camel. However, developers of Hadoop mentioned

that they plan to move to SLF4j in order to fix these issues rather than adding the guards to the

mentioned logging statements. In the MapReduce subsystem, developers mentioned the fix is in

progress. In the HDFS subsystem of Hadoop, developers have already provided a patch to migrate

the logging library to SLF4j. Finally, developers of Camel asked us to provide the patch by adding

the if statement before the debug level guards. Other reported issues are still under review.

Table 11: The results of our tool on known issues

Type
# known issues # issues successfully detected

(# of logging statements) by the checker (# of logging statements)

Typos 26(40) 22(34)

Missing to log exceptions 21(65) 2(4)

Inappropriate log level 76(209) 7(22)

Missing log level guard 9(15) 9(15)

A prior study has proposed an approach that builds a statistical model to predict the appropriate

level of a logging statement [LSH17]. Although the goal of this approach is to suggest log level, the

approach can be used to detect issues with an inappropriate level in particular. We compared our

log level checker with the approach that suggests log levels. We obtained the original data that were

used in the prior study [LSH17]. Since Hadoop is also a subject system in the prior study, we found

56 logging statements that were manually identified in our study with wrong log levels and were also

included in the prior study’s data. We examined whether the statistical model that was build based

on the prior study could detect these log-related issues. We found that in 32 logging statements,

the model failed to find the appropriate level that developers decided on the issues. However, our

tool was able to suggest ten correct log levels without any false positive. Note that the threshold

of entropy in our log level checker was set to 0.33 in this experiment. These results show that the

logging statements that are reported as issues, because of their level, are harder to predict in nature.

Studies also show that developers often have difficulties in choosing the appropriate log level and

spend much effort on adjusting the log level [YPZ12b].
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5.6 Impact of the threshold on our checkers

Based on the results of our tools, two of our checkers, i.e., log level checker and catch block checker,

have a low number of detected issues. Both checkers are based on thresholds. Our log level checker

is based on the entropy of a word or a combination of words existing in different log levels. Our

catch block checker is based on the percentage of different behaviors in existing exception’s catch

blocks. Therefore, we aim to refine these two checkers to achieve better detection results.

5.6.1 Log level checker refinement.

The original log level checker only considers the phrases with zero entropy. Because most of the

phrases have low entropy, as shown in Table 10. This time, we used the phrase with the lowest

entropy in each logging statement to detect inappropriate log level, instead of only considering the

phrases with zero entropy. However, we found that also we were able to provide more suggestions (47

instead of 22), our precision becomes lower (73%). Furthermore, we varied the threshold between 0.0

to 0.33 (median entropy, see Table 10), to see its impact on our results. Our precisions are between

84% and 87%, and we can correctly detect 22 to 31 wrong log levels in 7 to 9 log-related issues.

We found that for the older issues, there was limited number of logs in the source code of our

subject systems. Limited training data has a significant impact on our checker. Thus, we used the

data from other projects to improve the training data. We used all subject systems with at least one

logging statement in them from the top 1,000 popular Java projects on Github (354 projects). Then,

we excluded the subject system that we were testing against, as well as their forks from the list and

trained the checker with source code for remaining projects. However, we found that although this

approach let us provide more suggestions (55 to 80 log level change suggestions out of 209), the

precision is low (65% - 58% precision) using thresholds between 0.0 to 0.33.

Finally, we decided to add the source code from the revision before the issue fixing commits to

the other projects as well. Using this approach we kept the testing and training data separated

at all the time. With the extended training set, we were able to suggest a level change for 51

logging statements with eight false positives in 19 log-related issues, resulting into 84% precision

using phrases with zero entropy. After changing the threshold to 0.33, we were able to suggest 56

level changes with ten false positives (82% precision) in 20 log-related issues.

5.6.2 Catch block checker refinement.

The original catch block checker uses 100% as a threshold, meaning that developers logged the

exception in either all or none of the previous catch blocks with the same exception type. We varied

the threshold from 100% to 50% (in half of the existing exceptions developers logged the exception).
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The results show that when the threshold is set to 80%, the precision decreases from 100% to only

60%, while we are only able to detect three more issues. When the threshold is set to 50%, our

precision is only 33%. Such results show that in order to detect more issues, we would need to

sacrifice our precision. Therefore, having 100% as our threshold is a better choice.

In this study, we aim to make a recommender tool for developers. Thus, our goal is to have

smaller false positive rates rather than higher recall values. In all the checkers, we have very few

to no false positives. We evaluated our tool on the log changes extracted from the reported issues.

Developers had a hard time to write the appropriate logging statements on the first try. Thus these

logging statements are reported as issues. In fact, when we compared the existing works using our

dataset, we outperformed them with better precision and recall. We agree that we do not provide

many suggestions. However, we try to provide the right suggestions when we do provide them. We

plan to improve the recall of our approach in future work.
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Chapter 6

Threats to Validity

6.1 Internal Validity

In this study, we employed different heuristics in our approach that may impact the internal validity

of our approach. We only studied the issues with a log-related keyword in their title. However, to see

the impact of this filtering, we extracted all the commits in the history of the subject systems where

at least one line of code containing a logging statement was modified. We then drew a statistically-

random sample with 95% confidence level and ± 5 confidence interval from this pool of commits

and investigated them manually. We found that our approach only misses 0.5% of the changes that

were done due to a log-related issue. Other commits in the sample are either true positives of our

approach (i.e., they are changes due to log-related issues that our technique was able to identify

correctly), unrelated fixes, or addition of new functionalities to the system. Moreover, we used text

matching to find the corresponding commits for each issue. We ignored issues labeled other than

“improvement” or “bug” in our study. However, the majority of all the issues (72%) were labeled

either “improvement” or “bug”. We wanted to study issues regarding a problem in logs rather than

issues that implement a new feature. The results of our second and third research questions impacted

by the accuracy of the matching we performed on the issues and commit. Besides, in some cases,

the authors of the commits on GitHub may not be the original authors of the code. We mined the

commit messages and used issue report data to find the original author of the commits. However,

in 12% of the commits, we were not able to find another author mentioned in the commit message

for the corresponding issue of the commit. We used Git commands to obtain the log introducing

change in the history of the case studies. These commands use Unix diff, which can impact our

results. However, in our scripts, we checked the results and removed the commits that we were not

able to confirm as log introducing changes by verifying the existence of the logging statement.
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6.2 Construct Validity

Construct validity threats concern the relation between theory and observation [Yin13]. In our study,

the main threats to construct validity arise from human judgment used to study and classify the

log-related issues. In particular, the categories are based on the classification performed by the first

two authors and can be biased by the opinion of the researcher on the issues and the source code.

We also used keywords to filter the issues. Thus, we might have missed some log-related issues which

do not contain our keywords in their titles. However, the goal of the study is not to exhaustively

collect all log-related issues but rather study based on a collection of them. Future studies may

consider collecting log-related issues in another approach to complement our findings.

6.3 External Validity

We performed our study on Hadoop and Camel. These systems are large software systems containing

millions of lines of code with 11K and 6K logging statements, respectively. However, more case

studies on other software systems in different domains are needed to see whether our results are

similar to this study. Conducting research on different case studies from other domains will help

us to examine the importance of the logging statements in other areas, and also to understand

similar and distinct types of logging statements in software systems. However, the results of our

study showed that also four subsystems of Hadoop are considered as one subject system, they show

different behavior in our analysis.

Moreover, we should note that Hadoop and Camel are open source software. Therefore, the

results of our study are based on only open source software systems and may not generalize to

commercial systems. To improve our research, we need to replicate it on enterprise software systems

to gain a better understanding of their log-related issues. Furthermore, our study focuses on Java-

based software systems. Using case studies from different languages can improve our knowledge

about logging statements and their problems in other languages. We manually studied 563 log-

related issues in seven categories. But, our automated approach can provide suggestions for 132

log-related issues in four categories. In our manual analysis, we found that many of the log-related

issues require domain knowledge, as well as, an understanding of the environment being fixed. Hence,

we chose to focus on issues that can be detected and fixed automatically. Unfortunately, we were

not able to provide a checker for all of the log-related issues we studied in this study. However, we

offer characteristic analysis to help developers and users better understand issues regarding logging

in their systems.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

Logs are one of the most important sources of information for debugging and maintaining software

systems. The valuable information in logs motivates the development of log analysis tools. However,

issues in logs may highly impact the values of log analysis tools by providing incomplete or inaccurate

information to the users of the logs. Therefore, in this research, we empirically studied 563 issues

from two open-source software systems, i.e., Hadoop and Camel. We found that:

• Files with log-related issues have undergone statistically significantly more frequent prior

changes, and bug fixes.

• Log-related issues are often fixed by neither the developer who introduced the logging statement

nor the owner of the file that contains the logging statement.

• Log-related issues are reported after a long time of the introduction of the logging statement.

Our findings showed the need for automated tools to detect log-related issues. Therefore, we

manually investigated seven root-causes of log-related issues. Table 12 summarizes the findings for

each research question and its implications. We developed an automated tool that detects four types

of evident root-causes of log-related issues. Our tool could detect 40 existing log-related issues and

38 (accepted by developers) previously unknown issues in the latest release of the subject systems.

Our work suggests the need for more systematic logging practices in order to ensure the quality of

logs.
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Table 12: Our findings on log-related issues and their implication.

Findings Implications

Location of the log-related issues Implication

Files with log-related issues have larger number of prior commits and more prior bugs. This implies that developers often prioritized their efforts on these files.

People involved in log-related issues Implication

78% of the buggy logging statements are fixed by someone other than original committer. Various people are responsible for adding and fixing the logging statements.

78% of the buggy logging statements are not fixed by owner. Thus, its hard to find experts of the logs. This shows the need for automated

24% of the buggy logging statements are introduced by the owner. tools to aid developers in diagnosing and fixing log-related issues.

73% of the buggy logging statements are fixed by the person who reported the issue.

Time takes to fix log-related issues Implication

It takes a long time (median 320 days) for a logging statement Log-related issues are fixed fast after their exposure but it takes

to be reported buggy. However, 80% of log issues were fixed long time for them to report as an issue.

within ten days of their report.

Root causes of log-related issues Implication

Based on our manual study, we categorized log-related issues into seven categories.

Log-related issues have different root causes. There exist

evident patterns which can automatically detected.



7.2 Future Work

We conducted an empirical study on log-related issues and proposed a tool based on the results to

detect four types of log-related issues. The set of checkers introduced in this paper can be integrated

into continuous integration systems to provide just-in-time suggestions to developers and prevent

faulty logging statements to be accepted into the main branch of the software systems. Moreover,

we found seven root-causes for log-related issues. More studies are needed to find new patterns and

improve the recall of our existing checkers.

As an improvement to this study, we are interested in investigating the impact of log-related

issues. We will use the manually-verified log-related issues in this work to measured the impact

of these issues in three different ways. First, we aim to look into the test coverage of the logging

statements which have issues (i.e., faulty logging statements) before they were fixed, by running

the existing unit tests in the source code. Second, we would like to study the benchmarks that

exercise our case studies, and investigate the logs generated during the execution of the benchmarks

to measure how many of faulty logging statements impact the benchmark logs. Finally, we propose

to search through StackOverflow to find the posts of which the contents include faulty logging

statements explored in this study, and investigate the impact of log-related issues on the users of

StackOverflow in solving their problems.
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