
Fine-Grained Source Code Tracking and Visualization in

Commit History

Mohammed Tayeeb Hasan

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

MontrÂeal, QuÂebec, Canada

September 2023

© Mohammed Tayeeb Hasan, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mohammed Tayeeb Hasan

Entitled: Fine-Grained Source Code Tracking and Visualization in Commit

History

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Diego Elias Costa

Examiner
Dr. Peter C. Rigby

Supervisor
Dr. Nikolaos Tsantalis

Approved by
Dr. Leila Kosseim, Graduate Program Director

2023
Dr. Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Fine-Grained Source Code Tracking and Visualization in Commit History

Mohammed Tayeeb Hasan

CodeTracker is the current state-of-the-art program element change history generator with a

reported precision and recall of 99.9% in method and variable tracking [1]. In this thesis, we extend

the granularity of CodeTracker to support the tracking of control-flow blocks (e.g., for, while,

if, try, catch, etc.) with a precision and recall of 98.12% and 97.62% respectively, providing

researchers and developers with finer-grained information about the evolution of source code. We

accompany this extension with a manually validated oracle, which includes the change histories

of 1280 code blocks. These code blocks are contained within 200 methods from 20 open-source

Java projects (10 methods from each project) comprising the method change history oracle created

by Grund et al. [2]. We also present a code change history visualization and navigation tool for

CodeTracker, named CodeTracker Visualizer, that overlays the GitHub user interface with change

history information enabling users to track code elements directly from the commit page by simply

selecting the desired code element. Finally, we compare CodeTracker’s block tracking precision and

recall using two different tools that provide statement mappings, namely RefactoringMiner [3, 4],

the current state-of-the-art refactoring detection tool, and GumTree [5], the current state-of-the-

art Abstract Syntax Tree (AST) Diff tool. The enhanced version of CodeTracker along with the

extended oracle are made publicly available to facilitate reproducibility and future research on code

element tracking techniques [6].

iii

Acknowledgments

I would like to express my gratitude to several individuals who have played a significant role in

the completion of this thesis:

First and foremost, I extend my heartfelt thanks to my research advisor, Dr. Nikolaos Tsantalis.

Your guidance, expertise, encouragement, and constant support have been invaluable throughout

this journey. Your mentorship has helped shape my research skills and academic perspective.

I would like to express my heartfelt gratitude to my esteemed committee members, Dr. Diego

Elias Costa and Dr. Peter C. Rigby. Your valuable critiques, constructive feedback, and encouraging

words have greatly enriched the quality of this thesis. Your insights have been instrumental in

refining the research and enhancing its overall impact.

To my parents, I offer my sincerest appreciation for your unwavering belief in me and your

continuous encouragement. Your support has been a driving force behind my accomplishments.

I want to acknowledge my brothers, Tayseer and Tawseef, for their constant presence and en-

couragement. Your support has provided me with the strength to overcome challenges and pursue

my goals.

I am grateful to my colleagues for their collaborative efforts, insightful discussions, and con-

structive feedback. Your contributions have enhanced the quality and depth of this research.

Once again, thank you to everyone who has played a part in this journey. Your support and

contributions have been pivotal in the successful completion of this thesis.

With immense gratitude,

Mohammed Tayeeb Hasan

iv

Contents

List of Figures vii

List of Tables x

1 Introduction 1

2 Related Work 6

2.1 Existing Tooling . 6

2.2 Limitations of Existing Tooling . 10

3 Background 14

4 Research Approach 19

4.1 Code Block Identifier . 19

4.2 Block Tracking in CodeTracker . 21

4.3 Change Graph Evolution Hooks . 35

4.4 CodeTracker Visualizer Approach . 35

4.5 CodeTracker Visualizer: Oracle Validator . 40

5 Implementation 44

5.1 CodeTracker Implementation Background . 44

5.2 Block Code Element Type . 45

5.3 BlockTracker Implementation . 46

5.4 CodeTracker REST API . 50

v

5.5 CodeTracker Visualizer . 51

5.6 BlockTracker using GumTree . 55

6 Evaluation 60

6.1 Oracle Contributions . 60

6.2 BlockTracker Accuracy . 68

6.3 BlockTracker using GumTree Accuracy . 73

6.4 Execution Time . 75

7 Limitations and Threats to Validity 78

7.1 Limitations . 78

7.2 Internal Validity . 78

7.3 External Validity . 79

7.4 Verifiability . 80

8 Conclusion and Future Work 81

8.1 Potential Applications . 82

8.2 Future work . 83

Bibliography 84

vi

List of Figures

3.1 Statement mappings generated using RefactoringMiner in project Checkstyle [7]. . 17

4.1 Hierarchy of supported change kinds for code blocks. 22

4.2 Steps 2-5 are run for each commit in the list of commits generated in Step 1, stop-

ping execution of the remaining steps when a step identifies the next code block. . . 24

4.3 Running example: Running step 1 on the block to generate a list of commits shown

on the right. 29

4.4 Running example (commit 1/10): Running step 2 on the block to check if the con-

tainer method has remained unchanged. 30

4.5 Running example (commit 2/10): Running step 3 on the block to check if the con-

tainer method’s body has changed. 30

4.6 Running example (commit 3/10): Running step 2 for this commit is sufficient as the

container method has not changed (steps 3-5 are skipped.) 31

4.7 Running example (commit 4/10): Running step 4 on the block to check if the con-

tainer method’s signature has changed, which in this case it has. 31

4.8 Running example (commit 5/10): Running step 3 on the block to check if the con-

tainer method’s body has changed. 32

4.9 Running example (commit 6/10): Running step 3 is sufficient for this commit. . . . 32

4.10 Running example (commit 7/10): Running step 2 is sufficient as the container

method has not undergone any changes. 33

4.11 Running example (commit 8/10): Running step 5 on the block to detect container

method file moves. 33

vii

4.12 Running example (commit 9/10): Running step 2 on the block is sufficient. 34

4.13 Running example (commit 10/10): Running step 5 to check for container method

file moves. In this case, the block was not moved and was introduced, concluding

the tracking process. 34

4.14 CodeTracker Visualizer browser extension with visible history nodes. 37

4.15 Settings panel for CodeTracker Visualizer. 38

4.16 CodeTracker Visualizer architecture. 39

4.17 The code element type is analyzed and displayed to the user. 40

4.18 API flow of the tracking process. 41

4.19 A yellow node indicates the presence of an evolution hook, which can be expanded

on-demand by right-clicking on it. 41

4.20 Hovering over a node provides more semantic information about the change. 42

4.21 CodeTracker Visualizer’s oracle validation fork. 42

5.1 Methods and attributes available in the Block code element class 45

5.2 BlockTracker API UML diagram. 47

5.3 Large changes in the code difference view are not loaded by default on GitHub

(project JavaParser [8]). 52

5.4 The expand-arrow buttons (marked in blue) and the expand-all button (marked in

red) are used to lazy load more changes in a GitHub code difference container

(project JavaParser [8]). 53

5.5 Renamed files have a minimized container on GitHub (project Checkstyle [9]). . . 53

5.6 The expand-all button missing from the file container (project JavaParser [8]). . . . 54

5.7 Code element highlighting on the GitHub GUI (project JavaParser [8]). 54

6.1 Unrecorded changes are now added to the oracle. 61

6.2 Enrichment of the oracle by adding extra information about the change made. . . . 62

6.3 Block oracle: number of instances per change type 63

6.4 Violin plot showing the number of blocks per method. 70

6.5 Incorrect mapping (False Positive), project Checkstyle. [10] 71

viii

6.6 Incorrect mapping (False Positive), project Apache Flink. [11] 71

6.7 Missed mapping (False Negative), project Checkstyle. [12] 71

6.8 Missed mapping (False Negative), project Checkstyle. [13] 72

6.9 Missed mapping (False Negative), project Jetty.Project. [14] 72

6.10 Violin plot showing the execution time of RMiner versus GumTree BlockTracker . 75

ix

List of Tables

3.1 Number of instances per code element type included in the oracle. The Block oracle

is contributed in this thesis, while the other ones are contributed in [1]. 16

5.1 BlockTrackerAPI using the fluent builder pattern (BlockTracker.Builder

class) . 47

5.2 Block types available in CodeElementType enum. 49

6.1 Updates in the method oracle created by Jodavi et al. [1] 64

6.6 Number of blocks per method included in the oracle. 64

6.2 Updates in the variable oracle created by Jodavi et al. [1] 68

6.3 Updates in the attribute oracle created by Jodavi et al. [1] 68

6.4 Number of instances per change type for blocks. 69

6.5 Number of instances per block type included in the oracle. 73

6.7 Block tracking precision/recall for CodeTracker. 73

6.8 Block tracking precision/recall at change level (GumTree comparison) 74

6.9 Block tracking precision/recall at commit level (GumTree comparison) 74

x

Chapter 1

Introduction

A code block, simply referred to as a block, is defined as a lexical structure of source code that is

grouped together [15]. In modern structured programming languages, code blocks are extensively

used. In a survey conducted by Stack Overflow in 2022 [16], over 70,000 software developers

were asked questions about their programming language usage, preferred tooling, and development

environments to understand the current dynamic of software engineering. This survey shows that

Git and GitHub were the top Version Control Systems (VCS) and VCS hosting platforms of choice.

Developers store incremental code changes in their VCS to maintain a log of changes occurring

on the code base. While VCS is adequate for its primary purpose of storing and retrieving source

code revisions, developers often need to browse the commit history of a project to understand the

evolution a code element has undergone [17, 18] and explore common changes being made in a

code repository [19], especially in the context of code reviews [20].

A study conducted by Negara et al. has shown that the information stored in a VCS is imprecise

and incomplete for analysis [21], which opens up the need for external enhancements and analysis

tools to help understand VCS information. There have been attempts made to enhance VCS [22]

to provide better storage and understanding of data. Freese attempted to enhance source code man-

agement systems by making them refactoring-aware [23]. This shows that there is a need to enable

better ways to understand data stored in a VCS.

Grund et al. [2] surveyed professional developers and discovered that method-level granularity

is desired for source code history generation, apart from existing file-level implementations. Among

1

these developers, around 75% responded positively about obtaining change histories at a block-level

granularity. Grund et al. [2] also points out that developers are interested in examining histories at

program element granularities (i.e., method, field) other than just the file or textual range level as is

supported by most tools.

Grund et al. [2] also show that other research projects exist, which propose history queries on

code elements down to the block level (e.g., APFEL [24]). In the paper presenting APFEL [24],

Zimmermann directly mentions the intention to implement block-level tracking.

Yoon et al. [25] propose that users may be interested in investigating how an if block was

originally written, or how an expression within a single line has evolved. They developed a tool

named Azurite that tracks edits being made on a class and enables selective undo on any desired

code fragment. They show that there are other systems that also aim to provide history search, or

history slicing as they define it [25].

Servant and Jones [26] present a history-slicing tool named CHRONOS, which uses version

control snapshots to trace back to find which commits affected a certain area of code. The search

scope of CHRONOS can be as small as a single line. Although both these tools (Azurite [25]

and CHRONOS) are not refactoring-aware, and thus may lack in accuracy, they show the need for

finer-grained source code tracking. [24, 26, 25, 1, 27, 28, 29, 30, 31, 32]

LaToza and Myers [33] surveyed professional developers at Microsoft and found out that they

wanted to know the source code history of a block of code (e.g., for loop), and would like to

go all the way to its introduction rather than its most recent change. They report that developers

were also interested in code change history at the level of a code snippet (e.g., a single statement).

This corroborates identical findings made by Holmes et al. [34], who also surveyed professional

developers in their study.

Fritz and Murphy [35] surveyed eleven professional software developers to recognize questions

that developers ask but have no resources that can help answer. Out of the 78 recorded questions, 20

code-specific questions were highlighted in the paper. Among the questions asked, developers were

interested in knowing who originally wrote a piece of code (e.g., if statement) and who modified

it last. These questions show that there is a need for the kind of information that CodeTracker

provides, and tracking support at the code snippet level is highly desired.

2

Ko et al. [36] surveyed seventeen software developers and logged their activities minute by

minute. Among the sort of information that developers sought, they found that developers wanted

to know more about the implementation evolution-history of a piece of code, i.e., to understand how

the code has been implemented over time (ªd3. Why was this code implemented this way?º [36]),

so as to derive historical reasoning for its current implementation. Another interesting point made in

this paper is that during bug fixes, developers need specific code change history to analyze whether

the error was anticipated by the designer and explicitly ignored or whether it was overlooked. Thus,

having block-level source code history can speed up bug-fixing efforts in cases where bugs are

known to be present in a specific block rather than the entire method.

In another study, LaToza et al. [19] conducted multiple surveys and interviews with professional

software developers and found that the majority of developers agreed that understanding the history

of a specific piece of code was a serious problem for them. This may be due to having a large

number of commits to comb through. Having access to a granular stack of changes to review when

only a specific code block or statement is of concern could help solve this problem. Confirming the

findings presented by Fritz et al. [35], this paper indicates that developers are interested in knowing

why and by whom a piece of code was introduced to a codebase. Having block-level history makes

such information more accessible, as having only method/file-level history would require additional

manual efforts to discover such information.

Thus, it is evident that there is a need for block-level code element tracking that we resolve with

this work.

CodeTracker was developed by Jodavi and Tsantalis [1]. It had the ability to track classes,

methods, variables, and attributes for Java projects with 99.9% precision and recall. In this thesis,

we enhance CodeTracker to possess the ability to track code blocks as our major contribution. We

also include a visualization tool for code change history navigation.

Why code blocks are challenging to track:

A significant challenge that occurs when tracking code blocks is the fact that they have an

unnamed structure and no signature. This is unlike other code elements (e.g. methods or type

declarations), which have a standard well-defined structure and signature. Another challenge is that

many different code blocks in a class may have similar code, so running a string similarity check will

3

spawn a lot of potential matches, and accurately zeroing down to the correct block is challenging.

A block can also change between node types (e.g. if-else-if to switch) or transition to and

from a pipeline (e.g. for-loop to forEach()). In fact, there is no limit to the number and type

of changes possible in the case of a code block change. These characteristics of a code block cause

an uptick in the effort required to accurately and efficiently track code blocks, and this is the reason

why none of the other tools mentioned in Section 2.1 recognize or track a code block. In Section

4.1 we discuss our approach to constructing signatures for a code block to tackle the issue of code

blocks lacking a definite signature.

The main novelty of our solution to the problem is that our tool (CodeTracker) is the first tool in

the literature that can track the change history of code blocks in a fully refactoring-aware fashion,

meaning that it can continue tracking a code block even if it has been moved to another method

(e.g., EXTRACT METHOD, INLINE METHOD, MERGE METHOD, SPLIT METHOD refactoring), or

moved to another file (e.g., MOVE METHOD, EXTRACT CLASS refactoring). Other tools suffer

from disruptions in the change history of the tracked elements in the presence of refactorings, due

to untracked changes [32]. According to Hora et al. [32], 25% of classes and methods have at least

one untracked change (i.e., move, rename, extract, inline refactoring) in their histories.

Our complete contributions presented in this thesis are as follows:

(1) We enhance the granularity of tracking for CodeTracker to track code blocks with a precision

and recall of 98.12% and 97.62%, respectively.

(2) We fix inaccuracies present in CodeTracker’s method, variable, and attribute oracles [1], en-

hance the complete oracle with additional change history information, and add 65 new vari-

ables and their change histories to the variable oracle.

(3) We extend the oracle presented by Jodavi and Tsantalis [1] to include 1280 new instances of

blocks and their change histories.

(4) We present a novel tool, CodeTracker Visualizer, that enables users to browse the code change

history of code elements directly within the GitHub user interface, significantly boosting the

efficiency of CodeTracker’s usage.

4

(5) We extended CodeTracker Visualizer to be used as an oracle validation tool that significantly

cuts down the time required to manually verify change histories when creating our oracle.

(6) We present two versions CodeTracker’s BlockTracker API, one integrated with Refactoring-

Miner [3, 4], and the other with GumTree [5], both of which can be used to generate statement

mappings between two commits.

(7) We compare the precision and recall of the aforementioned BlockTracker API versions, and

show that the version integrated with RefactoringMiner has superior accuracy over the one

integrated with GumTree (+9.3% precision and +18.2% recall).

(8) We developed a REST API that allows for CodeTracker to be used as a web service.

The rest of this thesis is structured as follows: Chapter 2 reviews relevant literature and tool-

ings and their limitations. Chapter 3 provides background information pertaining to the rest of the

chapters and helps understand the ideas conveyed in this thesis. Chapter 4 delves into the proposed

research approach, and Chapter 5 deals with the implementation details of the tooling contributions

made in this thesis. The evaluation is performed in Chapter 6, and the threats to validity are dis-

cussed in Chapter 7. Finally, we conclude this thesis in Chapter 8 with some potential use cases and

future work.

5

Chapter 2

Related Work

This chapter of the thesis reviews existing tools developed to perform code-change history track-

ing, detailing both fine-grained and coarse-grained implementations. We then discuss the shortcom-

ings of these approaches.

2.1 Existing Tooling

Several tools have been developed over the years that aim to track code change history and

understand the evolution of codebases as a whole. In this section, we shall discuss a few of the

approaches that have been implemented as tools.

Grund et al. [2] developed the tool CodeShovel, which helps unearth code change histories at

the method level and can detect histories for 90% of methods and 97% of all method changes. Along

with the tool, they present a web application that a user can access to interact with CodeShovel’s

APIs. Moreover, they contribute an oracle of code change histories for 200 methods from 20 open-

source repositories. CodeShovel is specifically designed to operate on-demand, without the need

for any upfront processing, and it can effectively handle most of the latest code transformations that

occur in modern Java projects. Its method-matching algorithm utilizes text similarity and metrics to

detect changes in methods across different versions of files. Extensive evaluations demonstrate that

CodeShovel surpasses other prominent tools in both accuracy and runtime performance, making it

a valuable asset for various industrial development tasks. This tool is, by far, the closest related to

6

CodeTracker in terms of the problem it tries to solve.

Zimmermann [24] developed a plugin for Eclipse named APFEL, which aims to compute fine-

grained changes from version archives in a database. It is built upon the Eclipse infrastructure and

uses CVS as the SCM system and Java as the programming language. APFEL complements pre-

vious tools by capturing more detailed changes in software artifacts. It uses token sets to represent

syntactic content, allowing efficient comparison of revisions. The database stores token changes,

offering insights into software evolution. The limitations of APFEL include its inability to handle

renaming directly and the approximation of method signatures based on the argument count. They

perform case studies that showcase the benefits of APFEL in identifying crosscutting concerns, pairs

of frequently inserted variable names, and variable renaming evidence.

Yoon et al. [25] developed a tool named Azurite that tracks edits made on a class and enables

selective undo on any desired code fragment. Azurite is available to use as an Eclipse plugin. The

tool provides two views for visualization of code change history: the Timeline View and the Code

History Difference View. These views allow users to interactively explore code changes. They show

that fine-grained code change histories are valuable for answering developer queries and facilitating

backtracking tasks. They highlight their plans for future work, such as extending support to team

development environments, introducing advanced history search features, and providing additional

editor commands for past operations.

Servant and Jones [26] developed CHRONOS, a history-slicing Eclipse plugin that traces back

in code history using version control snapshots to find commits that affected a specific section of

code. It builds a history graph, selects slicing criteria, and computes and visualizes history slices

for developers to explore and analyze code changes over time. The history graph is a multipartite

graph representing the evolution of each file. Each node in the graph represents a line of code in a

specific revision, and each node is linked to nodes in the previous and/or following revisions. The

search scope of CHRONOS can range from multiple lines down to a single line, which means that

developers can select a set of lines of interest (possibly a code block) from a specific revision as a

slicing criterion. The design of CHRONOS is developed based on utilizing coarse-grained version

control history (i.e., file level granularity and line numbers).

Looking at some fine-grained alternatives, Historage was developed by Hata et al. [28] that aims

7

to track method moves within Java projects. To be able to do so, Historage creates a fine-grained

Git repository and adds each method from the project to a single file. Doing so allows it to utilize

the tracking mechanisms provided by Git, and it can successfully track methods across commit

history. Historage stores entire histories of fine-grained entities, including renaming changes, which

is beneficial for in-depth software evolution analysis. The paper provides an evaluation of Historage

on five open-source software projects and demonstrates its ability to accurately identify renaming

changes. By performing their evaluations, they found that the tool achieves high precision and recall

for rename identification, with more than 97% correct matches when similarity is above 30%.

Another fine-grained approach presented as a tool named FinerGit by Higo et al. [27], aims to

overcome the shortcomings of Historage [28]. Historage’s tracking accuracy is limited for small

methods that undergo a rename or move method refactoring, leading to the proposal of a new tech-

nique called FinerGit to enhance method trackability. Their approach is to put a single token of

Java methods per line, i.e., each line contains only one token. They present two heuristics to handle

false tracking cases as well. They ran their tool on 1,768K methods in 182 open-source repositories

to test their accuracy. The paper concludes by discussing the broader applications of FinerGit in

various research domains and the potential impact on experimental results.

Below, we shall explore some related work done concerning code review simplification and

streamlining, which CodeTracker Visualizer aims to do.

Huang et al. [37] developed CLDiff, which proposed a new methodology for code differenc-

ing. They included a web application that allows researchers and practitioners to visualize the code

difference generated by CLDiff. CLDiff takes source code files before and after changes as inputs

and performs three steps: pre-processing the code, generating concise code differences by group-

ing fine-grained changes, and linking related differences based on pre-defined links. The research

evaluates CLDiff through experiments with 12 Java projects and a human study with 10 partici-

pants, demonstrating its accuracy, conciseness, performance, and usefulness in understanding code

changes.

Lee et al. [38] developed Tempura, an eclipse plugin that aims to add a temporal dimension

to IDEs. By doing this, they propose the extension of code completion and navigation abilities

of IDEs by utilizing code history. This approach adds information in the code completion feature

8

about the code elements that were removed and provides navigation to them as well. Temporal

code navigation allows developers to search for and open any type from any revision of the project,

even deleted types, using the Open Type in History dialog. A controlled user study was conducted

to compare Tempura with EGit, and the results showed that Tempura helps developers learn about

code history more accurately and efficiently.

Ge et al. [39] present a refactoring-aware code review tool, built upon the Eclipse development

environment, aimed to simplify the pull request review process by muting out refactored code, so

that reviewers can focus on code that is prone to introducing bugs. The tool automatically deter-

mines which changes in a code set are refactorings, helping developers differentiate between refac-

toring and non-refactoring changes. Similar to CodeTracker Visualizer, this tool aims to simplify

and streamline the code review procedure.

Alves et al. [40] developed RefDistiller, a refactoring-aware code review tool that can help de-

velopers detect potential errors in manual refactoring edits by pointing out incomplete refactorings

and extra edits made within pure refactorings. This tool, available as an Eclipse plugin, aims to

tackle the tedious code review process that almost all software developers perform. RefDistiller

utilizes a tool named RefFinder to compare two different versions of a code element and then de-

tects the types and locations of potential refactorings made by the author. Two key techniques used

by RefDistiller are RefChecker and RefSeparator. RefChecker detects missing edits by checking

required code modifications and preservation of method or field reference bindings. RefSeparator

detects extra edits by comparing a manual refactoring version with an equivalent pure refactoring

version generated using Eclipse’s automated refactoring API.

Brito and Valente [41] developed RAID, a refactoring-aware code differencing tool, which is

available as a Chrome extension, and integrates with the GitHub user interface to provide a list

of refactorings performed in the commit being reviewed. It also provides a pop-up that properly

aligns the code element from both the current and parent versions and reduces the cognitive effort

required for reviewing and detecting refactorings. They conducted a field experiment involving

eight professional developers using RAID for three months and showed significant results. RAID

effectively reduced the number of lines needed for code review during refactorings.

9

2.2 Limitations of Existing Tooling

Although several tools tackle the problem of code change history, their primary focus is on the

code base as a whole and not specific code elements, with CodeShovel [2] being the only excep-

tion to this. Below, we shall discuss the shortcomings that these tools have and that CodeTracker

overcomes.

(1) Lack of Code Change History Tracking: Although the tools mentioned above perform code

differencing for two versions of a class, they inherently do not follow code elements through

the commit history of a project. These tools have a limited scope, as they only consider

one version and its parent at a time, and they do not track changes continuously through

the commit history until the introduction. Tools that have this shortcoming are Azurite [25],

RAID [41], CHRONOS [26], Tempura [38], CLDiff [37], and RefDistiller [40].

Azurite [25] is designed to selectively reverse code changes made in a single class. Although

it can perform a multi-file undo to track a code element when it has been moved between

multiple files, the user is expected to bear the responsibility of ensuring that all the files are

reverted to the correct point in time and are in a working condition.

RAID [41] detects refactorings between two versions but does not deal with tracking code

elements throughout the commit history. Although tedious, one can manually track the code

element through the commit history one commit at a time in a more effective manner than

using git blame due to its refactoring-aware nature.

CHRONOS [26] provides coarse-grained searching, and hence it is not accurate when track-

ing a large number of small edits [25]. Although it can target a specific area of statements,

and one could set a block as the scope of searching, it does not guarantee to track the block in

the presence of refactorings that may change the location of the block by moving it to another

method or even another file. Such limitations do not exist with CodeTracker [1] as it groups

statements as the respective code elements and is completely refactoring aware.

Although Tempura [38] allows for navigation to code elements that were present in the code

change history of a project, they are presented as a collection and are not mapped to code

10

elements that are currently present. Thus, an evolution chain cannot be constructed. The

information is simply used to present more details in the auto-complete feature of the Eclipse

IDE.

(2) Lack of Block Tracking or Differencing: Existing tools perform code differencing be-

tween two versions for code elements but do not specifically focus on code blocks. Tools

like CodeShovel [2], Historage [28], FinerGit [27], APFEL [24], Tempura [38], RAID [41],

and RefDistiller [40] can track methods, while CHRONOS [26] does not track based on code

elements but based on line numbers in a file. Our extension of CodeTracker [1] recognizes and

tracks code blocks as distinct program elements, which results in the generation of accurate

change history.

(3) Lack of On-Demand Computation: Unlike any of the other tools mentioned above, Azurite

[25] requires the installation of an Eclipse plugin before edits are made to a file since it tracks

code changes on its own and does not rely on an external VCS like Git. Hence, changes

made before the tool is installed are not traceable using this approach. Both Historage [28]

and FinerGit [27] require processing the entire repository and all of its commits. They pre-

process the project repository to create another finer-grained repository that tracks changes

in methods. Grund et al. [2] reported that FinerGit [27] could not finish processing the

four largest repositories in their validation data set within 15 mins and in some cases ended

up running out of memory, rendering the tool unusable on large projects with an extensive

history. Hence, all three of these tools do not have the ability to compute change histories on

the fly, while CodeTracker can do so on an average time of under 7 seconds [1].

(4) Lack of Support for New Java Features: Some projects mentioned above have been devel-

oped almost 10 years ago, with APFEL (2004) being developed almost 20 years ago, with

no major updates being made to their implementations. Some examples of projects in this

category are Historage (2011), CHRONOS (2012), Azurite (2013), Ge et al.’s code review

tool (2014) [39], RefDistiller (2014), and Tempura (2015). Since most of these were de-

veloped before or close to the release year of Java 8 (2014), projects containing newer Java

11

features, such as the Java Stream API, default and static methods in interfaces, functional in-

terfaces, and lambda expressions may break the implementation of these tools. CodeTracker

can process all aforementioned features, including mapping code blocks to Stream API im-

plementations where applicable. Moreover, CodeTracker can match code blocks, such as

for loops and if conditionals migrated to the Java Stream API, and thus continue tracking

changes back in history even before their migration.

(5) Lack of Git Support: Git is the most popular Version Control System (VCS) according to

a 2022 developer survey performed by Stack Overflow [16], and tools that do not support

tracking the commit history of a Git repository are at a major disadvantage. As discussed in

Chapter 1, developers who utilize source code management software often require external

assistance to understand the data stored in it. APFEL uses CVS instead of Git and Azurite

tracks changes in its internal representation and does not rely on any VCS to extract change

history information. CodeTracker reads the git repository directory to parse code changes

from commits without having to checkout each version. This makes it applicable in all code

bases using Git as their VCS.

(6) Lack of GitHub User Interface Integration: According to the 2022 Stack Overflow de-

veloper survey [16], GitHub is the most popular version control hosting platform for both

personal and professional use. Having a tool integrated with the user interface of GitHub

would mean that users would be able to instantly access the tool and its functionalities right

away during code reviews on GitHub. CodeShovel has a standalone web application that can

be used to track code change history, however, it does not directly integrate with GitHub.

Tools like APFEL, CLDiff, Tempura, and RefDistiller provide a GUI built into an IDE, so a

user performing a code review on a pull request would have to locally clone the repository and

perform the tracking operation. CodeTracker Visualizer integrates directly with the GitHub

user interface and provides code change history for any selected code element directly on the

GitHub commit page, and the user’s workflow is not disrupted by having to inspect informa-

tion displayed on an IDE or a standalone web application.

12

(7) Lack of IDE Independence: Most tools detailed above are implemented as Eclipse plug-

ins, and since the time of publishing these papers, Eclipse has steadily fallen in popularity,

with only 12.57% of developers using Eclipse as their IDE according to a developer sur-

vey conducted by Stack Overflow in 2022 [16]. These tools are Azurite, APFEL, Tempura,

RefDistiller, Ge et al.’s code review tool, and CHRONOS. CodeTracker is provided as a Java

API and can be used in any Java application. CodeTracker also provides a REST API that can

be used to build web applications. This is discussed in more detail in Chapter 5.

(8) Lack of Multi-browser support: RAID is the only tool in this list that presents its im-

plementation in the form of a browser extension [41], the same as CodeTracker Visualizer.

RAID provides a browser extension with Google Chrome as its only supported browser. As

discussed in Section 5.5, CodeTracker Visualizer provides multi-browser support, support-

ing Chrome, Firefox, and Opera. Having a wide variety of supported browsers increases the

flexibility provided to the user.

13

Chapter 3

Background

In this chapter, we shall define key terms that occur frequently throughout the thesis. Under-

standing the details and definitions of these terms shall aid in the thorough understanding of the

ideas conveyed throughout the rest of the chapters.

(1) Code block: Code block, simply referred to as a block, is a lexical structure of source code

that is grouped together [15]. It can also be defined as being the fundamental structure used

to group multiple declarations and statements within its body. Although Java is primarily

an object-oriented programming language and not a block-structured programming language,

it permits the use of blocks. Code blocks are denoted by enclosing a group of statements

within curly braces ’{}’, and they follow a sequential order of execution. For this the-

sis, we refer to control flow statements that use blocks as code blocks. All types of code

blocks present in Java are supported for tracking by CodeTracker. These are: for state-

ment, enhanced for statement, while statement, if statement, do statement, switch

statement, synchronized statement, try statement, catch clause, and finally block.

Some examples of control-flow code blocks are shown in Listing 1.

(2) Change history: The change history of a code element refers to the historical record of

modifications made to that particular element (e.g., method, variable, attribute, block) in the

source code over time. It includes details about when changes were made, who made the

changes, and what specific changes were implemented. To keep track of the changes being

14

Listing 1 Example for statement and if statement control flow code blocks.

1 public class Example {

2 public static void main(String[] args) {

3 int count = 5;

4

5 // For loop code block

6 for (int i = 0; i < count; i++) {

7 System.out.println("Iteration: " + i);

8 }

9 // For loop code block ends

10

11 // If-else code block

12 if (count > 0) {

13 System.out.println("The count is positive.");

14 } else {

15 System.out.println("The count is zero or negative.");

16 }

17 // If-else code block ends

18 }

19 }

performed on the codebase as a whole, a version control system like Git or Mercurial is

utilized. By examining the change history of a code element, developers can understand how

the code has evolved over time, identify the reasons behind certain modifications, and track

the progression of bug fixes or feature enhancements. The change history of an element is

stored in the form of a JSON file to allow for easy parsing in any programming language. An

example of code change history for a code block is shown in Listing 2.

(3) Change-history oracle: Change-history oracle, simply referred to as the oracle, is a collec-

tion of change histories of code elements grouped by the type of code element. In our change

history oracle, we have a total of 3370 different change history files of code elements found

throughout 20 open-source repositories. The oracle is further divided into sub-directories

by code element type, referred to as the method/attribute/variable/block oracle in this thesis,

and these oracles contain change histories for only the type of code element mentioned in its

name. Table 3.1 contains the breakdown of the oracle code element types and the number of

instances present for each type.

15

Table 3.1: Number of instances per code element type included in

the oracle. The Block oracle is contributed in this thesis, while the

other ones are contributed in [1].

Oracle Type Number of Instances

Method 200

Attribute 480

Variable 1410

Block 1280

Total 3370

(4) Version: The term version is used in this thesis to refer to the SHA-1 Git commit ID in which

the particular change occurred on the code element. It is denoted as Ve, where e is the code

element upon which the change occurred. The current version refers to the commit being

processed at the given point in time, and the parent version refers to the parent commit of the

current version.

(5) Statement mappings: Statement mappings, or mappings for short, refer to the relationship

or association between specific statements in the source code of one version and their cor-

responding counterparts in another version of the same codebase. These mappings can be

utilized to analyze the modifications that occurred in the code during the transition between

the two versions and are valuable for tasks like code review, impact analysis, and visualizing

differences between versions. We obtain statement mappings for the tracking process from

RefactoringMiner. These statement mappings help CodeTracker link code elements from one

version to another and continue the tracking process with the parent version code element.

Figure 3.1 shows the statement mappings generated between two commits in the project

Checkstyle. The black lines indicate a mapping between statements, and the statements

inside the red rectangle are indicated as being introduced. Note that in line L297, the

method invocation is mapped to the corresponding invocation in the current commit on line

16

R302, even though the variable name of one of the parameters changed from version to

checkstyleVersion, since the statement mappings generated by RefactoringMiner are

refactoring and syntax aware.

(6) Evolution chain: When tracking the change history of a code block from a certain commit

to its introduction, we sequentially go through each commit where a change on this code ele-

ment has occurred. The evolution chain of a code element refers to the sequence of changes

that occurred in its change history over time. It represents how the code element has evolved

and been modified from its initial creation to its current state. Each change in the history con-

tributes to the code element’s development and may include bug fixes, feature enhancements,

code refactoring, and other modifications. By examining the evolution chain, one can trace

the history of the code element and understand how it has been modified over time.

Figure 3.1: Statement mappings generated using RefactoringMiner in project Checkstyle [7].

17

Listing 2 Example change-history of a control flow code block from project Commons-Lang [42].

1 {

2 "repositoryName": "commons-lang",

3 "repositoryWebURL": "https://github.com/apache/commons-lang.git",

4 "filePath": "src/main/java/org/apache/commons/lang3/LocaleUtils.java",

5 "functionName": "toLocale",

6 "functionKey": "src/main/java/org.apache.commons.lang3.LocaleUtils

7 #toLocale(String)",

8 "functionStartLine": 60,

9 "blockType": "IF_STATEMENT",

10 "blockKey": "src/main/java/org.apache.commons.lang3.LocaleUtils

11 #toLocale(String)$if(114-116)",

12 "blockStartLine": 114,

13 "blockEndLine": 116,

14 "startCommitId": "a36c903d4f1065bc59f5e6d2bb0f9d92a5e71d83",

15 "expectedChanges": [

16 {

17 "parentCommitId": "a6d27fd89dc5f8c317637e539bebb3fec14caf39",

18 "commitId": "15b80753a6e8f481ea5029bc278e362994cb7bee",

19 "commitTime": 1460581055,

20 "changeType": "body change",

21 "elementFileBefore": "src/main/java/org/apache/commons/lang3

22 /LocaleUtils.java",

23 "elementNameBefore": "src/main/java/org.apache.commons.lang3

24 .LocaleUtils#toLocale(String)$if(113-115)",

25 "elementFileAfter": "src/main/java/org/apache/commons/lang3

26 /LocaleUtils.java",

27 "elementNameAfter": "src/main/java/org.apache.commons.lang3

28 .LocaleUtils#toLocale(String)$if(113-115)"

29 },

30 {

31 "parentCommitId": "bc255ccf5c239666ab54e5a31720d3f482ae78eb",

32 "commitId": "4d46f014fb8ee44386feb5fec52509f35d0e36ea",

33 "commitTime": 1357193992,

34 "changeType": "introduced",

35 "elementFileBefore": "src/main/java/org/apache/commons/lang3

36 /LocaleUtils.java",

37 "elementNameBefore": "src/main/java/org.apache.commons.lang3

38 .LocaleUtils#toLocale(String)$if(106-108)",

39 "elementFileAfter": "src/main/java/org/apache/commons/lang3

40 /LocaleUtils.java",

41 "elementNameAfter": "src/main/java/org.apache.commons.lang3

42 .LocaleUtils#toLocale(String)$if(106-108)",

43 "comment": "new block"

44 }

45]

46 }

18

Chapter 4

Research Approach

This chapter is divided into five sections - Section 4.1 lays down the foundations for the code

element identifiers (specifically for code blocks) in CodeTracker, Section 4.2 deals with the block

tracking enhancements made to CodeTracker, and Section 4.3 details the concept of evolution hooks.

Section 4.4 highlights the methodologies adopted for the development of CodeTracker Visualizer.

Finally, Section 4.5 describes the Oracle Validator fork of CodeTracker Visualizer and how it aids

in oracle validation research.

4.1 Code Block Identifier

Jodavi and Tsantalis [1] defined each code element e to be uniquely identified in the commit

history of a software repository with the following tuple:

Ie = (Ve, CONe, SIGe) (1)

where Ve is the version of e corresponding to the SHA-1 Git commit-ID in which a change took

place on code element e, CONe is the signature of the container to which e belongs, and SIGe is

the signature of e. [1]

Building upon this design, the identifier for a code block b is defined as follows:

Ib = (Vb, CONb, SIGb) (2)

19

Here, Vb is the version of b that corresponds to the commit ID at which a change on this block

exists.

The container of a control-flow block declaration b is the tuple:

CONb = (CONMb
, SIGMb

) (3)

where Mb is the method declaration in which b is declared, and CONMb
and SIGMb

are the con-

tainer and signature of Mb, respectively.

The container of a method declaration M is the tuple:

CONM = (CONCM
, SIGCM

) (4)

where CM is the type declaration to which M belongs, and CONCM
and SIGCM

are the container

and signature of CM , respectively, as defined by Jodavi and Tsantalis [1].

The container of a type declaration C is the tuple:

CONC = (SRCC , PKGC) (5)

where SRCC is the source folder path and PKGC is the package name to which C belongs.

Now, looking at the signature of control-flow blocks:

The signature of a control-flow block declaration b, with a body, is the tuple:

SIGb = (Tb, SIGpb , SIGbody) (6)

where Tb, is the block type (e.g., for, if, try, switch), SIGpb is the signature of b’s parent

statement, and SIGbody is the signature of b’s body, which is the hash value of the code inside b’s

body.

The signature of the parent statement pb has a recursive definition as shown in the tuple:

SIGpb = (SIGp′p
, Tp, Ipb) (7)

20

where p′ is the parent of p, Tp is the statement type of p, and Ipb is the index of b in p’s list of

statements, respectively.

This information is necessary to create a unique identifier for each code block, as there may

exist multiple blocks within a method that are textually identical, but have a different location in the

method’s control and execution flow structure.

4.2 Block Tracking in CodeTracker

CodeTracker integrates an extended version of RefactoringMiner to obtain refactoring infor-

mation and detect changes taking place on code elements between commits in a refactoring-aware

manner. It uses custom heuristics to improve performance alongside employing techniques like

partial analysis when applicable [1].

As illustrated in Chapter 1, having block-level granularity for change-history generation is quite

desirable. To achieve block-level granularity in CodeTracker, we introduced to the codebase a new

Block type to support the processing of blocks, along with the development of BlockTracker,

which is an extension to the multi-tracker builder pattern approach followed by CodeTracker.

Input: BlockTracker takes as input the following information: Git repository URL, a start-

ing commit SHA-1 ID (or HEAD by default), the file path containing the code block of interest, the

type of the code block (e.g., for, if, while, try, catch), and the start line number of the code

block’s declaration.

Output: The output is a graph, where the nodes represent code elements with their unique

identifiers, and the list of changes between two nodes is attached to the edge connecting them. The

change history is returned in the form of a graph due to the possibility of forks. A fork occurs when

two or more different blocks are merged into one. For example, two or more catch blocks could

be merged into a single catch block using the union type feature of Java for the handled exception

types (e.g., catch(ClassNotFoundException | IllegalAccessException ex)).

Another example is the extraction of two or more duplicated code blocks from the same or different

methods into a single commonly used method (i.e., EXTRACT METHOD refactoring). The change

history of a code block starts from the commit provided as input and goes all the way back to its

21

introduction commit. Therefore, by traversing the graph from the start node, we are able to visualize

the changes that took place in each commit, and since the graph can contain forks, every block

that was potentially merged with the current block can also be tracked to its introduction commit.

Another major reason to implement a graph-style representation is to facilitate the implementation

of evolution hooks, a mechanism that allows users to continue the tracking process in case the

method containing the tracked code block gets extracted or inlined at some point in the commit

history. More details about evolution hooks are given in Section 4.3.

Figure 4.1: Hierarchy of supported change kinds for code blocks.

Figure 4.1 shows the change type hierarchy supported by CodeTracker for code blocks. A

BLOCK SPLIT change is used to denote changes where a certain block is split into two or more

blocks but maintains similar functionality as the parent commit block. BODY CHANGE and EX-

PRESSION CHANGE indicate a change in the body and expression of the block, respectively. We have

found that BODY CHANGE is the most common type of change performed on blocks, followed by

EXPRESSION CHANGE. The REPLACE PIPELINE WITH LOOP change is used to capture instances

where a loop with nested conditional logic is replaced with the Java Stream API. This is a fairly

common practice as developers tend to migrate their codebase to new language features [43, 44].

22

The reverse is also detected and reported as a valid change (i.e., REPLACE LOOP WITH PIPELINE).

The addition and removal of a catch or finally block in try statements are captured by the

CATCH BLOCK ADDED/FINALLY BLOCK ADDED and CATCH BLOCK REMOVED/FINALLY BLOCK

REMOVED changes respectively. This case is also fairly common as developers tend to add and re-

move catch and finally blocks to handle errors as the try statement block evolves with new

code. Finally, any changes made inside the body of a catch or finally block are indicated with

the CATCH BLOCK CHANGE and FINALLY BLOCK CHANGE, respectively.

One interesting feature to point out is that the block tracking process also supports the trans-

formation of blocks from one type to another. For example, in one case that we found, a switch

statement was used to replace a rather cumbersome if-else-if ladder and then add a few extra

cases [45]. We support continuous tracking in such instances, as the switch cases are mapped to

the corresponding if conditionals, and the evolution chain continues.

The complete list of such transformations includes (the inverse transformation of all these cases

is also supported):

(1) if-else-if to switch

(2) if statement to while loop (a developer wants to repeat the body until resolved)

(3) for loop to while loop

(4) for loop to forEach pipeline

(5) for loop to if block

(6) try block to synchronized block

(7) catch block to finally block

23

Figure 4.2: Steps 2-5 are run for each commit in the list of commits generated in Step 1, stopping execution of the remaining steps when a step

identifies the next code block.

2
4

The tracking process for blocks (illustrated in figure 4.2), as implemented in BlockTracker

is detailed below:

STEP 1: Retrieve Git history for the current file path

As a starting point, we identify the code block that is of interest (denoted by b) and obtain the

file path containing the block as input from the user. We then retrieve the git history of the given

repository and obtain all the commits in which the file had undergone a change. We collate these

commits and move them onto the next step, ignoring the rest of the commits that had no change

on the parent file. This step cuts down the need to iteratively process each and every commit in

the repository. The command used for this process is git log --follow filePath, and by

using the follow flag, we obtain the commit history in case filePath is moved or renamed as

well.

STEP 2: Check if the container method is unchanged

After obtaining the set of commits where a change may have taken place on the concerned

block, we iterate through each of these commits and construct a partial source code model for

the file containing the block in the current commit r and the same file in the parent commit p,

respectively. On the first commit we process, we obtain the code block b and its container method

M in the commit r using the block type and line number. Alongside the partial source code model,

we also construct the signatures (SIGMr
, SIGbr) and containers (CONMr

, CONbr) of the method

containing the block and the block itself, as illustrated in Section 4.1. We then look into p’s model

and search for a method with the same signature as SIGMr
. If we do find a match, it would mean

that the container method had remained unchanged, and thus so had the code block contained inside

its body. We then map the type declaration containers (CONMp
, CONMr

), method declarations

(Mp, Mr) and blocks (bp, br) to each other and continue the evolution chain. If a match is not found,

we move on to STEP 3.

STEP 3: Check if the container method’s body changed.

Reaching this step would indicate that the container method Mr has undergone some change in

its parent commit p. Therefore, we check to see if the method remains in the same file in the parent

commit and has only undergone a change in its body, that caused a change in its identifier. We do

this by relaxing the method identifier when searching for a match. More specifically, by omitting

25

the method body’s string representation hash value, SIGbody, we can now compare to see if there is

a method that matches this identifier in commit p. If we do find a match, this would indicate that the

body of the method has changed. In turn, the block contained inside the body of this method could

potentially have also changed.

At this point, we execute RefactoringMiner on the partial source code models for commits r and

p constructed in STEP 2. We then check to see if the block br is involved in any method-body-level

refactorings, such as REPLACE LOOP WITH PIPELINE, REPLACE PIPELINE WITH LOOP, SPLIT

CONDITIONAL, MERGE CONDITIONAL. If that is the case, we report the appropriate refactoring

as a change on the block and continue the evolution chain.

In the case that none of these refactorings were performed involving br, we obtain the statement

mappings returned by RefactoringMiner and check if br has been mapped to a statement bp in the

parent commit p. Upon finding a match, we construct the unique identifiers of br and bp and link

the two code element nodes in the graph. We then check if the contents of the block have remained

the same. If the expression and/or body have changed, we report an EXPRESSION CHANGE and

BODY CHANGE, respectively. If the block is a try block, we separate the catch blocks and

perform a similar string representation construction and equality check. We also make note of

catch blocks that do not have a mapping in the parent/child commit and report a CATCH BLOCK

ADDED/REMOVED CHANGE, respectively. This approach is also adopted for finally blocks that

may be present within the try statement.

If we don’t find a match for br in the above process, we can suspect that br may have been

introduced in method Mr. There are two possible scenarios. Either br corresponds to new func-

tionality added in method Mr, or br has been moved to Mr by inlining a method originally called

by Mp. To verify the latter scenario, we check if RefactoringMiner reported an INLINE METHOD

with Mr as the target, and br has been matched with a block bp from the inlined method. In that

case, we introduce an evolution hook, so that the user can attach on demand the evolution sub-graph

of bp starting from commit p. To verify the first scenario, we check through RefactoringMiner’s

list of unmapped blocks present in Mr and then check if any of those correspond to br. If that is

the case, we can safely say that the block had been Introduced in commit r as part of the newly

added functionality of a bug fix. If br is not found within this list, we need to move on to STEP

26

4, where we explore the possibility of br belonging to a method whose signature (i.e., parameter

type list, method name, return type) changed, or method Mr is introduced as the outcome of a local

intra-method-level refactoring, such as EXTRACT METHOD, MERGE METHOD, SPLIT METHOD.

STEP 4: Check if the container method’s signature changed

At this point, we utilize the information extracted by RefactoringMiner in STEP 3 after its exe-

cution on the partial source code models for commits r and p. RefactoringMiner initially matches

the method pairs within type declaration containers (CONMp
, CONMr

) with identical signatures

(i.e., method name and parameter type list), and then compares all combinations of the remaining

unmatched methods from CONMr
with the remaining unmatched methods from CONMp

to find

the best matching method pairs with changes in their signatures. If Mr is found in a matching

method pair (Mp, Mr) with method signature changes, we obtain the statement mappings returned

by RefactoringMiner and check if br has been mapped to a statement bp in the parent commit p. If

indeed a statement mapping is found for br, we construct the unique identifiers of br and bp, and link

the two code element nodes in the graph. Otherwise, we utilize again the information extracted by

RefactoringMiner to examine if any of the remaining unmatched methods from CONMr
has been

extracted from a pair of matched method pairs and finally check if any subset of the remaining un-

matched methods from CONMp
have been merged to a single remaining unmatched method from

CONMr
(i.e., MERGE METHOD refactoring), as well as the reverse scenario (i.e., SPLIT METHOD

refactoring). If Mr is found being involved in any of the aforementioned refactoring scenarios, we

obtain again the statement mappings included in the corresponding refactoring and check if br has

been mapped to a statement bp in the parent commit p. If a statement mapping is found for br,

we construct the unique identifiers of br and bp, link the two code element nodes in the graph, and

introduce an evolution hook, so that the user can attach on demand the evolution sub-graph of bp

starting from commit p, as Mr is essentially a newly introduced method in CONMr
type declaration

container.

If no matches are found in this step, then we move on to STEP 5, where we check if bp is

located in a file other than filePath in which br is located, since there is a possibility that the

container method Mr has been moved to filePath from another file, or the type declaration

CONMr
containing Mr has been renamed or moved to another package.

27

STEP 5: Check if the container method was moved to another class or file

This step is the most computationally expensive step of the tracking process, as we keep the

partial source code model for commit r as is, but add all modified and removed files in commit p to

p’s source code model (i.e., we create the complete source code model for commit p) to enable the

detection of inter-method-level refactorings, such as PULL UP METHOD, PUSH DOWN METHOD,

MOVE METHOD, as well as class-level refactorings, such as MOVE CLASS, RENAME CLASS, EX-

TRACT CLASS, MERGE CLASS, SPLIT CLASS. To avoid the unnecessary processing of files and

speed-up the tracking process, we exclude from p’s source code model all files with identical con-

tents, and files with only trivial changes in comments (e.g., license headers) and import declarations.

Moreover, we support two scenarios in which additional files need to be included in r’s source code

model to correctly track br, which are explained in detail in [1]:

(1) br is copied into a new file: In this scenario, developers copy methods they want to dep-

recate into a new file, and then declare the original methods or their container class as

@deprecated.

(2) br is extracted to a new file: In this scenario, developers move some members of an existing

class into a new class, and instantiate the new class into the origin class in order to access the

moved functionality (i.e., EXTRACT CLASS refactoring), or extend the origin class in order

to inherit the non-moved functionality (i.e., EXTRACT SUBCLASS refactoring).

After setting up the partial source code models for commits r and p, we execute Refactoring-

Miner again. First, we check all class-level refactorings (e.g., MOVE CLASS, RENAME CLASS) to

find a pair of type declarations (CONMp
, CONMr

) involving CONMr
. If such a pair is found, we

obtain the corresponding class-level diff object from RefactoringMiner, which includes all pairs of

matched methods. We then check if Mr is included in the matching method pairs. If so, we obtain

the statement mappings returned by RefactoringMiner for the (Mp, Mr) method pair, and check if

br has been mapped to a statement bp in the parent commit p. If indeed a statement mapping is

found for br, we construct the unique identifiers of br and bp, and link the two code element nodes

in the graph.

If there is still no match found for br, this is an indication that either br itself or its method

28

Step 1

Retrieve Git history for

current file path.

square/okhttp - commit 142868f, class Job

5b6f64a

112dcc4

…
8972a94

749a65b

2fb9064

…
37c0189

e7d13c4

39b3b59

1bd4dd1

c8e37ce

Figure 4.3: Running example: Running step 1 on the block to generate a list of commits shown on

the right.

container Mr has been moved to another file through an EXTRACT AND MOVE METHOD or MOVE

METHOD refactoring, respectively. Finally, we check in all inter-method-level refactorings reported

by RefactoringMiner if method container Mr is involved. If so, we obtain the statement mappings

included in the corresponding refactoring and check if br has been mapped to a statement bp in the

parent commit p. If indeed a statement mapping is found for br, we construct the unique identifiers

of br and bp, and link the two code element nodes in the graph.

If by the end of STEP 5 there is still no match found for br, we report that br has been Introduced

in commit r as part of a newly added method.

Steps 2-5 are iteratively executed until the tracked block is found as Introduced, or we reach the

first commit of the project, which means that the tracked block has existed since the beginning of

the project.

We shall now run these steps on an example block to understand the flow of execution (Figure

4.3 to Figure 4.13).

29

Step 1

Retrieve Git history for

current file path.

Step 2

Check if container

method is unchanged. 5b6f64a

112dcc4

…
8972a94

749a65b

2fb9064

…
37c0189

e7d13c4

39b3b59

1bd4dd1

c8e37ce

No change

Figure 4.4: Running example (commit 1/10): Running step 2 on the block to check if the container

method has remained unchanged.

Step 1

Retrieve Git history for

current file path.

Step 2

Check if container

method is unchanged.

Step 3

Check if container

method’s body changed. 5b6f64a

112dcc4

…
8972a94

749a65b

2fb9064

…
37c0189

e7d13c4

39b3b59

1bd4dd1

c8e37ce

Body change, Catch block change

Figure 4.5: Running example (commit 2/10): Running step 3 on the block to check if the container

method’s body has changed.

30

Step 2

Check if container

method is unchanged.

Step 1

Retrieve Git history for

current file path.

Step 3

Check if container

method’s body changed. 5b6f64a

112dcc4

…
8972a94

749a65b

2fb9064

…
37c0189

e7d13c4

39b3b59

1bd4dd1

c8e37ce

No change

Step 2

Check if container

method is unchanged.

Figure 4.6: Running example (commit 3/10): Running step 2 for this commit is sufficient as the

container method has not changed (steps 3-5 are skipped.)

Step 1

Retrieve Git history for

current file path.

Step 2

Check if container

method is unchanged.

Step 3 Step 4

Check if container method’s
signature changed.

Check if container

method’s body changed. 5b6f64a

112dcc4

…
8972a94

749a65b

2fb9064

…
37c0189

e7d13c4

39b3b59

1bd4dd1

c8e37ce

Body change, Finally block change

Figure 4.7: Running example (commit 4/10): Running step 4 on the block to check if the container

method’s signature has changed, which in this case it has.

31

Step 1

Retrieve Git history for

current file path.

Step 2

Check if container

method is unchanged.

Step 3

Check if container

method’s body changed. 5b6f64a

112dcc4

…
8972a94

749a65b

2fb9064

…
37c0189

e7d13c4

39b3b59

1bd4dd1

c8e37ce

Finally block change

Step 4

Check if container method’s
signature changed.

Step 3

Check if container

method’s body changed.

Figure 4.8: Running example (commit 5/10): Running step 3 on the block to check if the container

method’s body has changed.

5b6f64a

112dcc4

…
8972a94

749a65b

2fb9064

…
37c0189

e7d13c4

39b3b59

1bd4dd1

c8e37ce

Step 1

Retrieve Git history for

current file path.

Step 2

Check if container

method is unchanged.

Step 3

Check if container

method’s body changed.

Body change, Finally block change

Step 4

Check if container method’s
signature changed.

Step 3

Check if container

method’s body changed.

Figure 4.9: Running example (commit 6/10): Running step 3 is sufficient for this commit.

32

5b6f64a

112dcc4

…
8972a94

749a65b

2fb9064

…
37c0189

e7d13c4

39b3b59

1bd4dd1

c8e37ce

Step 1

Retrieve Git history for

current file path.

Step 2

Check if container

method is unchanged.

Step 3

Check if container

method’s body changed.

No change

Step 4

Check if container method’s
signature changed.

Step 2

Check if container

method is unchanged.

Figure 4.10: Running example (commit 7/10): Running step 2 is sufficient as the container method

has not undergone any changes.

Step 1

Retrieve Git history for

current file path.

Step 2

Check if container

method is unchanged.

Step 3 Step 4 Step 5

Check if container method

was moved from another

file.

Check if container

method’s body changed.
Check if container method’s
signature changed. 5b6f64a

112dcc4

…
8972a94

749a65b

2fb9064

…
37c0189

e7d13c4

39b3b59

1bd4dd1

c8e37ce

Finally block change; evolution chain continues

Figure 4.11: Running example (commit 8/10): Running step 5 on the block to detect container

method file moves.

33

Step 1

Retrieve Git history for

current file path.

Step 2

Check if container

method is unchanged.

Step 3 Step 4 Step 5

Check if container method

was moved to another file.

Check if container

method’s body changed.
Check if container method’s
signature changed. 5b6f64a

112dcc4

…
8972a94

749a65b

2fb9064

…
37c0189

e7d13c4

39b3b59

1bd4dd1

c8e37ce

No change

Step 2

Check if container

method is unchanged.

Figure 4.12: Running example (commit 9/10): Running step 2 on the block is sufficient.

Step 1

Retrieve Git history for

current file path.

Step 2

Check if container

method is unchanged.

Step 3 Step 4

Check if container

method’s body changed.
Check if container method’s
signature changed. 5b6f64a

112dcc4

…
8972a94

749a65b

2fb9064

…
37c0189

e7d13c4

39b3b59

1bd4dd1

c8e37ce

Introduced

Step 5

Check if container method

was moved to another file.

Step 5

Check if container method

was moved to another file.

Figure 4.13: Running example (commit 10/10): Running step 5 to check for container method file

moves. In this case, the block was not moved and was introduced, concluding the tracking process.

34

4.3 Change Graph Evolution Hooks

As described in Section 4.2 and introduced by Jodavi and Tsantalis [1], evolution hooks are

a mechanism that allows users to continue tracking code elements on-demand when the tracked

code element is found located in a newly introduced container (e.g., method) after the application

of a local intra-method-level refactoring, such as EXTRACT METHOD, INLINE METHOD, MERGE

METHOD, SPLIT METHOD. This design allows us to avoid computing additional change history

which might not desired by the user, but at the same time inform the user about the opportunity to

further explore the change history, if and when desired.

With respect to code blocks, when we come across an evolution hook, we automatically con-

tinue the tracking process. We did so since a code block can be considered as an independent code

element, which can be moved between methods in the same file or even different files. Moreover,

this choice allowed us to have a comprehensive oracle of code block changes with advanced evo-

lution scenarios, where code blocks are moved to newly introduced containers (i.e., methods or

classes).

CodeTracker Visualizer utilizes the ability to perform on-demand change history generation

using evolution hooks for code elements other than code blocks (e.g., method declarations) and is

described in detail in Section 4.4.

4.4 CodeTracker Visualizer Approach

Code review is a crucial aspect of contemporary software development. Presently, this practice

involves utilizing textual code differencing tools, like the one found on GitHub, to review code

changes [5]. Textual diffs are prone to quickly becoming convoluted and difficult to comprehend

for more complex changes. When using the textual code difference view provided on GitHub,

refactorings are not explicitly represented on the commit page. As a consequence, understanding

the changes being made between versions becomes more intricate since reviewers must deduce

on their own that a specific group of added and removed lines of code could signify a potential

refactoring [41].

The vision for CodeTracker Visualizer was to build a tool that could provide easy access to code

35

change history and assist software developers during code reviews by helping provide near-instant

historical information and navigation for just about any code element in the commit. CodeTracker

provides its functionality as a rich Java API [1] which is excellent for developing software that

integrates with CodeTracker, however, everyday usage with an API is both tedious and unrealistic.

Having to gather information about each code element that one would like to track and manually

passing it onto the API was the only option users had, especially when browsing projects on a

cloud-based version control application, such as GitHub. CodeTracker Visualizer aims to bridge

this gap and provide an intuitive out-of-the-box solution to using CodeTracker straight from within

the GitHub user interface. Ease of use was key during the development of CodeTracker Visualizer

and remains to be one of its strongest assets.

Since integration with GitHub was a primary goal to achieve, the first step we took was to ex-

plore the capabilities of GitHub Apps, an in-house solution supported by GitHub. GitHub Apps

directly interact with GitHub as a user would, and can provide deep integrations with the GitHub

API. However, we quickly realized that a major limitation that comes with this approach is the in-

ability to interact with the browser DOM (Document-Object-Model), which meant we could not

provide the user with a fully automated experience and would have the user jumping through hoops

by clicking links. Another potential approach we explored was to utilize the WebHooks infrastruc-

ture that GitHub provides. This approach would allow us to set up listeners that can await commits

and pull requests made onto a repository and then allow us to process these commits with Code-

Tracker, however, this was not exactly what we wanted to achieve from CodeTracker Visualizer. We

needed a solution that could provide efficient and on-the-fly code change history without having the

need to install GitHub apps or set up webhooks. We also built a React web application that would

communicate with the GitHub REST API and CodeTracker using a Java web server to display the

code change history of a selected code element, and this application was linked to the user via a

comment left by a GitHub App bot. This solution had access to the DOM and the code change his-

tory was computed on the fly, however, it needed the user to leave the GitHub web application and

go onto a completely different web app, and this was not the seamless experience we were looking

for.

To eliminate the need for a bot leaving comments with links throughout commits, we replaced

36

the GitHub app with a browser extension since all the app was doing was redirecting users and a

browser extension could just as easily do that while not polluting the repository with comments.

This route ended up being pivotal to the design of CodeTracker Visualizer, as we know it today.

With the implementation of the browser extension, we realized that instead of having it redirect the

user to another app, we could modify the GitHub app to integrate the functionalities we wanted.

This ended up being the final path we chose for CodeTracker Visualizer as it met all the goals we

had laid out - easy to set up and use (no configuration required), integrates directly with the GitHub

user interface, and can control the DOM to allow for task automation.

Below, we shall look into what CodeTracker Visualizer is at its core, and discuss the solutions

we implemented to achieve a fully automated code change history navigator.

Figure 4.14: CodeTracker Visualizer browser extension with visible history nodes.

At its current state, CodeTracker Visualizer is a browser extension (Figure 4.14) that integrates

with the GitHub UI to provide a visual overlay with code change history for any code element

present on GitHub. To obtain code change history from CodeTracker Visualizer, a user only needs

to double-click the desired code element on the GitHub web app, whether it may be on a commit or

file blob page. The extension also allows for the tracking of code elements from private repositories,

with the input of a valid API key in the settings pane, as shown in Figure 4.15.

37

Figure 4.15: Settings panel for CodeTracker Visualizer.

When a user selects a code element, we capture the mouse event and obtain the text selected by

the user. This selection is the name of a method, attribute, variable, or code block.

By accessing the DOM, we then pick up the line at which the code element is present and capture

the line number. After this, we move up in the DOM until we reach the file container of the line,

which contains the file path of the class containing the selected code element. Finally, we capture

the commit from the webpage URL, along with the repository name. As seen in Figure 4.16, all this

information is then passed to CodeTracker’s REST API, which is run on a Java Web Server and can

serve CodeTracker’s functionalities over the web. Among the various endpoints available, which

are covered in detail in section 5.4, we have an endpoint GET codeElementType, which takes

in the information provided above and returns the type of code element being selected. The type of

code element selected is then shown to the user on the side panel along with the name of the code

element, as shown in Figure 4.17. This helps provide instant feedback to the user with just a click.

When the user makes an invalid selection, for example, an incomplete method name, a keyword, an

operator, or multiple code elements at once, we gray out the track button using information obtained

from this API endpoint.

When the user has made a valid selection (method, variable, attribute, or block) and would like

38

Figure 4.16: CodeTracker Visualizer architecture.

to proceed with tracking its code change history, they click the ªTrackº button which initiates the

tracking process using CodeTracker, via the REST API. As seen in Figure 4.18, once the data is

obtained from the API, we model the JSON response into a graph, which is essential to render a

visual representation of the code change history evolution. The visual representation of the code

change history can be seen in Figure 4.14.

A green node in the code change history indicates a change found in the history of the code

element. As seen in Figure 4.20, the user can hover their cursor over a node to see details about the

change and the commit that it was made in. A yellow node indicates the presence of an evolution

hook in the change history of the tracked code element, which can be expanded and computed on

the user’s demand. As shown in Figure 4.19, when a yellow node is encountered, the change history

stops at that point, since there is no further history on this specific code element. Right-clicking a

yellow node expands the graph to reveal the change history of the code element in reference to its

new container method. This concept is referred to as an evolution hook 4.3 and is used to compute

additional code change history when required by the user.

A gray dotted border encompasses the complete history of a code element. When an evolution

hook is tracked, the history is appended to the current history to present a continuous traceable list.

However, this new history is encompassed in its own border, helping differentiate between the end

of one code element’s history and the start of another. This dotted border can be seen in Figure 4.19.

39

Figure 4.17: The code element type is analyzed and displayed to the user.

Looking at the navigational capabilities of CodeTracker Visualizer, the user may click on any

node on the change history graph and they will be appropriately navigated to the exact line the code

element is present in, in its specific commit. The complete implementation details of this navigation

can be found in detail in Section 5.5, but in short, we use a variety of mechanisms to automate the

browser redirects, scrolls, clicks, and network calls required in various scenarios.

As mentioned at the start, ease of use was a key element in mind during the design and develop-

ment of the CodeTracker Visualizer application, and our approach emphasizes this aspect. A user

can obtain the entire code change history for a code element in two clicks, and navigate to the exact

code element at any change throughout its commit history with one additional click. This stream-

lined process aims to help increase efficiency in the usage of CodeTracker as a code change history

generator.

4.5 CodeTracker Visualizer: Oracle Validator

A modified version of CodeTracker Visualizer, known as the Oracle Validator version, was

developed to help validate the change history oracle that is used to evaluate the precision and recall

40

Figure 4.18: API flow of the tracking process.

Figure 4.19: A yellow node indicates the presence of an evolution hook, which can be expanded

on-demand by right-clicking on it.

41

Figure 4.20: Hovering over a node provides more semantic information about the change.

Figure 4.21: CodeTracker Visualizer’s oracle validation fork.

42

of CodeTracker. Oracle Validator automates the navigation between oracle files and their commits

and allows users to efficiently report errors discovered within them. Figure 4.21 shows a screenshot

of its user interface.

This version of CodeTracker Visualizer utilizes a REST API that can serve oracle files from

the file system to the application, which then utilizes its internal navigational capabilities to walk

through each commit in the change history and have a human validator verify each change men-

tioned in the oracle. It integrates with the GitHub API to provide a quick report feature, which can

automatically report an invalid change being detected by CodeTracker as a GitHub issue, with all

the relevant information required to investigate the error. The issue generation feature cut down sig-

nificantly on the time required to report an error in the oracle or the code mappings being returned

by RefactoringMiner. When an oracle file was fully verified, it would be moved to a valid directory

by the REST API, which indicated that this oracle was manually verified as being valid. On an error

being detected, the error was reported and the file moved to an invalid directory. After this, the

next file in the oracle would automatically be loaded, and the user would be navigated to the code

element in the first commit described in this file.

This semi-automated solution cut down on the time required to validate our oracle, which in

turn allowed for multiple rounds of full-oracle validations to be performed, ensuring integrity in the

changes detailed by the oracle.

43

Chapter 5

Implementation

In this chapter, Section 5.1 provides a background of the implementation details of CodeTracker.

Section 5.2 explores the implementation details of the Block code element type, while Section 5.3

introduces implementation details of the BlockTracker class, which is the tracker implemen-

tation responsible for the tracking of code blocks. Section 5.4 describes the implementation of

CodeTracker’s REST API. Next, Section 5.5 entails the design and architecture of CodeTracker

Visualizer, followed by its implementation and test details. Finally, Section 5.6 talks about the

development of the BlockTracker version integrated with GumTree [5].

5.1 CodeTracker Implementation Background

CodeTracker is written in Java and the build automation tool of choice is Maven. CodeTracker

heavily depends on RefactoringMiner to gather refactoring information and statement mappings.

Other libraries that it depends on are JGit and Guava. CodeTracker uses JGit to gather the commit

history information of a file. Guava is used to represent the change-history generated as a graph.

CodeTracker is primarily exposed as an API for ease of use. The API is designed as a single,

core API, housing multiple Trackers inside. The various tracker classes present are ClassTracker,

MethodTracker, VariableTracker, and AttributeTracker. Each of these trackers

is modeled around its respective code element class. For example, MethodTracker uses a

Method class to help process methods. This thesis introduces the addition of the Block and

44

BlockTracker classes, utilized for tracking code blocks. The following two sections provide

more information about the implementation of the Block and BlockTracker classes.

5.2 Block Code Element Type

The various code element classes in CodeTracker are all modeled around the BaseCodeElement

abstract class, containing essential methods such as identifier generators and code element com-

parators, and attributes such as the name of the code element as well as its file path, version, and

identifier.

Figure 5.1: Methods and attributes available in the Block code element class

To implement block-level tracking, we first need to define what a block is in CodeTracker terms.

This meant we had to extend the BaseCodeElement abstract class and implement a Block class

45

that included the methods needed to process a code block. Inside the Block class, we have one

constructor and several static factory methods, following the factory design pattern to provide rich

API usage. Figure 5.1 shows the various methods and attributes available in the Block class, as

well as its superclasses. Below are the various static factory methods made available in the Block

class for the purpose of instantiating a code block element taking various RefactoringMiner API

objects as input parameters:

(1) public static Block of(CompositeStatementObject composite, Method

method)

(2) public static Block of(StatementObject statement,

VariableDeclarationContainer operation, Version version)

(3) public static Block of(StatementObject statement, Method method)

(4) public static Block of(AbstractStatement statement,

VariableDeclarationContainer operation, Version version)

(5) public static Block of(AbstractStatement statement, Method method)

5.3 BlockTracker Implementation

Similar to the code element classes, the tracker classes are also extended upon an abstract class,

BaseTracker. As shown in Figure 5.2, BlockTracker needs to be instantiated using the

CodeTracker interface ± which returns a BlockTracker builder. The fluent [46] builder then

collects the repository information and the inputs as described in section 4.2 to identify the code

block of interest. Table 5.1 shows the methods that are available in the BlockTracker class.

Table 5.2 shows all the types of code blocks that are trackable by BlockTracker.

46

Figure 5.2: BlockTracker API UML diagram.

Table 5.1: BlockTracker API using the fluent builder pattern

(BlockTracker.Builder class)

Return Type Method & Description

BlockTracker.Builder
repository(Repository repository)

Set repository to perform tracking in. The variable passed

as the parameter should be of type Repository, created from

RefactoringMiner’s API GitService.

BlockTracker.Builder
startCommitId(String id)

Set the commit from which to start the tracking process. The

commit ID is passed as a string.

BlockTracker.Builder
filePath(String filePath)

Set the file path of the file containing the block that is to be

tracked. The file path is passed in as a string.

47

BlockTracker.Builder
methodName(String methodName)

Set the method name of the container method of the block to

be tracked. The method name is passed in as a string.

BlockTracker.Builder
methodDeclarationLineNumber(int line)

Set the line number of the container method declaration. The

line number is passed in as an integer.

BlockTracker.Builder
codeElementType(CodeElementType type)

Set the type of block to be tracked, (e.g. FOR STATEMENT,

IF STATEMENT, TRY STATEMENT, etc.). It requires the

type to be passed as a CodeElementType, which is an

enum in RefactoringMiner’s LocationInfo class.All sup-

ported block types are covered in Table 5.2.

BlockTracker.Builder
blockStartLineNumber(int line)

Set the line number of the block declaration. The line number

is passed in as an integer.

BlockTracker.Builder
blockEndLineNumber(int line)

Set the line number of the block end line. The line number is

passed in as an integer.

BlockTracker
build()

Constructs a BlockTracker Class Instance with all the required

arguments.

Code Snippet 3 shows how the BlockTracker API can be instantiated and used to track the

history of the TRY STATEMENT block starting at line 453 and ending at line 465, in method

name setupChild declared in line 448 of a file with name Checker.java, and start commit

119fd4fb

48

Table 5.2: Block types available in CodeElementType enum.

CodeElementType Description

FOR STATEMENT Simple for loop

ENHANCED FOR STATEMENT Enhanced for loop

WHILE STATEMENT While loop

IF STATEMENT If statement with or without an else block

DO STATEMENT Do while loop

SWITCH STATEMENT Switch statement

SYNCHRONIZED STATEMENT Synchronized statement

TRY STATEMENT Try block with or without resources

CATCH CLAUSE Catch block that follows a try block

FINALLY BLOCK Finally block that follows a try block

Listing 3 Instantiation of the Block Tracker

1 GitService gitService = new GitServiceImpl();

2 try (Repository repository =

3 gitService.cloneIfNotExists("checkstyle\\checkstyle",

4 "https://github.com/checkstyle/checkstyle.git")) {

5

6 BlockTracker blockTracker = CodeTracker.blockTracker()

7 .repository(repository)

8 .filePath("src/main/java/com/puppycrawl/tools/checkstyle/Checker.java")

9 .startCommitId("119fd4fb33bef9f5c66fc950396669af842c21a3")

10 .methodName("setupChild")

11 .methodDeclarationLineNumber(448)

12 .codeElementType(LocationInfo.CodeElementType.TRY_STATEMENT)

13 .blockStartLineNumber(453)

14 .blockEndLineNumber(465)

15 .build();

16

17 History<Block> blockHistory = blockTracker.track();

18 }

Calling the track operation on the BlockTracker class returns a generic version of the

History interface that is parameterized over code element types, and in this case, over Block.

This interface provides a graph of change history as described in Section 4.2.

49

5.4 CodeTracker REST API

CodeTracker exposes its functionality as a Java API. While this is sufficient for integrating

CodeTracker into one’s own Java software systems, it lacks the capabilities required for building a

web application, like CodeTracker Visualizer (covered in Sections 4.4 and 4.5), which requires a

web API, like a REST API in this case. CodeTracker REST API [47] enables client-side applications

to communicate and integrate with CodeTracker. It is built on Undertow [48], which is a lightweight

Java web server. It also utilizes FasterXML-Jackson [49] for JSON parsing, JGit [50] to read locally

cloned repositories, and GitHub API for Java by K. Kohsuke [51] to access GitHub via its APIs. Of

course, it also uses CodeTracker [1] to generate code change history.

It provides the following endpoints:

(1) GET /api/codeElementType

This endpoint is used to obtain the type of code element selected by the user given the fol-

lowing input: repository name, commit ID, file path, selection text, line number, GitHub

username, and API token (in case of private repositories)

Output: type of code element selected (method, attribute, variable, block, invalid)

(2) GET /api/track

This endpoint is used to obtain the code change history of a code element selected by the user

given the following input: repository name, commit ID, file path, selection text, line number,

GitHub username, and API token (in case of private repositories)

Output: code change history of code element selected returned as a JSON.

(3) GET /api/getOracleData

This endpoint is used by the Oracle Validator version of CodeTracker Visualizer. It is used

to get the next file in line for validation from the oracle. It takes no input and returns the file

contents as output.

(4) POST /api/addToOracle

50

This endpoint is also used by the Oracle Validator version of CodeTracker Visualizer. It

is used to move a file from one directory to another, depending on the manual evaluation

performed by the user. For example, moving an oracle file from a directory containing invalid

oracle files to a directory containing valid files when the file contains accurate change history.

By flipping a parameter, we can also trigger the quick report feature discussed in section 4.5.

Input: commit ID, commit URL, Highlight ID, report (boolean), valid (boolean)

Output: Moves the file to the specified directory and/or creates an issue on GitHub.

5.5 CodeTracker Visualizer

To prevent ourselves from reinventing the wheel, we looked to utilize open-source browser

extension solutions that could help cut down on development time. We decided to pick Octotree

[52] for this purpose - it is an open-source browser extension that provides a pinnable tab on the left

side of the screen, which was ideal according to our design for the application. Upon this, we built

the user interface of CodeTracker Visualizer. Octotree internally uses Node.js as the framework of

choice. It uses a build system powered by Gulp.js [53] that is capable of building the source code

into a browser extension that can be deployed with minimal effort. We utilize the term browser

extension since we provide multi-browser support and can generate an extension for Google Chrome

(Chromium), Firefox, and Opera, all using the same source code. For the generation of graphs on

the side panel, we use D3.js [54], which is a JavaScript library that provides the visualization of

graphs and charts.

Below, we shall discuss the navigational mechanisms implemented to enable an automated code

change history browsing experience. As discussed in section 4.4, we gather all the inputs required

by CodeTracker as soon as a user makes a click. This information, after being passed to the API, is

stored in the TreeView class of CodeTracker Visualizer. When the user navigates to another page,

we serialize this data in the form of a JSON string and store it in the browser’s local storage with a

UUID attached to it. We pass this UUID around redirects as a query parameter and then repopulate

the graph and construct the graphical representation of the code change history. We also provide a

reset button that a user may utilize to clear all the cache stored by the application in the browser’s

51

local storage.

Figure 5.3: Large changes in the code difference view are not loaded by default on GitHub (project

JavaParser [8]).

When we navigate to a new page, the code element of interest is at an unknown location on the

page. Each file in a GitHub commit view is represented as a file container. The first thing we look

for upon navigation is the file container that houses the code element. Two scenarios may occur

here, the file container may either have been rendered and is present on the DOM, or it’s not. If the

file container is not present on the DOM, we emulate a scroll to the bottom of the page, as GitHub

lazy loads files that are not in the viewport of the user. We then let the file load onto the DOM and

once ready, we start looking for the line at which the code element is present.

When a file container loads, it may or may not have rendered the line of code on which the

code element is declared. When a large change occurs within a file, GitHub doesn’t load the code

difference for the entire file and requires the user to click a load button that then lazy loads the

code difference contents. Figure 5.3 shows this scenario. In such cases, we automate this click and

obtain the code difference contents. In other scenarios with a regular amount of changes, the line

containing the code element will be present in the code difference view if a change was made on or

around that line. In cases where a change was not made around the required line, the code difference

view hides these lines behind an expand-view button, as shown in Figure 5.4. This button expands a

few lines in the direction specified by the button with an arrow icon. An expand-all button at the top

of the file also exists, which makes the complete code difference view load. We automate a click

on this button when our desired line hasn’t been rendered. We chose to automate a click instead of

52

making the network call and appending the data onto the DOM ourselves to reduce the complexity

of operations performed by our application, as well as make the tool future-proof since any changes

in the implementation of the network call will automatically be handled by GitHub.

Figure 5.4: The expand-arrow buttons (marked in blue) and the expand-all button (marked in red)

are used to lazy load more changes in a GitHub code difference container (project JavaParser [8]).

In some cases where the file is not too large, the expand-all button is missing on the GitHub

user interface (Figure 5.6) and would require the user to click the expand-view arrow button in the

desired direction multiple times to find the required line. In this case, we construct an expand-all

button ourselves, attach the required network call onto it, and emulate a click as done in the above

case. Doing this eliminates the need for making repeated network calls to render the contents of the

entire file.

Figure 5.5: Renamed files have a minimized container on GitHub (project Checkstyle [9]).

As shown in Figure 5.5, in special cases where a file path has changed but no changes were

made within the file, GitHub shows a minimized container with the change in file path displayed

on it. In this case, we highlight the file container as there are no lines present here. In all other

cases, we then generate a Highlight ID, which is an internal ID GitHub uses within its URLs to

perform a highlight onto a line within a specific commit. Attaching this ID to the URL makes

the GitHub web application scroll down to the specific line and highlight the code element to the

53

user. Figure 5.7 shows the highlight marker used to mark the desired code element. We use this

approach over performing the scroll via our application since the URL generated this way can be

bookmarked or shared and will be replicated on other machines, even on those that do not have

CodeTracker Visualizer installed. By interacting directly with the DOM, we perform these actions

at remarkable speeds, which in turn makes the user experience seamless even though a multitude of

complex actions are taking place under the hood.

Figure 5.6: The expand-all button missing from the file container (project JavaParser [8]).

Figure 5.7: Code element highlighting on the GitHub GUI (project JavaParser [8]).

To ensure reliability across the development timeline, we implemented browser automation

tests, that would automatically load up the latest version of CodeTracker Visualizer and run it

through the tests that we designed compiling all the common use cases and navigational scenar-

ios. For example, one of the tests loads the extension, opens a predetermined commit page, selects

a code element, and initiates the tracking process for the code element. It then checks if the history

was properly generated and rendered onto the screen, after which, it runs through the commits and

verifies if the correct line is being highlighted for these commits. It obtains all the accurate change

history information from the oracle on the file system, which it uses to cross-check the activities

of the application. For the implementation of these tests, we made use of Jest [55] and Puppeteer

[56], two popular JavaScript testing libraries. Code Snippet 4 shows a basic test implementation

that checks if the extension loads and is visible to the user. The rest of the tests can be found in the

CodeTracker Visualizer GitHub repository [57].

54

5.6 BlockTracker using GumTree

When CodeTracker was built, its accuracy and precision were compared against CodeShovel

[2], the current state of the art at the time. Like CodeTracker, CodeShovel also supported the track-

ing of methods, which facilitated a fair and accurate comparison between the two tools. However, it

does not support the tracking of code blocks. In fact, as seen in Chapter 1 and 2, there are not many,

if any, tools that support the tracking of code blocks for modern Java. Since there are no direct com-

petitors, we compare our accuracy against the current state-of-the-art Abstract Syntax Tree (AST)

differencing tool, GumTree, which internally produces code statement mappings between two files.

Performing an evaluation at this level would emphasize the accuracy of the underlying statement

mapping generator we used, RefactoringMiner, against the current state-of-the-art GumTree [5],

overall strengthening the accuracy of BlockTracker as a whole.

To evaluate our approach for tracking blocks, and for verifying the mappings generated by

RefactoringMiner to be true, we built a version of BlockTracker that integrates with GumTree [5]

for obtaining statement mappings rather than RefactoringMiner. This way, we would have a working

version of CodeTracker’s BlockTracker, that can utilize GumTree’s statement mappings to track a

program element through its commit history and follow its evolution chain [58].

In this version of BlockTracker, referred to from here on out as the GumTree version, we apply

similar heuristics as we did with the RefactoringMiner version of BlockTracker, where we try to

avoid making calls to the statement-mapping tool when possible. The GumTree version supports all

the block change types supported by the RefactoringMiner version, as long as GumTree provides the

required accurate statement mappings. To detect changes on a block, we initially utilized GumTree

Actions, which indicate changes made on nodes within the file. However, we found that it produced

false positives for our use case, hence we utilized the string representation approach as discussed in

Section 4.2.

Since GumTree only accepts an input of two files, we iterate through the commits and pass

the file from the current commit r and the parent commit p onto GumTree to obtain the statement

mappings. To generate the statement mappings we utilize the ClassicGumTree matcher, as it is the

55

most complete implementation of the available matchers. GumTree defines a Tree class to repre-

sent all code elements in the source file, from a single block to the entire file itself. All GumTree

matchers take in two Tree objects as parameters and generate statement mappings between these

two trees. However, as discussed in Section 5.1, CodeTracker has individual classes for each code

element, and it uses objects of these classes to keep track of the evolution chain, perform heuristics,

and generate the change history graphs. These classes are integral to the design of CodeTracker, as

are Trees to GumTree. Hence, we wrote adapter methods that would convert a CodeTracker code

element object (i.e. Method and Block) to a GumTree code element object, i.e. Tree.

Once we generate the statement mappings, we find the appropriate mapping to the current block.

When a match is made between blocks of two different versions, we update the block signature and

continue the tracking process. Instances, where a file may have been renamed or moved to a different

package, are handled using JGit, which provides the new file path given an old one. We also handle

cases where the container method may have moved from one file (f1) to another (f2), but the file

still exists in both commits r and p. Our initial approach was to check for instances where no

matches were made for the container method to start looking for a method move. We would obtain,

from JGit, the list of files that were modified in the parent commit p, and try to provide files one

by one as input to GumTree until a match was made. However, we quickly realized that this was

not a fair comparison as GumTree always expects to have the right file provided by the user. For

example, looking at project Commons-Lang [59], in class DateUtils.java, tracking the block

if(R233) back to its introduction, GumTree fails to find a mapping in the parent commit of the file

due to the method modify(R227) having moved from another class, CalendarUtils.java.

Fujimoto et al. [60] presented the Staged Tree Matching technique to detect code elements being

moved across files. According to this technique, by comparing the abstract syntax trees (ASTs) of

different files in a project, we can detect structural similarities and infer code movements. We shall

discuss this in more detail further below. Along with the study, they developed an extension tool for

GumTree called Graftast [60], which aimed to allow statement matching between multiple files. As

it is designed for use on a single version at a time, the Graftast API requires two directories of files

amongst which it can generate statement mappings. Using the API as is to generate statement map-

pings for a single code element against an entire repository for multiple versions caused a significant

56

increase in the observed runtime. As discussed in Section 2.2, CodeTracker directly reads the Git

repository to obtain the source code and cut down on processing time. To perform a fair comparison

of execution time between the RefactoringMiner and GumTree versions of BlockTracker, similar

to RefactoringMiner [3, 4] and CodeTracker, we would have to extend the Graftast APIs to read

files across commits from the Git repository. We wanted to utilize an approach that could leverage

RefactoringMiner’s low execution time and strong accuracy on MOVE METHOD refactorings to find

the file where the method moved, combined with the staged tree matching technique that can help

produce the most accurate statement mappings from GumTree across more than one file [60].

Going ahead with this combination, we utilized the MOVE METHOD and CLASS SPLIT refac-

toring detection provided by RefactoringMiner to obtain the right file to compare with, and im-

mediately noticed an improvement in accuracy. RefactoringMiner is a state-of-the-art refactoring

detection tool with a precision and recall of 99.6% and 94% respectively [4]. Hence, the refactoring

information it provides can be considered to be accurate.

Apart from providing the right file, Similar to Fujimoto et al. [60], we adopt a two-round staged

tree matching methodology to help assist GumTree. In their study, Fujimoto et al. showed that

utilizing this technique produced much more accurate results when generating statement mappings

for a code element in a set of multiple files with GumTree. When a method moves from file f1r in

commit r to f2p in commit p, we apply the first stage of matching. Here, we make GumTree match

f1r to f1p and pick out the unmapped nodes in f1r . For the second stage of matching, we make a

mapping between the unmapped nodes of f1r to f2p , to ensure that only the unmapped nodes have

the potential to make a match. This methodology is only applicable in cases where f1p exists, i.e.,

the method was moved from one file (f1r) to another (f2p) and the former file (f1p) remains in the

parent commit p.

In instances where a match for the block was not found in the parent version after generating the

statement mappings, we try to match the container method of the block. If a match for this method

is found in the parent version, we can safely declare that the block was Introduced in the current

commit, since the block does not exist in the container method in the parent version i.e. Mp, as

described in Step 5 of Section 4.2. If the method does not have a match either, then we know that

both the method and the block were Introduced in the current commit, and we append the change

57

history to indicate this. After appending the change history with the respective change made, we

convert the GumTree TREE object back to a CodeTracker BLOCK object and continue the tracking

process.

Apart from providing it with the right file path, to further assist GumTree, we attempted to

match the container method in commit r (Mr) with the file from its parent commit p (f1p), instead

of matching the entire files from both commits (f1r , f1p), which would potentially speed up the

processing time needed to make a match for Mr to Mp. However, with a small subset of our oracle

containing ten blocks from the repository Checkstyle, we found that this led to a decrease in the

accuracy of the mappings returned by GumTree when compared to using the entire file to generate

mappings on the same data sample. We believe this is because GumTree uses information from

Mr’s sibling nodes to make more informed mappings. Specifically, in cases where statements are

duplicated, GumTree loses precision in computing tiebreakers for multiple candidates, as it lacks

the additional information to properly compute tiebreakers [5]. We observed a drop of -2.23% and

-1.49% in precision and recall on the change level, respectively. On the commit level, we recorded

a drop of -1.12% in precision, however, the recall remained the same. We did not test it with the

entire oracle since the drop in accuracy and recall will only compound to become larger over more

instances.

We also experimented with alternate matchers, namely the GumTreeSimple matcher, and com-

puted its accuracy on the data sample mentioned above. We found that the accuracy again dropped

when compared to using the ClassicGumTree matcher. On the change level, we observed a drop of

-5.83% and -2.98% in precision and recall respectively. On the commit level, we saw a -3.17% drop

in precision, while the recall remained the same.

Overall, we found that the accuracy of GumTree’s statement mappings was significantly lesser

compared to RefactoringMiner, and naturally, the block history generated by this version of Block-

Tracker was highly inaccurate. We shall take an in-depth look at the difference in performance in

Chapter 6.

58

Listing 4 GUI Functionality test implementation using Jest and Puppeteer

1 const puppeteer = require('puppeteer');

2

3 let URL = 'https://github.com/checkstyle/checkstyle/commit/746a9d691';

4

5 describe('Basic functionality', () => {

6

7 beforeAll(async () => {

8 await page.goto(`${URL}`);

9

10 let loadExtension = async () => {

11 const pathToExtension = require('path')

12 .join(__dirname, '../tmp/chrome');

13 const browser = await puppeteer.launch({

14 headless: 'chrome',

15 args: [

16 `--disable-extensions-except=${pathToExtension}`,

17 `--load-extension=${pathToExtension}`,

18],

19 });

20 const backgroundPageTarget = await browser.waitForTarget(

21 (target) => target.type() === 'background_page'

22);

23 const backgroundPage = await backgroundPageTarget.page();

24 await browser.close();

25 }

26 await loadExtension();

27 });

28

29 it('should load the sidebar', async () => {

30 await expect(page.content()).resolves.toContain('octotree');

31 });

32

33 it('should pin the sidebar', async () => {

34 let pinButton = await page.$('body > nav >

35 div.octotree-main-icons > a.octotree-pin')

36 await pinButton.evaluate((b) => b.click());

37 await page.waitForTimeout(500);

38 await expect(page.content()).resolves.toContain('octotree-pinned');

39 });

40 });

59

Chapter 6

Evaluation

This chapter goes over our contributions made to the oracle containing code change history for

various code element types in Section 6.1. In Section 6.2, we evaluate the performance and accuracy

of BlockTracker, while in Section 6.3, we do the same for the GumTree version of BlockTracker,

and perform a direct comparison of it against the RefactoringMiner version in terms of precision and

recall. Finally, in Section 6.4, we outline the execution time for both versions of BlockTracker and

also dive into the caching mechanism we implemented for the GumTree version of BlockTracker to

have a fair comparison of execution time.

6.1 Oracle Contributions

The oracle made available with CodeTracker by Jodavi and Tsantalis [2] contains 2,657 dif-

ferent files containing accurate code change history. This oracle has been constructed as an ex-

tension to the oracle provided by Grund et al. containing the change history of 200 methods over

20 open-source project repositories. Of these 200 methods, Jodavi and Tsantalis extended it to

include 1,112 attributes and 1,345 variables. The approach followed to extend this oracle was

semi-automated. Since the method change history was verified as being accurate by two differ-

ent research groups, we can consider it to be a reliable source of truth. Using this as a baseline,

Jodavi and Tsantalis [1] collected all the variables declared in these methods and performed a back-

ward tracking process to generate code change histories for variables using CodeTracker. Once

60

these changes were generated, they checked to see if the changes were a subset of the changes

made on the body of the respective container method, and since the variable was contained inside

the method, it was logically deemed to be accurate change history [1]. A similar approach was

also implemented for all attributes declared in the type declaration of a particular method, how-

ever, the same conditions of having the change history be a subset do not hold in this case, as

an attribute can be used independently of any method declared in its container type declaration.

We fix this by only including attributes that were referenced within the respective method and re-

moving the change histories for attributes that were not. Apart from this, we also discovered an

error with the Guava graph implementation utilized within CodeTracker. The APIs being used,

ValueGraph.predecessors(N node) and ValueGraph.successors(N node), are

marked by the developers as being unstable and caused valid changes that were being discovered

by the tool to be omitted in the change history. For example, in project JavaParser, in commit

37f93be, and file SourceFileInfoExtractor.java, attribute ko on line 37 was moved

over here from file ProjectResolver.java. This change is tracked in the oracle presented by

Jodavi and Tsantalis [1], however, another change was also made here, which was missing in the or-

acle. The modifier for the attribute changed, and more specifically, the static keyword was removed.

As shown in Figure 6.1, this change, although it was tracked by CodeTracker, was not included in

the change history graph being returned due to the unstable nature of the API being used.

Figure 6.1: Unrecorded changes are now added to the oracle.

61

We fixed this issue in many such cases and provided an updated version of the entire oracle

for methods, variables, and attributes. We also perform enrichment of the oracle with additional

information on a change that occurred in a commit, where applicable (Figure 6.2). For example,

for the method oracle, we added two new types of possible changes, METHOD SPLIT and METHOD

MERGE. This is possible since RefactoringMiner now supports multi-mappings, and can detect

splits and merges of code elements. We also manually verified the accuracy of each oracle file using

the oracle validation tool mentioned in Section 4.5 and made corrections to a few discrepancies we

found. A complete breakdown of the changes is shown in Tables 6.1 (Method oracle), 6.2 (Variable

oracle), 6.3 (Attribute oracle).

Figure 6.2: Enrichment of the oracle by adding extra information about the change made.

Apart from this, we also extend the oracle to include the code change history of control-flow

code blocks. We present a code block change history oracle including 1280 different code blocks

that were referenced within the 200 methods picked by Grund et al. [2]. We adopt the semi-

automated oracle generation approach detailed above and match the change history as a subset of its

container method. The idea employed here is that when a block contained within a method matches

its accurate change history exactly to its introduction, we can deduce that the block was introduced

alongside the method and underwent changes that have already been verified. We can hence safely

declare the change history for this case as being accurate. In cases where the change history is not an

exact subset, we manually verified the oracle using the oracle validation tool mentioned in Section

4.5 and made corrections to the block oracle where deemed necessary.

After all of our validations, we generated the change history of all the blocks with GumTree

BlockTracker (discussed in Section 5.6) and performed a one-to-one comparison with our oracle.

Upon finding a mismatch, we utilized Oracle Validator to manually verify both versions of the code

change history and corrected our oracle in cases where required. This helped us correct instances

where the code change history may seem to be accurate but has a rather different change being

62

performed on it upon closer inspection. For example, a block that may seem to have been introduced

in a commit may have undergone a drastic change which RefactoringMiner may not match as equal.

More specifically, if a block with a minimal body and expression undergoes a major change in both

its expression and body, RefactoringMiner may fail to map these blocks, since it performs bottom-

up matching [3, 4] as proposed by Fluri et al. [61]. However, since GumTree uses a different

method of statement mapping generation, more specifically a tree matching algorithm [5], it may

find success in cases where RefactoringMiner could not. There were a small number of cases where

such changes as described above took place and we have recorded and corrected all instances.

Figure 6.3: Block oracle: number of instances per change type

Tables 6.1 (Method oracle), 6.2 (Variable oracle), 6.3 (Attribute oracle) provide a complete

breakdown of the change type instances in the oracle before and after our changes. The changes are

grouped by being common with the original oracle (C columns), removed from the original oracle

(R columns), and new changes added to the original oracle (N columns) for both training and testing

sets.

Figure 6.3 and Table 6.4 detail the number of instances per change kind for control flow code

blocks. Table 6.5 details the number of instances per block type in the block oracle.

Table 6.6 and Figure 6.4 describe the number of blocks per method processed.

63

Table 6.1: Updates in the method oracle created by Jodavi et al. [1]

Change Type

Training set Testing set

C R N C R N

Body Change 2297 8 10 463 22 23

Documentation Change 437 2 4 92 1 2

Container Change (File Move) 264 2 3 183 4 7

Parameter Change 221 5 8 72 4 5

Introduced 100 0 2 92 8 8

Return Type Change 48 3 0 16 0 0

Annotation Change 42 0 0 23 1 1

Modifier Change 46 0 1 17 0 0

Exception Change 40 0 0 7 0 0

Method Move 21 0 1 12 5 2

Rename 18 3 1 18 0 0

Method Merge - - 6 - - 0

Method Split - - 2 - - 0

Total 3534 23 38 995 45 48

C: common R: removed N: new

Overall, the block oracle has undergone multiple rounds of validations by multiple researchers

from our lab and compared against another state-of-the-art statement mapping generation tool, and

can hence be considered reliable. All change history oracles (method, variable, field, and block) are

made available on our GitHub repository [6] to enable the replication of our experiments and enable

the possibility of future research on code element tracking techniques.

Table 6.6: Number of blocks per method included in the oracle.

Method Name Number of Blocks

checkstyle-Checker-fireErrors 4

checkstyle-Checker-process 2

checkstyle-CommonUtils-createPattern 2

checkstyle-FinalLocalVariableCheck-visitToken 6

checkstyle-JavadocMethodCheck-checkThrowsTags 6

checkstyle-Main-main 9

checkstyle-TreeWalker-processFiltered 4

commons-io-DemuxOutputStream-flush 1

commons-io-EndianUtils-read 1

commons-io-FilenameUtils-wildcardMatch 15

commons-io-IOUtils-contentEqualsIgnoreEOL 2

commons-io-ProxyWriter-write 3

commons-io-Tailer-run 21

64

commons-io-XmlStreamReader-doHttpStream 3

commons-lang-DateUtils-modify 23

commons-lang-DurationFormatUtils-formatPeriod 19

commons-lang-EqualsBuilder-reflectionAppend 12

commons-lang-FastDatePrinter-parsePattern 12

commons-lang-LocaleUtils-toLocale 10

commons-lang-NumberUtils-createNumber 39

commons-lang-NumberUtils-isCreatable 25

commons-lang-RandomStringUtils-random 14

commons-lang-StrSubstitutor-substitute 17

elasticsearch-BulkRequest-add 1

elasticsearch-ESFileStore-getUnallocatedSpace 1

elasticsearch-IndicesSegmentResponse-addCustomXContentFields 12

elasticsearch-IndicesSegmentResponse-toXContent 2

elasticsearch-IndicesService-verifyIndexMetadata 3

elasticsearch-NodesFaultDetection-handleTransportDisconnect 4

elasticsearch-RestTable-expandHeadersFromRequest 7

flink-CheckpointCoordinator-receiveAcknowledgeMessage 9

flink-ContinuousFileMonitoringFunction-close 3

flink-DispatcherRestEndpoint-initializeHandlers 4

flink-FileSystem-getUnguardedFileSystem 15

flink-KryoSerializer-checkKryoInitialized 3

flink-LocatableInputSplitAssigner-getNextInputSplit 24

flink-PojoSerializer-deserialize 13

flink-RemoteStreamEnvironment-executeRemotely 10

hadoop-ClientRMService-renewDelegationToken 3

hadoop-ConverterUtils-convertFromYarn 1

hadoop-FiCaSchedulerNode-unreserveResource 2

hadoop-FifoScheduler-allocate 5

hadoop-FifoScheduler-getAppsInQueue 2

hadoop-LeveldbConfigurationStore-retrieve 2

hadoop-NodeReportPBImpl-setCapability 1

hadoop-RMServerUtils-normalizeAndValidateRequests 3

hadoop-Sch(...)mpt-getRunningAggregateAppResourceUsage 3

hibernate-orm-AnnotationBinder-bindClass 28

hibernate-orm-CollectionBinder-bind 18

hibernate-orm-DefaultRefreshEventListener-onRefresh 19

hibernate-orm-QueryBinder-bindNativeQuery 11

hibernate-orm-QueryBinder-bindQuery 7

hibernate-orm-RevisionInfoConfiguration-configure 12

hibernate-orm-SimpleValue-buildAttributeConverterTypeAdapter 4

hibernate-search-ArrayBridge-indexNotNullArray 1

hibernate-search-ClassLoaderHelper-getNoArgConstructor 3

hibernate-search-new TwoPhaseIterator-matches 2

hibernate-search-NumericFieldUtils-createNumericRangeQuery 13

65

hibernate-search-TokenizerChain-createComponents 1

intellij-community-Art(...)mpl-getFileToArtifactsMap 1

intellij-community-CompilerManagerImpl-removeCompiler 1

intellij-community-ExceptionBreakpoint-getThisObject 1

intellij-community-Tra(...)tor-isInContentOfOpenedProject 3

javaparser-Difference-apply 5

javaparser-Difference-applyRemovedDiffElement 13

javaparser-JavaParserFacade-convertToUsage 16

javaparser-JavaParserFacade-getTypeConcrete 1

javaparser-LambdaExprContext-solveSymbolAsValue 15

javaparser-MethodCallExprContext-solveMethod 2

javaparser-MethodCallExprContext-solveMethodAsUsage 7

javaparser-MethodResolutionLogic-isApplicable 18

javaparser-SourceFileInfoExtractor-solve 7

jetty.project-AnnotationIntrospector-introspect 6

jetty.project-FragmentDescriptor-processAfters 6

jetty.project-HttpTransportOverHTTP2-push 3

jetty.project-HttpTransportOverHTTP2-send 15

jetty.project-JsrSession-addMessageHandler 4

jetty.project-Module-equals 4

jetty.project-ServletHolder-doStart 19

jetty.project-StdErrLog-escape 5

jgit-CommitCommand-call 27

jgit-IndexDiff-diff 40

jgit-MergeCommand-call 23

jgit-PackWriter-findObjectsToPack 49

jgit-PackWriter-writePack 15

jgit-PullCommand-call 22

jgit-RebaseCommand-call 24

jgit-RepoCommand-call 34

jgit-UploadPack-sendPack 30

junit4-BlockJUnit4ClassRunner-describeChild 1

junit4-BlockJUnit4ClassRunner-methodBlock 2

junit4-BlockJUnit4ClassRunner-runChild 1

junit4-BlockJUnit4ClassRunner-withPotentialTimeout 1

junit4-ParentRunner-applyValidators 2

junit4-RunnersFactory-createRunners 1

junit4-RunnersFactory-createRunnersForParameters 3

junit5-ClassTestDescriptor-invokeBeforeAllMethods 2

junit5-DefaultLauncher-discoverRoot 2

junit5-NodeTestTask-execute 3

junit5-TestMethodTestDescriptor-execute 3

lucene-solr-ConcurrentMergeScheduler-sync 10

lucene-solr-ConcurrentMergeScheduler-updateMergeThreads 18

lucene-solr-ConstantScoreQuery-rewrite 3

66

lucene-solr-Field-tokenStream 9

lucene-solr-IndexWriter-shutdown 7

lucene-solr-IndexWriter-writeSomeDocValuesUpdates 13

lucene-solr-MemoryIndex-keywordTokenStream 1

lucene-solr-MemoryIndex-storeDocValues 8

lucene-solr-QueryParserBase-addClause 10

lucene-solr-QueryParserBase-newRangeQuery 2

mockito-InvocationsFinder-findPreviousVerifiedInOrder 1

mockito-MatchersBinder-bindMatchers 1

mockito-PluginLoader-loadPlugin 5

mockito-ReturnsArgumentAt-answer 1

mockito-StringUtil-join 2

mockito-VerificationStartedNotifier-notifyVerificationStarted 2

okhttp-AsyncCall-execute 5

okhttp-ConnectionPool-get 2

okhttp-Http2Codec-writeRequestHeaders 1

okhttp-Http2Connection-newStream 8

okhttp-Http2Connection-pushStream 1

okhttp-JavaNetAuthenticator-authenticate 4

okhttp-OkHttpURLConnection-getResponse 15

okhttp-ReaderRunnable-headers 7

okhttp-RealConnection-connect 15

pmd-ClassTypeResolver-visit 7

pmd-CommentUtil-javadocContentAfter 5

pmd-FormalComment-findJavadocs 2

pmd-JUnitTestsShouldIncludeAssertRule-visit 1

pmd-SourceFileScope-getSubTypes 3

spring-boot-ConfigurationPropertiesBinder-getBindHandler 3

spring-boot-DefaultErrorAttributes-addErrorMessage 2

spring-boot-ErrorPageRegistrarBeanPostProcessor-getRegistrars 1

spring-boot-JsonParserFactory-getJsonParser 3

spring-boot-Ser(...)ext-prepareWebApplicationContext 6

spring-boot-SpringApplication-getBeanDefinitionRegistry 2

spring-boot-StaticResourceJars-addUrlConnection 1

spring-boot-UndertowWebServer-getPortFromChannel 1

spring-framework-Abs(...)sor-writeWithMessageConverters 26

spring-framework-AbstractNestablePropertyAccessor-setPropertyValue 1

spring-framework-Conf(...)der-loadBeanDefinitionsForBeanMethod 13

spring-framework-Conf(...)ser-doProcessConfigurationClass 12

spring-framework-Conf(...)sor-processConfigBeanDefinitions 18

spring-framework-ConstructorResolver-instantiateUsingFactoryMethod 39

spring-framework-GenericConversionService-getConverter 3

spring-framework-ServletHttpHandlerAdapter-service 5

spring-framework-TypeConverterDelegate-convertIfNecessary 36

Total 1280

67

Table 6.2: Updates in the variable oracle created by Jodavi et al. [1]

Change Type

Training set Testing set

C R N C R N

Introduced 835 69 189 294 30 91

Type Change 219 19 52 62 0 12

Modifier Change 101 14 32 50 0 4

Rename 133 7 28 20 1 9

Annotation Change 13 0 0 4 0 0

Total 1301 109 301 430 31 116

C: common R: removed N: new

Table 6.3: Updates in the attribute oracle created by Jodavi et al. [1]

Change Type

Training set Testing set

C R N C R N

Container Change 434 8 23 52 5 89

Introduced 340 14 18 42 9 91

Type Change 96 1 4 13 2 22

Rename 64 4 7 4 1 10

Modifier Change 35 0 9 6 3 34

Access Modifier Change 36 1 2 0 0 33

Field Move 17 1 9 5 0 21

Annotation Change 2 0 0 0 0 0

Total 1024 29 72 122 20 300

C: common R: removed N: new

6.2 BlockTracker Accuracy

To obtain block-related refactorings, We first instantiate the methods containing the desired

block from both the child and parent commit. We then retrieve all the refactorings on these two

methods from RefactoringMiner and then infer these refactorings onto the blocks in their bodies

(e.g., a MOVE METHOD refactoring also moves the block it contains). Likewise, if the methods

have no changes, then the blocks inside them also have no changes.

In cases where a change has occurred in the method body, we obtain the block’s string repre-

sentation and statement mappings from RefactoringMiner and use this information to deduce the

various changes that have occurred (e.g., EXPRESSION CHANGE, BODY CHANGE) between both

versions. Therefore, the FPs are due to incorrect statement mappings, while the FNs are due to

68

Table 6.4: Number of instances per change type for blocks.

Change Type Training set Testing set

Body Change 3294 526

Introduced 964 316

Expression Change 612 120

Catch Block Change 139 50

Finally Block Change 23 1

Block Split 14 3

Catch Block Added 7 7

Finally Block Added 4 3

Catch Block Removed 2 3

Finally Block Removed 4 1

Replace Pipeline With Loop 1 0

Replace Loop With Pipeline 1 0

Total 5065 1030

RefactoringMiner’s inability to match some statement pairs.

For example, in project Checkstyle [10] (Figure 6.5), block if(L219) is mapped to if(R213)

by RefactoringMiner, causing an incorrect fork in the change history of the block, making the rest

of the history inaccurate.

Looking at project Apache Flink [11] (Figure 6.6), block if(L354) is mapped to if(R374),

which in this case is incorrect. Block if(R374) was actually introduced in this commit, but

RefactoringMiner is unable to deduce this. This is another case that affects our overall accuracy.

In project Checkstyle [12] (Figure 6.7), block if(R618) is erroneously declared as INTRO-

DUCED, while it should have been matched to block if(L610) in the parent commit. The expres-

sion and body of the block both change in this commit. While the expression change is reasonable,

the body has changed completely, making RefactoringMiner miss this particular mapping.

Another example in project Checkstyle [13] (Figure 6.8), block if(L165)moves from method

processCommandLine to method main, now being block if(R113). A mapping between

these two blocks is not made by RefactoringMiner, causing the history to abruptly end in this com-

mit.

In project Jetty.Project [14] (Figure 6.9), block if(L309) in the parent commit is split into

if(R301) and if(R319), the condition in the expression is inverted, and the body of the if

69

Figure 6.4: Violin plot showing the number of blocks per method.

block is moved to the else block. In this case, block if(R319) is incorrectly declared as IN-

TRODUCED, when it should instead be matched with block if(L309) in the parent commit. This

is due to RefactoringMiner not generating a mapping between the two code blocks.

Despite the large number of changes, RefactoringMiner is theoretically able to correctly identify

the scenario and provide accurate mappings, however, in this case since the block is split into two

identical clones with a plethora of modifications from the original, it fails to recognize the changes.

Although this case was inaccurate, the silver lining here is that the other block from this split,

if(R301), is correctly matched to if(L309) and can be traced back to its introduction.

The problems we discussed here have been created into issues on RefactoringMiner’s GitHub

repository, and as the fixes for these issues come in, the accuracy of our tool shall also improve.

Table 6.7 contains the computed precision and recall of CodeTracker while tracking code blocks.

We report these values at two levels, the first being the commit level (i.e., finding the commits in

70

Figure 6.5: Incorrect mapping (False Positive), project Checkstyle. [10]

Figure 6.6: Incorrect mapping (False Positive), project Apache Flink. [11]

Figure 6.7: Missed mapping (False Negative), project Checkstyle. [12]

71

Figure 6.8: Missed mapping (False Negative), project Checkstyle. [13]

Figure 6.9: Missed mapping (False Negative), project Jetty.Project. [14]

72

Table 6.5: Number of instances per block type included in the oracle.

Block Type Number of Instances

If Statement 929

Enhanced For Statement 87

Try Statement 81

Catch Clause 80

While Statement 34

Synchronized Statement 23

For Statement 18

Finally Block 15

Switch Statement 10

Do Statement 3

Total 1280

Table 6.7: Block tracking precision/recall for CodeTracker.

Dataset Level TP FP FN Precision Recall

Training
Commit 4590 68 106 98.54 97.74
Change 4890 115 159 97.70 96.85

Testing
Commit 901 37 28 96.06 96.99
Change 952 63 49 93.79 95.10

Overall
Commit 5491 105 134 98.12 97.62
Change 5842 178 208 97.04 96.56

which a code block changed), and the change level (i.e., finding the kinds of changes that occurred in

the commits in which a code block changed). In section 6.3, we shall look into how our performance

compares to GumTree [5] in terms of statement mapping accuracy.

6.3 BlockTracker using GumTree Accuracy

As discussed in section 5.6, we developed a version of BlockTracker that uses GumTree as a

statement mapping provider instead of RefactoringMiner. We did this to compare the accuracy of

our solution versus the current state-of-the-art in statement mapping and code difference detection.

We shall now compare the performance of both tools and then discuss our findings.

73

Table 6.8: Block tracking precision/recall at change level (GumTree comparison)

Dataset Tool TP FP FN Precision Recall

Training
GumTree 3901 525 1148 88.14 77.26
RefactoringMiner 4890 115 159 97.70 96.85

Testing
GumTree 841 138 160 85.90 84.02
RefactoringMiner 952 63 49 93.79 95.10

Overall
GumTree 4742 663 1308 87.73 78.38
RefactoringMiner 5842 178 208 97.04 96.56

Table 6.8 and 6.9 show the commit and change level accuracy of block tracking with Code-

Tracker using RefactoringMiner versus GumTree. From our experiments, it is evident that Refac-

toringMiner provided significantly more accurate statement mappings when compared to GumTree.

Looking at the true-positive to false-positive ratio, we can infer that GumTree misses more cases

than makes an incorrect match. This is due to the fact that a single incorrect mapping will cause the

rest of the evolution chain to be incorrect.

Table 6.9: Block tracking precision/recall at commit level (GumTree comparison)

Dataset Tool TP FP FN Precision Recall

Training
GumTree 3838 255 858 93.77 81.73
RefactoringMiner 4590 68 106 98.54 97.74

Testing
GumTree 849 64 80 92.99 91.39
RefactoringMiner 901 37 28 96.06 96.99

Overall
GumTree 4687 319 938 93.63 83.32
RefactoringMiner 5491 105 134 98.12 97.62

One of the prominent reasons for GumTree’s relatively poor performance is due to the oc-

currence of inaccurate statement mappings. For example, looking at Commons-Lang [62], in file

EqualsBuilder.java, if(R533) is introduced in this commit. However, GumTree falsely

matches this block to if(L503) in its parent commit. Errors of this kind cause the code change

history to have irrelevant changes, causing GumTree BlockTracker’s overall precision to go down.

Our observations show that GumTree inherently does not map one type of code block to another.

This causes it to miss a lot of potential mappings that it could’ve made in cases where the type of the

block was changed and ultimately makes a large dip in the accuracy of its mappings. For example,

74

in Apache’s project, Commons-Lang [63], in file DurationFormatUtils.java, if(L319)

is modified to while(R319) to be able to replicate the action in its body more than once. While

Refactoring Miner accurately maps these two code elements, GumTree does not. In this particular

instance, due to not making the match, GumTree’s version of BlockTracker reports the while-block

as being INTRODUCED, causing it to miss out on six other changes that occur on the block before

it is actually introduced. Instances of such kind cause a major drop in the recall presented in Table

6.8 and 6.9 for GumTree BlockTracker.

Overall, RefactoringMiner BlockTracker achieves higher precision with +9.31% and +18.18%

in recall on the change level. For the commit level, we see a similar greater number in performance

with a +4.49% increment in precision and +14.30% in recall.

6.4 Execution Time

Figure 6.10: Violin plot showing the execution time of RMiner versus GumTree BlockTracker

Figure 6.10 shows violin plots [64] depicting the execution time of CodeTracker for tracking the

75

entire change history of each block in the oracle. The y-axis is on a logarithmic scale and the units

are all in milliseconds. Each tool was executed separately on the same machine with the following

specifications: AMD Ryzen 7 5800H CPU @ 3.20GHz × 8, 16 GB 3200 MHz DDR4, 512 GB

PCIe SSD, Windows 11 Home operating system, and Java 11.0.15 x64 with a maximum of 8GB

Java heap memory (i.e., -Xmx8g). All 20 project repositories used in the oracle were locally cloned

before running the tool.

We measure execution time as the time taken by the tool for tracking a block to its introduction

in its commit history. We also include the time taken by RefactoringMiner to parse the code and

generate refactoring information and statement mappings. From our experiments, CodeTracker

processes the entire commit change history of a block in an overall median of 2622.50 ms and

an overall average of 4641.57 ms. These fast execution times are achieved due to the heuristics

implemented by Jodavi and Tsantalis [1] for RefactoringMiner that allow for granular analysis of the

source code as and when required, with many instances not requiring the processing of refactoring

information at all.

We shall now discuss the execution time of GumTree BlockTracker and compare it to Refac-

toringMiner BlockTracker. As described in Section 5.6, we provide the MOVE METHOD and

SPLIT CLASS refactoring information to GumTree BlockTracker via RefactoringMiner to evalu-

ate GumTree’s statement mapping accuracy most fairly. However, computing possible refactorings

for each commit alongside generating statement mappings with GumTree becomes computationally

expensive, and results in a significant increase in the time required to process a commit. For this

experiment, we decided to adopt a memoized approach to obtain refactoring information and point

GumTree to the right file in each commit.

The memoization approach is as follows: we integrated RefactoringMiner into GumTree Block-

Tracker to check for a potential MOVE METHOD or SPLIT CLASS refactoring for each commit using

the class GitHistoryRefactoringMiner, which provides a method detectAtCommit.

This method takes in as parameters a repository, commit ID, and an anonymous class extending the

RefactoringHandler abstract class. Overriding the handle method in this class, we obtain the

commit ID and the list of refactorings occurring within the commit. Here, we note all the MOVE

76

OPERATION refactoring and SPLIT CLASS refactoring occurrences. In commits where such a refac-

toring occurs, we obtain the new file path of where the method was moved to and store it in a cache

in memory, with a unique key for the cache entry based on the method signature and commit ID.

After processing all the blocks from our oracle, we then serialize this cache into a JSON file. After

the cache file has been created, we no longer interact with RefactoringMiner and instead deserialize

the cache before the execution of the oracle and make hits to it to discover method moves and their

new file paths in constant time.

It is only after this that we measured the execution time of GumTree BlockTracker and compared

it to RefactoringMiner BlockTracker. Hence, we can also inadvertently make a comparison of the

execution time of RefactoringMiner versus GumTree with respect to statement mapping generation.

From Figure 6.10, we can make a clear observation that RefactoringMiner-based BlockTracker

has an average execution time of 4641.57 ms, making it x4.25 times faster than GumTree-based

BlockTracker, which has an average execution time of 19729.44 ms. Moreover, RefactoringMiner-

based BlockTracker has a median execution time of 2622.50 ms, making it x3.65 times faster than

GumTree-based BlockTracker, which has a median execution time of 9577.00 ms. Both findings

confirm that RefactoringMiner-based BlockTracker has a considerably faster execution time (3-4

times faster) over GumTree-based BlockTracker.

77

Chapter 7

Limitations and Threats to Validity

In this chapter, we discuss the limitations of our approach in section 7.1. We shall then look into

the internal validity threats in section 7.2 and devote section 7.3 to external validity threats. Finally,

we discuss the verifiability of our tools and experiments in section 7.4.

7.1 Limitations

As highlighted by Jodavi and Tsantalis [1], a major limitation of CodeTracker is the fact that, in

its current state, it can only support Java code bases. Since the limitation stems from the dependency

of CodeTracker utilizing RefactoringMiner for static code analysis, CodeTracker will not be able to

support additional languages until RefactoringMiner does the same.

A limitation of CodeTracker Visualizer is that it is built upon the GitHub user interface, and

although easily extendable, it currently does not support code change history tracking for other

online version control platforms like GitLab and BitBucket.

7.2 Internal Validity

The utilization of a self-made oracle for our evaluations could be a major threat to our inter-

nal validity. To minimize the potential of this threat, we utilized the updated and extended oracle

presented by Jodavi and Tsantalis [1], which was verified for two person-months. This oracle was

78

originally built by Grund et al. [2] and underwent 100 hours of manual validation as well. The val-

idations performed by two independent research groups make this oracle extremely reliable. Build-

ing upon this, we extended the oracle to include enhanced change history information for existing

oracle instances of methods, attributes, and variables. We also discovered and fixed discrepancies

found in the oracle, as discussed in Section 6.1. We provide an extended version of this oracle

with the introduction of the change histories of 1280 code blocks, building upon the method history

oracle, which can be assumed as being completely accurate.

We have also utilized an oracle validation tool, as discussed in Section 4.5, to manually verify

each commit change history indicated in the entire oracle (methods, attributes, variables, blocks).

Since no other oracles for block change history exist, we compared the block oracle against state-

ment mappings generated by GumTree, to have a secondary source of truth for our oracle’s validity.

This process has been discussed in section 6.3. Overall, We dedicated three person-months to per-

form multiple rounds of these validations.

7.3 External Validity

Jodavi and Tsantalis [1] showed that CodeTracker performs with an overall precision and recall

of 99.97% and 99.97% on the oracle presented by them.

To build the block oracle, we utilized this base oracle as it is considered as being highly reliable.

To speed up and minimize the overall need for validation and adopt the semi-automated approach

discussed in Section 6.1, the use of this oracle was crucial. However, since CodeTracker was built on

this oracle, its design is familiar with the patterns that occur in these repositories and most of them

have already been accounted for. Utilizing this tool to track a code element in a repository not seen

before may produce inaccurate results, affecting our generalizability. However, before exploring

new repositories and adopting them to manually generate an oracle, we wanted to utilize a trusted

oracle to first focus on building a resilient base infrastructure for BlockTracker and verifying the

accuracy of code block statement mappings being returned by RefactoringMiner.

79

7.4 Verifiability

We make publicly available the source code [6] for the extended version of CodeTracker with

block tracking capabilities along with the extended oracle with block change history. We also make

available the source code for CodeTracker Visualizer [57] and CodeTracker REST API [47]. Fi-

nally, our implementation of GumTree BlockTracker is also present in the CodeTracker repository

in its branch [58]. We hope our contributions will improve the efficiency of code reviews and en-

able seamless access to the powerful APIs provided by CodeTracker and assist future research and

development on code element history tracking.

80

Chapter 8

Conclusion and Future Work

CodeTracker provides a streamlined approach to the tracking of code element change history

with reliable accuracy. It can track method, attribute, and variable change histories to their intro-

duction commits. CodeTracker provides superior tracking abilities to line-based history detection

tools due to its refactoring-aware nature. We present the addition of control flow code block track-

ing to CodeTracker, to allow for further fine-grained tracking of code elements. Along with that,

we present the addition of a block oracle that details code change histories for all blocks present in

the Grund et al. [2] method oracle’s start methods. We also developed CodeTracker Visualizer, a

code change history visualization and navigation tool that enhances the code review process while

allowing for easy access to CodeTracker’s APIs. It does so by visually overlaying change history

information onto the GitHub user interface. We also built a fork of this tool to aid in the process

of oracle validation. Finally, we perform a direct comparison of statement mapping accuracy for

RefactoringMiner versus GumTree by building two versions of BlockTracker that obtain statement

mappings from each tool respectively.

In summary, the main conclusions and lessons learned are as follows:

(1) CodeTracker has enhanced granularity by being extended to track code blocks and performs

with high accuracy with a precision of 98.12% and recall of 97.62%.

(2) CodeTracker Visualizer enables code element tracking from the browser and visually presents

the changes that occurred on a code element with direct navigational capabilities to each

81

specific commit, significantly speeding up the time required to track a code element’s change

history. It also provides an extended version that can aid in oracle validations.

(3) We extend the oracle presented by Jodavi and Tsantalis [1] to include 1280 new instances of

blocks and their change histories.

(4) RefactoringMiner provides statement mappings x4.25 times faster than GumTree. In terms

of accuracy, it has an average increment in precision and recall of +6.9% and +16.24%, re-

spectively.

8.1 Potential Applications

Apart from providing developers with fine-grained code change history, CodeTracker’s block-

tracking capabilities can be utilized in many different research areas.

(1) Bug inducing commit analysis: Given a code block containing a bug, identify when and

by whom the bug was introduced. CodeTracker can be used to track the change history of

the code block and greatly trim down the number of commits to be analyzed. Paired with

CodeTracker Visualizer, navigating between the changes occurring on a code block becomes

instantaneous.

(2) Evolution analysis of duplicates: Given a class with duplicate code blocks, understand and

analyze the evolution it has gone through. With the enhancement of Refactoring Miner to

now support multi-mappings, CodeTracker can track all duplicates and generate an evolution

chain for each instance of the code block, helping researchers understand the evolution of

software systems.

(3) Mining Software Repositories (MSR) applications: Given different control structures, is

one type more prone to changes than another type? For example, does a switch block

change more than an if-else-if ladder? What about a traditional loop versus a Java

Stream API? Another area to explore could be given different languages (e.g. Java and

C#), is a control structure in one language more susceptible to changes when compared to the

other? These are all questions that CodeTracker can help answer.

82

8.2 Future work

The primary motive behind this thesis was to enhance the granularity of code element tracking

provided by CodeTracker, and we achieved this by extending CodeTracker to be able to track code

blocks. A clear next step at this point would be to extend the granularity to track a single statement.

This would make CodeTracker completely granular in the way it allows tracking. Support for code

block mapping to conditional statements could also be explored.

Another next step would be to explore new repositories that are not a part of the current oracle to

discover and account for patterns that CodeTracker may not already consider. An additional benefit

of this would be the extension of the oracle to contain more instances. The oracle in its current state

provides a solid base to test future code change history detection tools against, however, it can be

extended to include more instances of each code element type.

A potential aspect that could be considered a good next step would be the extension of Code-

Tracker to support more languages. A good starting point could be Kotlin, since it is closely related

to Java, and work on extending RefactoringMiner for Kotlin [65] is already ongoing. This can

further be extended to languages like Python, which also has community-built versions of Refactor-

ingMiner [66, 67].

Finally, a great next step for CodeTracker Visualizer would be to extend the application to sup-

port integration with GitLab and BitBucket, which are two other popular version control platforms

in the industry [16]. Integration with more platforms will allow for easy multi-platform usage and

provide greater flexibility to its users.

83

Bibliography

[1] Mehran Jodavi and Nikolaos Tsantalis. Accurate method and variable tracking in com-

mit history. In Proceedings of the 30th ACM Joint European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022,

page 183±195, New York, NY, USA, 2022. Association for Computing Machinery. ISBN

9781450394130. doi: 10.1145/3540250.3549079. URL https://doi.org/10.1145/

3540250.3549079.

[2] Felix Grund, Shaiful Chowdhury, Nick C. Bradley, Braxton Hall, and Reid Holmes.

Codeshovel: Constructing method-level source code histories. In Proceedings of the 43rd

International Conference on Software Engineering, ICSE ’21, page 1510±1522. IEEE Press,

2021. ISBN 9781450390859. doi: 10.1109/ICSE43902.2021.00135. URL https://doi.

org/10.1109/ICSE43902.2021.00135.

[3] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian, and Danny

Dig. Accurate and efficient refactoring detection in commit history. In Proceedings of the

40th International Conference on Software Engineering, ICSE ’18, pages 483±494, New York,

NY, USA, 2018. ACM. ISBN 978-1-4503-5638-1. doi: 10.1145/3180155.3180206. URL

http://doi.acm.org/10.1145/3180155.3180206.

[4] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. Refactoringminer 2.0. IEEE Transactions

on Software Engineering, 48(3):930±950, 2022. doi: 10.1109/TSE.2020.3007722.

[5] Jean-RÂemy Falleri, FlorÂeal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus.

Fine-grained and accurate source code differencing. In ACM/IEEE International Conference

84

on Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014,

pages 313±324, 2014. doi: 10.1145/2642937.2642982. URL http://doi.acm.org/

10.1145/2642937.2642982.

[6] Jodavi Mehran, Nikolaos Tsantalis, and Mohammed Tayeeb Hasan. Codetracker github repos-

itory, 2023. URL https://github.com/flozender/code-tracker.

[7] Ruslan Diachenko and Roman Ivanov. Checkstyle, 2015. URL https://github.com/

checkstyle/checkstyle/commit/3ef918920.

[8] Danny van Bruggen. Javaparser, 2018. URL https://github.com/javaparser/

javaparser/commit/ee729dcafe.

[9] Ivan Sopov. Checkstyle, 2014. URL https://github.com/checkstyle/

checkstyle/commit/f1efb2767.

[10] Andrei Selkin. Checkstyle, 2016. URL https://github.com/checkstyle/

checkstyle/commit/bf69cf167.

[11] Stephan Ewen. Apache flink, 2017. URL https://github.com/apache/flink/

commit/536675b03.

[12] Oleg Sukhodolsky. Checkstyle, 2003. URL https://github.com/checkstyle/

checkstyle/commit/cd89321522d9bf7fc10547e743fb8bbb4c993791#

diff-fea9f91af0be0914b80d0451274454c2dbf87da35662aa256201ddb897d08c81R618.

[13] Roman Ivanov. Checkstyle, 2015. URL https://github.com/checkstyle/

checkstyle/commit/1a2c318e2.

[14] Jan Bartel. Jetty.project, 2013. URL https://github.com/eclipse/jetty.

project/commit/9c168866ffbb349d56501d11801f0418bdee3596#

diff-cf3ebfaa4e05c6197de38fb2e55da070503cf81220a7eb52e29570421d3f283dR319.

[15] Wikipedia. Block (programming), 2023. URL https://en.wikipedia.org/w/

index.php?title=Block_(programming)&oldid=1156930578.

85

[16] Stack Overflow. Stack overflow developer survey, 2022. URL https://survey.

stackoverflow.co/2022.

[17] Katsuhisa Maruyama, Eijiro Kitsu, Takayuki Omori, and Shinpei Hayashi. Slicing and replay-

ing code change history. In Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering, ASE ’12, page 246±249, New York, NY, USA, 2012. As-

sociation for Computing Machinery. ISBN 9781450312042. doi: 10.1145/2351676.2351713.

URL https://doi.org/10.1145/2351676.2351713.

[18] Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey. Software history

under the lens: A study on why and how developers examine it. In 2015 IEEE International

Conference on Software Maintenance and Evolution (ICSME), pages 1±10, 2015. doi: 10.

1109/ICSM.2015.7332446.

[19] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models: A study

of developer work habits. In Proceedings of the 28th International Conference on Software

Engineering, ICSE ’06, page 492±501, New York, NY, USA, 2006. Association for Computing

Machinery. ISBN 1595933751. doi: 10.1145/1134285.1134355. URL https://doi.

org/10.1145/1134285.1134355.

[20] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. Code review quality: How de-

velopers see it. In 2016 IEEE/ACM 38th International Conference on Software Engineering

(ICSE), pages 1028±1038, 2016. doi: 10.1145/2884781.2884840.

[21] Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E. Johnson, and Danny Dig. Is it dan-

gerous to use version control histories to study source code evolution? In James Noble, edi-

tor, ECOOP 2012 ± Object-Oriented Programming, pages 79±103, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg. ISBN 978-3-642-31057-7.

[22] Sitaram Chamarty, Hiren D. Patel, and Mahesh V. Tripunitara. An authorization scheme for

version control systems. In Proceedings of the 16th ACM Symposium on Access Control Mod-

els and Technologies, SACMAT ’11, page 123±132, New York, NY, USA, 2011. Association

86

for Computing Machinery. ISBN 9781450306881. doi: 10.1145/1998441.1998460. URL

https://doi.org/10.1145/1998441.1998460.

[23] Tammo Freese. Refactoring-aware version control. In Proceedings of the 28th International

Conference on Software Engineering, ICSE ’06, page 953±956, New York, NY, USA, 2006.

Association for Computing Machinery. ISBN 1595933751. doi: 10.1145/1134285.1134461.

URL https://doi.org/10.1145/1134285.1134461.

[24] Thomas Zimmermann. Fine-grained processing of cvs archives with apfel. In Proceedings

of the 2006 OOPSLA Workshop on Eclipse Technology EXchange, eclipse ’06, page 16±20,

New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595936211. doi:

10.1145/1188835.1188839. URL https://doi.org/10.1145/1188835.1188839.

[25] YoungSeok Yoon, Brad A. Myers, and Sebon Koo. Visualization of fine-grained code change

history. In 2013 IEEE Symposium on Visual Languages and Human Centric Computing, pages

119±126, Sep. 2013. doi: 10.1109/VLHCC.2013.6645254.

[26] Francisco Servant and James A. Jones. History slicing: Assisting code-evolution tasks.

In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering, FSE ’12, New York, NY, USA, 2012. Association for Comput-

ing Machinery. ISBN 9781450316149. doi: 10.1145/2393596.2393646. URL https:

//doi.org/10.1145/2393596.2393646.

[27] Yoshiki Higo, Shinpei Hayashi, and Shinji Kusumoto. On tracking java methods with git

mechanisms. Journal of Systems and Software, 165:110571, jul 2020. doi: 10.1016/j.jss.2020.

110571. URL https://doi.org/10.1016%2Fj.jss.2020.110571.

[28] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. Historage: Fine-grained version control

system for java. pages 96±100, 09 2011. doi: 10.1145/2024445.2024463.

[29] Sunghun Kim, Kai Pan, and E.J. Whitehead. When functions change their names: auto-

matic detection of origin relationships. In 12th Working Conference on Reverse Engineering

(WCRE’05), pages 10 pp.±152, 2005. doi: 10.1109/WCRE.2005.33.

87

[30] M.W. Godfrey and L. Zou. Using origin analysis to detect merging and splitting of source

code entities. IEEE Transactions on Software Engineering, 31(2):166±181, 2005. doi: 10.

1109/TSE.2005.28.

[31] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. Incremental origin analysis of source

code files. In Proceedings of the 11th Working Conference on Mining Software Repositories,

MSR 2014, page 42±51, New York, NY, USA, 2014. Association for Computing Machinery.

ISBN 9781450328630. doi: 10.1145/2597073.2597111. URL https://doi.org/10.

1145/2597073.2597111.

[32] Andre Hora, Danilo Silva, Marco Tulio Valente, and Romain Robbes. Assessing the threat of

untracked changes in software evolution. In Proceedings of the 40th International Conference

on Software Engineering, ICSE ’18, page 1102±1113, New York, NY, USA, 2018. Association

for Computing Machinery. ISBN 9781450356381. doi: 10.1145/3180155.3180212. URL

https://doi.org/10.1145/3180155.3180212.

[33] Thomas D. LaToza and Brad A. Myers. Hard-to-answer questions about code. In Evaluation

and Usability of Programming Languages and Tools, PLATEAU ’10, New York, NY, USA,

2010. Association for Computing Machinery. ISBN 9781450305471. doi: 10.1145/1937117.

1937125. URL https://doi.org/10.1145/1937117.1937125.

[34] Reid Holmes and Andrew Begel. Deep intellisense: A tool for rehydrating evaporated in-

formation. In Proceedings of the 2008 International Working Conference on Mining Soft-

ware Repositories, MSR ’08, page 23±26, New York, NY, USA, 2008. Association for

Computing Machinery. ISBN 9781605580241. doi: 10.1145/1370750.1370755. URL

https://doi.org/10.1145/1370750.1370755.

[35] Thomas Fritz and Gail C. Murphy. Using information fragments to answer the questions

developers ask. In Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering - Volume 1, ICSE ’10, page 175±184, New York, NY, USA, 2010. Association

for Computing Machinery. ISBN 9781605587196. doi: 10.1145/1806799.1806828. URL

https://doi.org/10.1145/1806799.1806828.

88

[36] Amy J. Ko, Robert DeLine, and Gina Venolia. Information needs in collocated software devel-

opment teams. In Proceedings of the 29th International Conference on Software Engineering,

ICSE ’07, page 344±353, USA, 2007. IEEE Computer Society. ISBN 0769528287. doi:

10.1109/ICSE.2007.45. URL https://doi.org/10.1109/ICSE.2007.45.

[37] Kaifeng Huang, Bihuan Chen, Xin Peng, Daihong Zhou, Ying Wang, Yang Liu, and

Wenyun Zhao. Cldiff: Generating concise linked code differences. In Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineering, ASE ’18,

page 679±690, New York, NY, USA, 2018. Association for Computing Machinery. ISBN

9781450359375. doi: 10.1145/3238147.3238219. URL https://doi.org/10.1145/

3238147.3238219.

[38] Yun Young Lee, Darko Marinov, and Ralph E. Johnson. Tempura: Temporal dimension for

ides. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol-

ume 1, pages 212±222, May 2015. doi: 10.1109/ICSE.2015.42.

[39] Xi Ge, Saurabh Sarkar, and Emerson Murphy-Hill. Towards refactoring-aware code review.

06 2014. doi: 10.1145/2593702.2593706.

[40] Everton L. G. Alves, Myoungkyu Song, and Miryung Kim. Refdistiller: A refactoring

aware code review tool for inspecting manual refactoring edits. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2014,

page 751±754, New York, NY, USA, 2014. Association for Computing Machinery. ISBN

9781450330565. doi: 10.1145/2635868.2661674. URL https://doi.org/10.1145/

2635868.2661674.

[41] Rodrigo Brito and Marco Tulio Valente. Raid: Tool support for refactoring-aware code re-

views, 2021. URL https://doi.org/10.48550/arXiv.2103.11453.

[42] Gary Gregory. Apache commons-lang, 2018. URL https://github.com/apache/

commons-lang/blob/a36c903d4f1065bc59f5e6d2bb0f9d92a5e71d83/

src/main/java/org/apache/commons/lang3/LocaleUtils.java#L114.

89

[43] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. Why we refactor? confessions of

github contributors. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, FSE 2016, page 858±870, New York, NY, USA,

2016. Association for Computing Machinery. ISBN 9781450342186. doi: 10.1145/2950290.

2950305. URL https://doi.org/10.1145/2950290.2950305.

[44] Emerson Murphy-Hill, Chris Parnin, and Andrew Black. How we refactor, and how we know

it. volume 38, 05 2009. doi: 10.1109/ICSE.2009.5070529.

[45] Till Rohrmann and Stephan Ewen. Apache flink, 2016. URL https://github.com/

apache/flink/commit/72b295b3b52dff2d0bc5b78881826e8936c370ff#

diff-2c7004a2d412c3566de5ff6fb9e6d027742328c2acad60685e47ce4ba9df0810R641.

[46] Martin Fowler. Fluent interface, 2023. URL https://martinfowler.com/bliki/

FluentInterface.html.

[47] Mohammed Tayeeb Hasan and Nikolaos Tsantalis. Codetracker rest api github repository,

2023. URL https://github.com/flozender/codetracker-api.

[48] JBoss and Flavia Rainone. Jboss undertow, 2023. URL https://undertow.io.

[49] FasterXML. Fasterxml jackson, 2023. URL https://github.com/FasterXML/

jackson.

[50] Eclipse. Eclipse jgit, 2023. URL https://projects.eclipse.org/projects/

technology.jgit.

[51] Kohsuke Kawaguchi. Github api for java, 2023. URL https://github-api.kohsuke.

org/.

[52] ovity. Octotree, 2023. URL https://github.com/ovity/octotree.

[53] Gulpjs. Gulp, 2023. URL https://gulpjs.com/.

[54] Observable. D3.js, 2023. URL https://d3js.org.

90

[55] Jestjs. Jest, 2023. URL https://github.com/jestjs/jest.

[56] Argos CI. Jest-puppeteer, 2023. URL https://github.com/argos-ci/

jest-puppeteer.

[57] Mohammed Tayeeb Hasan and Nikolaos Tsantalis. Codetracker visualizer github repository,

2023. URL https://github.com/flozender/codetracker-extension.

[58] Mohammed Tayeeb Hasan and Nikolaos Tsantalis. Codetracker gumtree ver-

sion, 2023. URL https://github.com/flozender/code-tracker/tree/

add-gumtree-mappings.

[59] Stephen Colebourne. Apache commons-lang, 2003. URL https://github.com/

apache/commons-lang/commit/73ee6c3d2.

[60] Akira Fujimoto, Yoshiki Higo, Junnosuke Matsumoto, and Shinji Kusumoto. Staged tree

matching for detecting code move across files. In Proceedings of the 28th International

Conference on Program Comprehension, ICPC ’20, page 396±400, New York, NY, USA,

2020. Association for Computing Machinery. ISBN 9781450379588. doi: 10.1145/3387904.

3389289. URL https://doi.org/10.1145/3387904.3389289.

[61] Beat Fluri, Michael Wursch, Martin PInzger, and Harald Gall. Change distilling:tree dif-

ferencing for fine-grained source code change extraction. IEEE Transactions on Software

Engineering, 33(11):725±743, 2007. doi: 10.1109/TSE.2007.70731.

[62] Pascal Schumacher. Apache commons-lang, 2018. URL https://github.com/

apache/commons-lang/commit/2e9f3a801.

[63] Henri Yandell. Apache commons-lang, 2006. URL https://github.com/apache/

commons-lang/commit/4f514d5eb.

[64] Jerry L. Hintze and Ray D. Nelson. Violin plots: A box plot-density trace synergism. The

American Statistician, 52(2):181±184, 1998. ISSN 00031305. URL http://www.jstor.

org/stable/2685478.

91

[65] Zarina Kurbatova and JetBrains Research. Kotlinrminer, 2023. URL https://github.

com/JetBrains-Research/kotlinRMiner.

[66] Hassan Atwi, Bin Lin, Nikolaos Tsantalis, Yutaro Kashiwa, Yasutaka Kamei, Naoyasu

Ubayashi, Gabriele Bavota, and Michele Lanza. Pyref: Refactoring detection in python

projects. In 2021 IEEE 21st International Working Conference on Source Code Analysis and

Manipulation (SCAM), pages 136±141, 2021. doi: 10.1109/SCAM52516.2021.00025.

[67] Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig. Discovering repetitive

code changes in python ml systems. In Proceedings of the 44th International Conference

on Software Engineering, ICSE ’22, New York, NY, USA, 2022. ACM. ISBN 978-1-4503-

9221-1/22/05. doi: 10.1145/3510003.3510225. URL http://doi.acm.org/10.1145/

3510003.3510225.

92

	List of Figures
	List of Tables
	Introduction
	Related Work
	Existing Tooling
	Limitations of Existing Tooling

	Background
	Research Approach
	Code Block Identifier
	Block Tracking in CodeTracker
	Change Graph Evolution Hooks
	CodeTracker Visualizer Approach
	CodeTracker Visualizer: Oracle Validator

	Implementation
	CodeTracker Implementation Background
	Block Code Element Type
	BlockTracker Implementation
	CodeTracker REST API
	CodeTracker Visualizer
	BlockTracker using GumTree

	Evaluation
	Oracle Contributions
	BlockTracker Accuracy
	BlockTracker using GumTree Accuracy
	Execution Time

	Limitations and Threats to Validity
	Limitations
	Internal Validity
	External Validity
	Verifiability

	Conclusion and Future Work
	Potential Applications
	Future work

	Bibliography

