Mechanical Engineering Drawing

MECH 211

LECTURE 3

Contents of the lecture

- Shape description
- Shape generation
- Sectional views
- Auxiliary views

Shape description

- Geometric shapes are seen according to view they are regarded
- Set of primitives used to conceptualize the complex shapes by adding/subtracting the primitive shapes
- Primitive shapes:

•	Boxes	Cylinders
•	Prisms	Cones
•	Pyramids/truncated pyramids	Spheres

• Pyramids/truncated pyramids

Primitives

Primitives – shape generation

Boolean operations

• Given two shapes, they could be intersected or reunited to obtain a new shape

Boolean union

• The common part is removed once

Boolean difference

• The initial shape minus the common portion will be yielded – *notice the difference A-B versus B-A*

Boolean intersection

• The intersection means the common portion of the two intersecting bodies

Another example

Conceptual generation of a complex shape

Conceptual generation of a complex shape

Shape generation

- Two different aspects of shape generation:
 - Conceptual shape generation when the geometry does not exist and when a functional do-able shape is created
 - Physical shape generation when the geometric object is physically created/generated by machining
- Physical generation involves material selection, machine tool and tools selections

Conceptual shape generation

- The concept is created by the human judgment
- The concept can be translated in codes create models

Physical shape generation

- Planes: flat surfaces
- Polyhedrons: inclined flat surfaces
- Cylindrical/conical surfaces: round surfaces, holes
- Ruled surfaces/non-ruled surfaces: complex kinematics cutting or forming in complex shape dies

Physical shape generation

- Two basic principle methods are used to generate surfaces:
 - **Forming** create shape form a shapeable material: ex
 - » Casting
 - » Deformation (forging, bending, squeezing, etc.)
 - » Growing (nature's way ex: stereo-lithography)
 - **Cutting** create shape through removal out of a larger piece of material
 - » Turning, milling, drilling, grinding, lapping, etc.
- Multiple types of operations are used to generate the same class of shapes various surface qualities are obtained for various materials

Shape generation of primitives

- Boxes flat surface
- Cylinders round surfaces
- Prisms flat surface
- Cones round surfaces
- Spherical double curved

 As a general principle, the cutting tool and work piece move one with respect to the other; the cutting tool will remove the undesired volume of material from the work

Machining procedures

- Shaping and planing FORMING PROCESS
- Turning
- Milling
- Drilling
- Sawing
- Broaching
- Grinding

Hot working

Cold working

CASTING PROCESS

JOINING PROCESS

NON-CONVENTIONAL

PROCESSES

Shaping and planing

Generation of Flat surfaces

Turning

Turning

Milling

Milling

CONVENTIONAL MILLING

Milling

Drilling

CASTINGS

EXTRUDED

RECIPROCATING SAWING

Broaching

GEAR BLANK WITH KEYWAY

> GEAR TEETH

SLOTTED GUIDE

Grinding

SURFACE GRINDING

AFTER

SECTION VIEWS

Purpose of sectioning

- Provide the details of the features that are invisible in a normal view
- A cutting plane is assumed to pass through the conveniently selected features
- If the plane passes through the object, the view is called a FULL SECTION
- Cutting plane is indicated on the adjacent view

SECTIONAL VIEW

Why do we use sectional views?

SECTIONAL VIEW TYPES

- Full Sections
- Half Sections
- Offset Sections
- Broken Sections
- Revolved Sections
- Conventional Breaks
- Partial Views

ELEMENTS IN SECTIONAL VIEWS

Cutting Plane

An assumed plane passes through the part to expose the interior construction.

Different cutting planes make different types of sectional views

Section BB

Section BB

The cutting plane

Is the section view really needed?

16

15

14

13

(B)

ELEMENTS IN SECTIONAL VIEWS

- Cutting-Plane Line
 - ✓Location
 - ✓ Line Type
 - ✓Arrowheads
 - ✓ Capital Letters

Indicate the cutting plane

в

С $7 \,\mathrm{mm}$

plane line

Correct cutting plane line

Basic representation rules

No!

(A) Correct representation

(B) Incorrect representation

(C) Normal multiview

Section lines (lining)

(A) Cast or malleable iron and general use for all materials

(B) Steel

(D) White metal, zinc, lead, babbitt, and alloys

(E) Magnesium, aluminum, and aluminum alloys

Section lines

(M) Marble, slate, glass, porcelain, etc.

(N) Earth

(O) Rock

(P) Sand

(Q) Water and other liquids

 $\frac{(R)}{With arain} > Wood$

Common mistakes

Correct (45°; Equal spacing)

Incorrect (Linework is inconsistently spaced)

Incorrect (Linework fails to end at boundaries of area)

Common mistakes

Incorrect (Linework is too closely spaced)

Incorrect (Linework is too widely spaced)

Incorrect (Linework is not consistent in direction)

Incorrect (Linework intensity is inconsistent)

Difficult cases

HALF SECTIONS

- If a cutting plane passes halfway through an object, the result is a half section.
- Expose the interior and retain the exterior.
- It is often used for symmetrical objects, not for detail drawings.

Half sections

Convenient way to show the view and section in symmetric parts

BROKEN-OUT SECTIONS

- If only a partial section of a view is needed to expose interior shapes, a break line is used for the section.
- The section is limited.

Broken out sections

(C) Broken-out section view

(A) Broken-out section

(B) Multiview

REVOLVED SECTIONS

To show the shape of cross section of bars, arms, spokes, a plane perpendicular to the center line of the part cuts through. Then rotate the plane by 90° around a line at right angle to the center line.

Revolved sections

Assume a section plane perpendicular to the front axis of the component; revolve the plane to see the section as a true shape

Aligned sections

Aligned sections

(A) True projection

(B) Preferred

(C) Section view

Offset section

Necessary when features to show are located in different planes

SECTION A-A

SECTION B-B

Sections through assemblies

Pay attention to representation

Pay attention to representation

Pay attention to representation

Section in a flange

AUXILIARY VIEWS

Definitions

- Any view obtained by a projection on a plane other than the horizontal (H), frontal (F) and profile (P) is an auxiliary view.
- Primary auxiliary is projected to a plane that is perpendicular to one of the principal planes
- Secondary auxiliary is projected from a primary auxiliary to a plane that is inclined to all three principal views

Auxiliary view

Candidates for auxiliary views

Principal planes

Auxiliary plane

DEPTH AUXILIARY VIEWS

- A projection plane is perpendicular to the frontal view, and oblique to the top (or side) view. The auxiliary view is based on the frontal view.
- Depth in Auxiliary View = Depth in Top (Side) View

HEIGHT AUXILIARY VIEWS

- A projection plane is perpendicular to the top view, and oblique to the frontal (side) view. The auxiliary view is based on the top view.
- Height in Auxiliary View = Height in Frontal (Side) View

WIDTH AUXILIARY VIEWS

- A projection plane is perpendicular to the side view, and oblique to the frontal (or top) view. The auxiliary view is based on the side view.
- Width in Auxiliary View = Width in Frontal (Top) View

The features in auxiliary planes are seen deformed in the principal views

The features in auxiliary planes are seen deformed in the principal views

The features in auxiliary planes are seen deformed in the principal views

How to represent a full auxiliary view? Folding-Line Method

How to represent a full auxiliary view?

Step 2

How to represent a full auxiliary view?

How to represent a full auxiliary view?

Step 4

DIHEDRAL ANGLES

Definition: An angle between two intersection planes

Figure (a) shows a dihedral angle between surface A and B. To find the angle for the case in Figure (b), auxiliary view is used.

SOLUTION: TURE SIZE OF AN OBLIQUE SURFACE

- 1. Find the edge view of the plane in a primary auxiliary view
- 2. Find the true size of the plane in a secondary auxiliary view

Another practical problem

Find the true shape of the section (triangle)

- · · · _

DIHEDRAL ANGLES

Definition: An angle between two intersection planes

Figure (a) shows a dihedral angle between surface A and B. To find the angle for the case in Figure (b), auxiliary view is used.

SOLUTION: TURE SIZE OF AN OBLIQUE SURFACE

- 1. Find the edge view of the plane in a primary auxiliary view
- 2. Find the true size of the plane in a secondary auxiliary view

Another practical problem

Find the true shape of the section (triangle)

Example of auxiliary view problem

Find the true shape of the distorted features

Example of auxiliary view problem

One feature is seen in P view as a line – one auxiliary view needed

Example of auxiliary view problem

Another feature is seen in F view as a line – one auxiliary view needed

Auxiliary Views:

To draw

TL of line, point view of line, Edge view of the plane and true size of plane.

To View TL : Draw Aux.View parallel to any view To view point view: Draw Aux.View perp. To TL To view Edge View : Draw Aux.View perp. To TL

of any edge/line

To view full surface : Draw Aux.View perp. Edge view