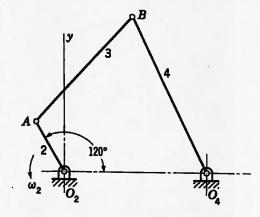

Mechanical Industrial Engineering Department, Concordia University

MECH 343/4 T and M: Theory of Machines 1 Assignment 2

Question 1:

Blocks (2) and (4) of the mechanism shown remain in contact with frame (1) throughout their motion. Here, AB = 400 mm and the block B moves to the left at. 20 m/s.

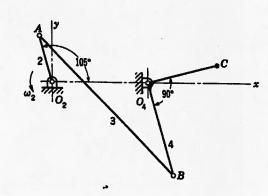
- (a) Using the velocity components of A and B along AB, determine the velocity of block A.
- (b) Using $\vec{V}_{B|A} = \vec{V}_B \vec{V}_A$, determine the velocity of A relative to B
- (c) Determine the angular velocity of link (3)



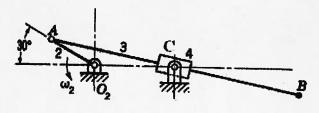
Question 2:

Crank (2) of the four-bar linkage shown rotates in the counter-clockwise sense at 50 rad/s angular velocity. Here, O_2O_4 = 250 mm, O_2A = 100 mm, AB = 250 mm and O_4B = 300 mm.

- (a) Draw the given configuration of the mechanism to the scale of 1 cm = 50 mm.
- (b) Using the transmission line concept, determine the angular velocity of the output link (4).


Hint: Measure the necessary lengths from the configuration diagram. Whenever we say length, it implies the actual length.

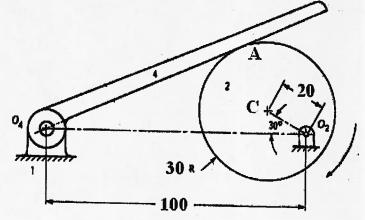
Question 3:


Crank (2) of the four-bar linkage shown rotates at 50 rad/s angular velocity in the CCW sense. BO₄C is the output link (4). Here, $O_2O_4=300$ mm, $O_2A=100$ mm, AB=400 mm, $O_4B=300$ mm and $O_4C=250$ mm.

- (a) Draw the given configuration diagram to the scale of 1cm = 50 mm.
- (b) Using the transmission line concept, determine the angular velocity of the output link (4).
- (c) Determine the velocity of the point C on link (4).

Question 4:

Crank (2) of the mechanism shown rotates in the CCW sense at 50 rad/s angular velocity. Turnion (4) rotates about a fixed pin at C. Link (3) slides through the turnion (4). Here, $O_2A = 75$ mm, $O_2C = 150$ mm and AB = 300 mm.



- (a) Draw the configuration diagram to a scale of 1 cm = 25 mm.
- (b) Analyzing the velocity components of A and C₃ along AC, determine the velocity of point C on link (3)
- (c) Using the relative velocity $V_{A|C3}$, determine the angular velocity of link (3)
- (d) Determine the velocity of point B₃ on link 3

Question 5:

A circular cam (2) of 30 mm radius transmits oscillating motion to the follower (4) of the mechanism shown. Here, $O_2O_4 = 100$ mm and $O_2C = 20$ mm. Cam (2) rotates at 50 rad/s angular velocity in CW sense.

- (a) Draw the full-size configuration diagram
- (b) Determine the normal velocity component of the contact point A on the cam (2)
- (c) Determine the angular velocity of the follower (4)

