CONCORDIA UNIVERSITY

Faculty of Engineering and Computer Science Department of Mechanical and Industrial Engineering

MECH 343/2 X: Theory of Machines 1, Winter 2011-12

Instructor: S. Narayanswamy

Assignment 6:

Question 1:

Crank O_2A of a drag-link mechanism rotates at a constant angular velocity of 50 rad/s in the clockwise sense. Here, $O_2O_4 = 100$ mm, $O_2A = 350$ mm, AB = 425 mm and $O_4B = 400$ mm. For the configuration shown, crank O_2A makes 135° with the line of centers O_2O_4 . From the velocity analysis, the angular velocities of links 2 and 3 are found to be 36.80 rad/s (CW) and 45.03 rad/s (CW) respectively.

- (a) Draw the configuration diagram using a scale of 1 cm = 100 mm
- (b) Draw the acceleration polygon to a scale of 1 cm = 250 m/s^2 .
- (c) Determine the angular accelerations of the coupler AB and the drag-link O₄B

Question 2:

Crank O_2A of a drag-link mechanism rotates at a constant angular velocity of 50 rad/s in the counter-clockwise sense. Here, $O_2A = 50$ mm, AB = 250 mm, BC = 175 mm, CA = 100 mm and CD = 200 mm. For the configuration shown, crank O_2A makes 120° with O_2B . From the velocity analysis, the angular velocities of plate 3 and link 4 were found to be 5.077 rad/s (CW) and 9.091 rad/s (CW) respectively.

- (a) Draw the configuration diagram to a scale of 1 cm = 50 mm
- (b) Draw the acceleration polygon to a scale of 1 cm = m/s^2
- (c) Determine,
 - (i) the angular accelerations if plate 3 and link 4
 - (ii) the accelerations of sliders C and D

Question 3:

Crank O_2A of the mechanism, rotates at a constant angular velocity of 50 rad/s in the counter-clockwise sense. Here, $O_2O_4=200$ mm, $O_2A=100$ mm and AB=400 mm. For the configuration shown, crank O_2A makes 150° with the line of centers O_2O_4 . Velocity analysis gives the angular velocity of the oscillating link 3 as 16.14 rad/s (CCW) and the velocity of link 3 in collar 4 as 1.719 m/s in the direction $B\bar{A}$.

- (a) Draw the configuration diagram using a scale of 1 cm = 50 mm
- (b) Draw the acceleration polygon to a scale of 1 cm = 50 m/s^2
- (c) Determine
 - (i) the angular acceleration of link AB
 - (ii) the acceleration of point B

Question 4:

In the mechanism shown, the rotation of the crank O_2B imparts a reciprocating motion to slider C. For the configuration shown the velocity and acceleration of the slider are 3 m/s (rightward) and 850 m/s² (leftward) respectively. Velocity analysis gives the angular velocities of crank 2 and link 4 as 117.8 rad/s (CCW) and 22.94 rad/s (CW) respectively. Further, the sliding velocities of collars 3 and 5 on link 4 are 1.719 m/s (upward) and 0.884 m/s (downward) respectively.

- (a) Draw the configuration diagram to a scale of 1 cm = 25 mm
- (b) Draw the acceleration polygon to a scale of 1 cm = 50 m/s^2
- (c) Determine,
 - (i) the angular acceleration of link 4
 - (ii) the angular acceleration of crank 2
 - (iii) the acceleration of sliding of link 4 relative to collar 5
 - (iv) the velocity of sliding of collar 3 relative to link 4

