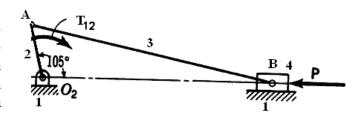
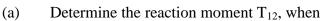
CONCORDIA UNIVERSITY

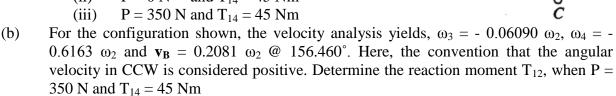

Faculty of Engineering and Computer Science Department of Mechanical and Industrial Engineering

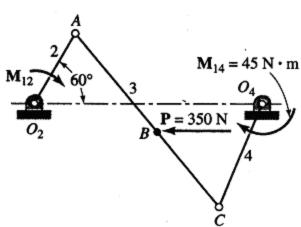
MECH 343/2 X: Theory of Machines 1, Fall 2011-12

Assignment 9:

Question 1:

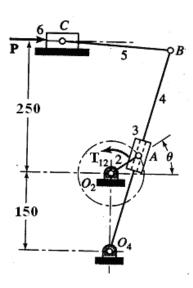

Crank-shaft exerts the reaction-moment T_{12} on crank 2 to balance the gasload P=1.0 kN on piston 4, as shown in Figure. Here, $O_2A=75$ mm, AB=350 mm and $\theta_2=105^\circ$. Draw the configuration to a scale of 1 cm = 50 mm.


- (a) Determine the reaction moment T_{12} using static-force-analysis
- (b) Determine the forces F_{12} and F_{14} exerted by the frame 1 on the mechanism
- (c) For the configuration shown, the velocity v_4 of the piston in the leftward direction is related to the angular velocity ω_2 in CCW sense by the relation $v_4 = 0.06834 \omega_2$ Determine the reaction moment using energy method.

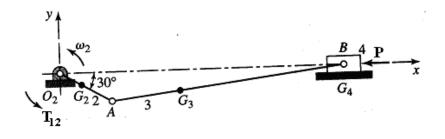

Question 2:

Reaction moment T_{12} on link 2 for the force P and moment T_{14} acting on the four-bar crank-rocker linkage is shown in Figure. Here, $O_2O_4=700$ mm, $O_2A=200$ mm, AC=700 mm, $O_4C=350$ mm, AB=400 mm and $\theta_2=60^\circ$. Draw the configuration to a scale of 1 cm = 100 mm.

- (i) $P = 350 \text{ N} \text{ and } T_{14} = 0 \text{ Nm}$
- (ii) P = 0 N and $T_{14} = 45 Nm$



Question 3:


For the shaper mechanism shown in Figure, a shaping force of P = 2.0 kN is required for the configuration, where θ = 30°. Here, O_2A = 75 mm, O_4B = 400 mm BC = 200 mm . Draw the configuration diagram to a scale of 1 cm = 50 mm.

- (a) Using static force analysis, determine the driving torque T_{12} needed on crank
- (b) For $\theta=30^\circ$, when the crank rotates at angular velocity ω_2 rad/s in CCW sense, shaper C moves to the left at 0.1121 ω_2 m/s to the left. Using energy method, determine the driving torque T_{12} .

Question 4:

Crank of the slider-crank mechanism, shown in Figure, rotates at a constant angular velocity of 100 rad/s in CCW sense. Here, $O_2A=75$ mm, $O_2G_2=30$ mm, $m_2=0.45$ kg, $I_2=0.0005$ kgm², AB=300 mm, $AG_3=90$ mm, $m_3=1.60$ kg, $I_3=0.015$ kgm², $m_4=1.15$ kg. Kinematic analysis for the configuration shown gives: $m_3=21.82$ rad/s (CW), $m_3=1200$ rad/s² (CW)

