MECH 343 Theory of Machines I

Time: _ _ W _ _17:45 - 20:15

Lecture 12

Example

- A has constant velocity 12.6ft/s. mechanism moves in horizontal plane. M₃ and IG₃ are 2.2lb and 0.0479in.lb.s²
- Find F_A required for dynamic equilibrium. M₂ and M₂ assume to be negligible and neglect friction
- Draw velocity polygon to get $V_{B/A}$ and then find the $A^n_{B/A}$ with ω_3 from which complete the acceleration polygon kowing the direction of $A^t_{B/A}$ and A_B
- From A_B , A_G can be scaled as 444ft/s² and

$$\alpha_3 = \frac{A_{BA}^t}{R_{BA}} = \frac{(713 \text{ ft/s}^2)(12 \text{ in/ft})}{10 \text{ in}} = 856 \text{ rad/s}^2 \text{ cw}.$$

Figure 14.8 Solution for Example 14.3. (a) Scale drawing with $R_{BA} = 10$ in, $R_{GA} = 5$ in, $R_{AO} = 8$ in, and $R_{BO} = 6$ in. (b) Acceleration polygon. (c) Free-body diagram and force polygon.

Example

- Knowing M_3 and IG_3 are 2.2lb and 0.0479in.lb.s²h can be found
 - $h = \frac{(0.047 \text{ 9 in} \cdot \text{lb} \cdot \text{s}^2)(856 \text{ rad/s}^2)}{(0.005 \text{ 70 lb} \cdot \text{s}^2/\text{in})(444 \text{ ft/s}^2)(12 \text{ in/ft})} = 1.35 \text{ in}$
- Drawing the FBD we can analyze this to find F_A
- F_{14} is the vertical reaction force and F_{12} is the horizontal reaction force. F_{12} should be equal and opposite to mA_G
- mA_G is offset by h from G. using this LOA of $F_A + F_{12}$ can be found using point of concurrence of F_{14} and $-mA_G$
- F_A is found to be 27lb

Figure 14.8 Solution for Example 14.3. (a) Scale drawing with $R_{BA} = 10$ in, $R_{GA} = 5$ in, $R_{AO} = 8$ in, and $R_{BO} = 6$ in. (b) Acceleration polygon. (c) Free-body diagram and force polygon.

Example

EXAMPLE 14.3

For the mechanism illustrated in Fig. 14.8a, point A has a constant velocity $V_A = 12.6$ ft/s. The mechanism moves in a horizontal plane with gravity normal to the plane of motion. The weight and principal mass moment of inertia of coupler link 3 are 2.20 lb and $I_{G_3} = 0.047$ 9 in · lb · s², respectively. Determine the force F_A required for dynamic equilibrium of the mechanism. Assume that the weights of links 2 and 4 and friction in the mechanism are negligible.

SOLUTION

A kinematic analysis provides the acceleration information illustrated in the polygon of Fig. 14.8b. The acceleration of the mass center of the coupler link is $A_G = 444$ ft/s² and

the angular acceleration of this link is

$$\alpha_3 = \frac{A_{BA}^t}{R_{BA}} = \frac{(713 \text{ ft/s}^2)(12 \text{ in/ft})}{10 \text{ in}} = 856 \text{ rad/s}^2 \text{ cw}.$$

The mass of the coupler link is $m_3 = (2.20 \, \text{lb})/(386 \, \text{in/s}^2) = 0.00570 \, \text{lb-s}^2/\text{in}$. Substituting this information into Eq. (14.17), the offset distance is

$$h = \frac{(0.047 \text{ 9 in} \cdot \text{lb} \cdot \text{s}^2)(856 \text{ rad/s}^2)}{(0.005 \text{ 70 lb} \cdot \text{s}^2/\text{in})(444 \text{ ft/s}^2)(12 \text{ in/ft})} = 1.35 \text{ in}$$

The free-body diagram of links 2, 3, and 4 and the resulting force polygon are illustrated in Fig. 14.8c. Note that the inertia force $-mA_G$ is offset from G by the distance h so as to include a counterclockwise moment $-I_{GG3}$ about G and with the inertia force in the opposite sense to A_G . The constraint reaction at B is F_{14} and, with no friction, is vertically downward. The forces at A are the constraint horizontal reaction F_{12} and the vertical actuating force F_A . Recognizing this as a four-force member, as demonstrated in Section 13.8, we find the concurrency point at the intersection of the offset inertia force and F_{14} , with the directions of both being known. The line of action of the total force $F_{12} + F_A$ at A must pass through this point of concurrency. This fact permits construction of the force polygon, where the unknown forces F_{12} and F_A , having known directions, are found as components of $F_{12} + F_A$. The actuating force F_A is determined by measurement to be

$$\mathbf{F}_A = 27\hat{\mathbf{j}}$$
 lb.