MECH 343 Theory of Machines I

Midterm Solution

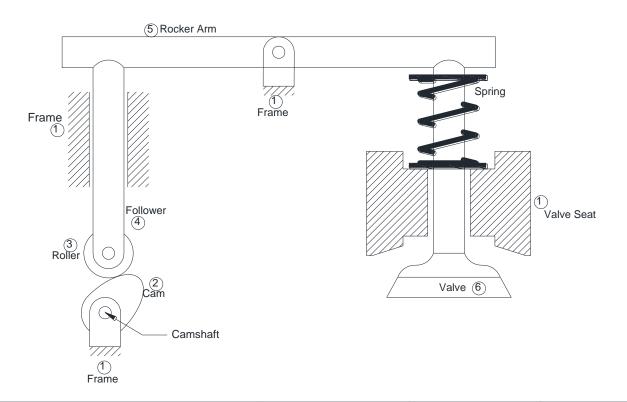
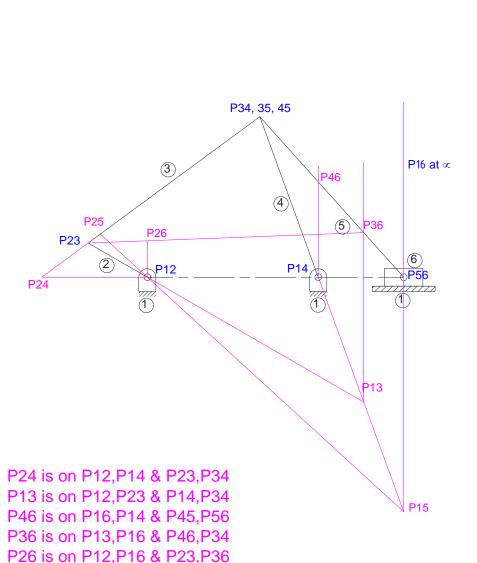
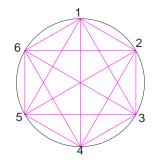

Lecture 8

Figure shows a valve operated by a cam. Here the valve-seat is fixed to the frame. The frame, roller, follower, rocker-arm, and the valve are links in this mechanism. The function of the spring is to maintain positive contact between the valve-rod and the rocker-arm. The follower and the valve-rod remain in contact with the rocker-arm. The contact between the cam and roller is pure rolling

a) List the Lower and Higher Pairings in the given table

	Α	В	С	D	Е	F	G	Н		J
1	Lower Pair	1-2	2-3	3-4	4-1		5-1		6-1	
2	Higher Pair					4-5		5-6		


b) Determine the Mobility of the Mechanism n = 6, J1 = 6, J2 = 2Mobility: _1_



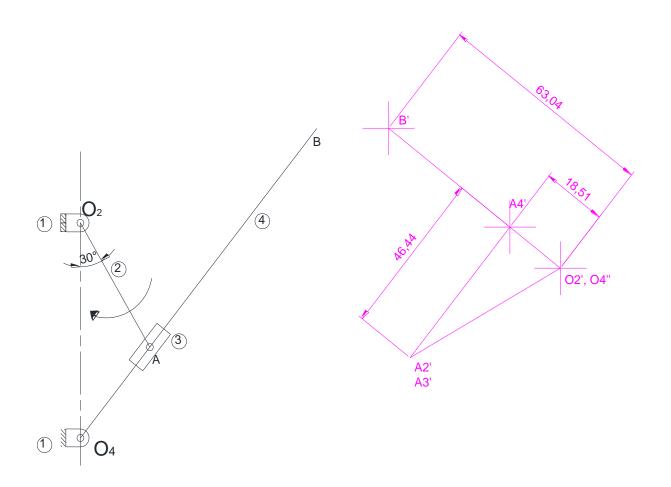
Concordia University	Midterm Test	Date: 02/18/12	5 Marks Problem # 1	
Mechanical and Industrial Engineering Theory of Machines I Mech 343	Name and Surnam	ne	I.D.#	

Figure shows a mechanism, the rotation of the crank O₂A causes a reciprocating motion of the slider 6. the links are numbered.

- a) Locate the centers of rotation P₁₂, P₁₄, P₁₆, P₂₃, P₃₄, P₃₅, P₄₅ and P₅₆
- b) Locate the centers of rotation P₁₃, P₂₄, P₄₆, P₃₆, P₂₆, P₁₅, and P₂₅ *Hint: use Circle Diagram Method*

Concordia University

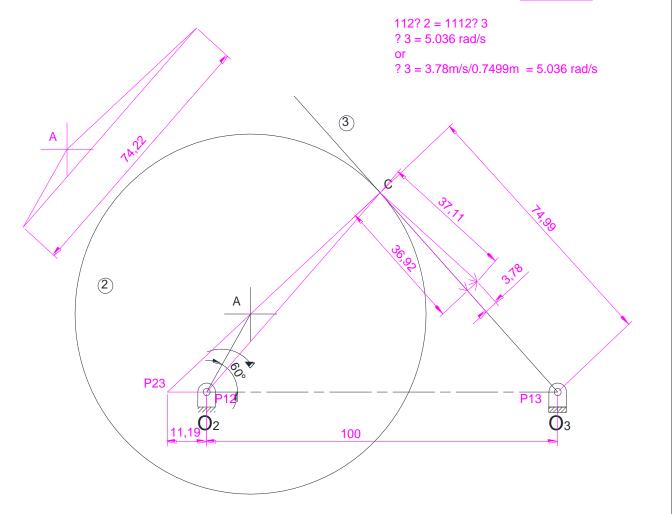
P15 is on P16,P56 & P13,P35 P25 is on P12,P15 & P24,P45


Mechanical and Industrial Engineering
Theory of Machines I
Mech 343

Midterm Test	Date: 02/18/12	Problem # 2	
Name and Surname		I.D.#	

A part of a quick return mechanism is shown in figure. here $O_2A = 200$ mm, $O_2O_4 = 300$ mm, $O_4B = 550$ mm. Scale 1:5. The crank rotates in the CW sense at 100 rad/s. For the configuration shown, the crank O_2A makes angle 30° with O_2O_4 .

- a) Draw the velocity diagram to the scale of 1 cm = 4 m/s. Indicate the velocity of B
- b) Determine the angular velocity of O₄B 45.9 rad/s CCW
- c) Velocity of the sliding collar A with respect to link O₄B


 18.58 m/s II to O₄A

Concordia University	Midterm Test	Date: 02/18/12	10 Marks Problem # 3	
Mechanical and Industrial Engineering Theory of Machines I Mech 343	Name and Surnam		I.D.#	

An eccentrically pivoted circular cam (2) drives an oscillating follower (3). The cam rotates at 50 rad/s in the CW sense. The cam is of radius 500mm, and its center A is 250 mm from the pivot O_2 . Further $O_2O_3 = 1000$ mm. Scale 1:5. For the configuration shown, the angle AO_2O_3 is 60° .

- a) Indicate the Centers of Rotation P12, P13, and P23 in the figure
- b) Determine the angular velocity of the follower and its sense Answer for b) = 5.036 rad/s CW / CCW sense
- c) Determine the slip velocity of contact C_3 in relation to 2 and its direction Answer for c) = 36.92 m/s from O_3 to C / from C to O_3

Concordia University Mechanical and Industrial Engineering Theory of Machines I Mech 343 Midterm Test Date: 02/18/12 To Marks Problem #4 I.D.#