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Machine Element Design
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« Combined Stresses

 Stress Concentration
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« After we identify the external loads on a member, we need to see what the
resulting stresses on the member due to those loads are.

» Body stresses, existing within the member as a whole

 Surface or contact stresses in localized regions where external loads are
applied.

» Stresses resulting from static loading, as opposed to stresses caused by impact
or fatigue loading.

» Convention capital letter S for material strength (S, S, for ultimate, yield

strength) and using Greek letters o and t for normal and shear stress.

This chapter is going to be a review of subjects you learned in
mechanics of materials
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(a) ) (c)

Isometric view of tensile link Enlarged view of element £ Diract view of element E

loaded through a pin at one
end and a nut at the other.

Figure illustrates a case of simple tension. P for tension and —P for
compression, in both cases axial.

Small block E represents an arbitrarily located small element of material

It is important to remember that the stresses are acting on faces perpendicular
to the paper.

This is made clear by the isometric view in Figure 4.1b.
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(d)

Equilibrium of left half showing uniform stress distribution at cutting plane

Figure illustrates equilibrium of the left portion of the link

From this we have perhaps the simplest formula in all of engineering: o = P/A
It is important to remember that although this formula is always correct as an
expression for the average stress in any cross section, disastrous errors can be
made by naively assuming that it also gives the correct value of maximum

stress in the section.

Unless several important requirements are fulfilled, the maximum stress will be

several times greater than P/A
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(e)

View showing “lines of force® through the link

 Figure illustrates lines of force on the link
e Maximum stress = P/A only if load distribution is uniform
1. The section being considered is well removed from the loaded ends.
Uniform distribution is reached at points about three d from the end
2. The load is applied exactly along the centroidal axis. If, there is
eccentricity, bending moment will come into play
3. The bar is a perfect straight cylinder, with no holes, notches, threads,

internal imperfections giving rise to stress concentration



a—

| Nut |

e e

(e)

View showing “lines of force® through the link

 Figure illustrates lines of force on the link

e Maximum stress = P/A only if load distribution is uniform

4.

The bar is free of stress when the external loads are removed. - No
residual stresses due to manufacture and past mechanical/thermal loading
The bar comes to stable equilibrium when loaded. If, the bar is in
compression, or if it long, buckling occurs, and elastically unstable.

The bar is homogeneous. Not a composite material (where 2 different Es

make a material so that one with larger E gets stressed more)



Figure shows where unexpected

failure can result from assuming
o = PIA

P is 600 N and 6 identical welds

(@) p ) are used. The average load 100 N
per weld
6 welds represent redundant force paths of different stiffnesses.
The paths to welds 1 and 2 are much stiffer; they may carry nearly all the load.
A more uniform distribution could be obtained by adding two side plates
One might despair of ever using P/A as an acceptable value of maximum stress
for relating to the strength properties of the material.
The student should acquire increasing insight for making “engineering
judgments” relative to these factors as his or her study progresses and

experience grows.



@ Direct Shear Loading ) @

O iinn . O
Direct shear loading involves equal and ==
opposite forces, collinear that the material } == g_’ "
between them experiences shear stress, o
with negligible bending. 4_2 D
In figure neglecting interface friction g A | l J
direct shear with = = P/A  happens @ (marked (1))

If the nut in Figure is tightened to produce an initial bolt tension of P, the direct
shear stresses at the root of the bolt threads (area 2 ), and at the root of the nut
threads (area 3), have average values P/A.

The thread root areas involved are cylinders of a height equal to the nut
thickness. (for V threads)

If the shear stress is excessive, shearing or “stripping” of the threads occurs in
the bolt or nut, whichever is weaker.

Direct shear is used in metal cutting, rivets, pins, keys, splines etc..



 Figure shows a hinge pin loaded in double ya |
shear, where the load P is carried in shear ‘_51— } JL _ j_., p
through two areas; hence, the area A used - | )
In Eq. is twice the CSAof pin 7 = P/A ]

 Direct shear loading does not produce pure shear (as does torsional loading),
and the actual stress distribution is complex.

It involves fits between the mating members and relative stiffnesses. The
maximum shear stress will always be somewnhat in excess of the P/A value

* In the design of machine and structural members, however, it is commonly used
In conjunction with appropriately conservative values of working shear stress.

 Furthermore, to produce total shear fracture of a ductile member, the load must
simultaneously overcome the shear strength in every element of material in the
shear plane.

» Thus, for total fracture the equation will work if t being set equal to the ultimate
shear strength, S, .



Figure illustrates torsional
loading

(b)

Enlarged view of
element

Direction of T determines

Paositive shear

N e —_—
that the left face of Isometric view
. . Negati Megati

element E is subjected to a l £ ' e |l e | e
| shear stress, and the right face to an 1 stress, making Positive shear
a CCW couple, balanced by a correspondingCW @

) Direct view of Shear sign
couple with shear stresses on top/bottom element £ convention

The state of stress shown on element E is pure shear.

In axial force + for tension and — for compression; Compression can cause buckling
but tension cannot, a chain can withstand tension but not compression, concrete is
strong in compression but weak in tension.

The sign convention for shear loading serves no similar function; + and - shear are
basically the same; and the sign convention is purely arbitrary.

In this book CCW —ve and CW +ve



@ Torsional Loading @

For round bar in torsion
stresses vary from O at
center to max at surface

(b)

Enlarged view of
element

] (a) Positive shear
 t=Tr/Jwhereristhe Isometric view — —
radius and J polar moment #d*/32 l E ' ”iﬁg;‘f‘*] E r Nogatve
* Max shear stresswillbe 7 . = 167/mwd’> — ~—
Positive shear
(€} (d)
. . . Direct view of Sh i
 Important assumptions for this equation are element E convention

1. The bar must be straight and round (either solid or hollow), and the torque must
be applied about the longitudinal axis.

2. The material must be homogeneous and perfectly elastic within the stress range
Involved.

3. The cross section considered must be sufficiently remote from points of load
application and from stress raisers (i.e., holes, notches, keyways, surface
gouges, etc.).



 For bars of nonround cross section, the <
analysis gives erroneous results.

 This can be demonstrated with an
ordinary rubber eraser with small square
elements 1, 2, and 3 as shown in Figure.

L4 When the eraser iS tWiSted, Eq. implies ))\ Maximum shear stress exists

. - E|Gﬂg this lina. b

highest shear stress would be at element N w Enlarged view of

Zero shear stress exists element 2

2 farthest from the neutral axis. along all edges.

i

» Lowest surface stress at element 1 closest to the axis.

» Observation of the twisted eraser shows exactly the opposite; element 2 does not
distort at all, while element 1 experiences the greatest distortion

 In Eq. the basic assumption that what are transverse planes before twisting
remain planes after twisting. If such a plane is represented by drawing line “A”
on the eraser, obvious distortion occurs upon twisting; therefore, the assumption
IS not valid for a rectangular section.

* The equilibrium requirement of corner element 2 makes it clear that this element
must have zero shear stress: (1) the “free” top and front surfaces do not contact
anything that could apply shear stresses;
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Maximum shear stress exists
E|{Jﬂg this lina. w}

\*l (a) Enlarged view of

Zero shear stress exists element 2
along all edges.
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 (2) this being so, equilibrium requirements prevent any of the other four
surfaces from having shear. Hence, there is zero shear stress along all edges of

the eraser.
 Torsional stress equations for nonround sections are summarized in references

T = T(3a + 1.8b)a*b?



@ Pure Bending Loading, Straight Beams ) ......

=] @ L

Pure Bending — it is rare for beam to be loaded in pure
bending. It is useful though to understand the situation

Mostly shear loading and bending moments act
together

Applying point loads P equidistant at the simply
supported beam, absence of shear loading makes this
pure bending

Assumptions used for analysis

The segment analyzed is distant from applied loads or extemnal constraints on the
beam.

The beam is loaded in a plane of symmetry.

Cross sections of the beam remain plane and perpendicular 1o the neutral axis during
beading.

The material of the beam is homogeneous and obeys Hooke's law.

Stresses remain below the elastic limit and deflections are small.

The segment is subjected to pure bending with no axial or shear Joads.

The beam is initially straight.

15

loading diagram

o
g0 U

0 A B 1

shear diagram

/A

|
0 A B 1

moment diagram

FIGURE 4-14

Pure Bending in a Beam



@ Pure Bending Loading, Straight Beams ) ...... .

YA
A A
N i i ' N - T f i _neutral axis
(a) Unloaded i ! X (centroidal axis)
B : B My
. G,= — —
1 ) 1 I
compression
IA A 1
- Mc
" &= = —
M, [ = - I
-
(b) Loaded B T
tension

neutral axis
FIGURE 4-15

Segment of a Straight Beam in Pure Bending
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall



@ Pure Bending Loading, Straight Beams ) ......

* N-N along the neutral axis, no change in length
* A-Ashortents (in compression) and B-B lengthens (in tension

17

« Bending stress is 0 at N-N and is linearly proportional to distance y away from

N-N

My

 Where M is the bending moment and | is the area moment of Inertia of | Ox= _I

the beam cross section at the neutral plane, y the distance from N-N
 The max stress at outer plane is

 Where c is distance from neutral plane (it should be same both section
if the beam is symmetrical about the neutral axis

A

tension

neutral axis

Mc

(@) =
max
I

C is taken as +ve
initially and
proper sign
applied based on
loading
compression —ve
and tension +ve



@ Pure Bending Loading, Straight Beams @

« Figure shows bending load applied to beam of CS having 2 axes of symmetry
* cutting-plane stresses o, are obtained from Eq. 4.6 by substituting c fory
« Section modulus Z (l/c) is used, giving G, as

max

Tmax = MIZ = Mc/I (4.7)

For a solid round bar, I = 7d*/64.c = d/2. and Z = 7d>/32. Hence. for this case

Omax = 32M/md?> (4.8)

Neutral (bending) surface

(a)
Entire beam in equilibrium

—Y e Oma—>|
(T & === _[1] 9F A
M\ Cn: /(& T AE K

3

/

N\

. Transverse Neutral
cutting plane bending
(b) axis and ()
centroidal

Partial beam in equilibrium axis Typical cross sections



@ Pure Bending Loading, Straight Beams )

MNeutral

surface
(b)

Partial beam in equilibrium

||||||

Neutral bending axis
and _centr{}idal axis

/
4

/

CG

\
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JK
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/

\ C

()

Typical cross sections

Figure shows bending load applied to beam of CS having 1 axis of symmetry
The properties for calculating o, for these beams are given in Appendix B



@ Pure Bending Loading, Curved Beams )

20

Machines have curved beams like in C clamps, hooks etc, with a ROC) the

first 6 assumptions still apply

 If it has a significant curvature the neutral axis will not be coincident with the

centroidal axis

Hyperbolic stress distribution with

Centroidal surface increased stress at inner surface

\

Meutral surface

(a)
Initially straight beam segment

CG
d §¢
L T
[
Neutral surface
N, displaced distance
M "e" toward inner
(b) \ surface
Typical cross section
Center of :
initial curvature -______kj
(c)

Initially curved beam segment



@ Pure Bending Loading, Curved Beams @ *

 If it has a significant curvature the neutral axis will not be e
coincident with the centroidal axis and the shift e is found from ¢ rﬂ_

g
 Where Ais area, r. iIs ROC of centroidal axis and r is the ROC
of the differential area dA

« For arectangular beam this can be e = r.-(r,-r;)/[LN(r, / 1;)

centroidal

neutral
axis

M:\

stress distribution

FIGURE 4-16
Segment of a Curved Beam in Pure Bending

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall



@ Pure Bending Loading, Curved Beams @ *

Stress distribution is not linear but hyperbolic. Sign convention is +ve moment
straightens the beam (tension inside and compression outside)

« For pure bending loads stresses at inner and outer surface is ﬁ:""% L
 And if a force F on the CSA “A” is applied on the curved beam :r‘
then the stresses will be . M
L =+ |G +L Oo eA\ T,
" eAln) A S
__M(c),F
O, = ,,.l',n. ]-Ir A
[ 1\
‘Lf CG e\
) \‘_ +

' I -—— Centroidal axis
o — Neutral axis
' C
L i

Ficure 4.10

Curved beam in bending.



@ Pure Bending Loading, Curved Beams )

Mec; Mec,
and o, = —
eAr; eAr,

T; = T

Stress values given by Eq differ from the straight-beam “Mc/I”
value by a curvature factor, K. Thus, using subscripts i and o to
denote inside and outside fibers, respectively, we have

o, = KiMc/ll = KM/IZ and o9 = —K,Mc/l = —K,M/Z

Values of K in Figure illustrates a common rule of thumb: “If 7 is
at least ten timesc, inner fiber stresses are usually not more
than 10 percent above the Mc/l value.” Values of Ko, Ki, and e
are tabulated for several cross sections in references.
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Values of KinEg. 4.11: o = KE

3.5

3.0

2.5

2.0

1.5

1.0

0.5

UorT

Round or elliptical

Trapezoidal

¥
_B
i
b
: I
I or hollow rectangular 6 _‘f_ I:I B

Values of K; for inside fiber as at 4

¥

UorT

- I or hollow rectangular

AN

Values of K for outside fiber as at B

Round, elliptical or trapezoidal

1 2 3

4

5

Ratio v/

6

o —



LAY TR G GLTIVE R Bending Stresses in Straight and Curved Beams

oA R R RS TN R RSN LS NS IR RS S L a SRR sl Rl L ]

A rectangular beam has an initial curvature equal to the section depth h, as

shown in Figure. How do its extreme-fiber-bending stresses compare with
those of an identical straight beam?

Known: A straight beam and a curved beam of given cross section and initial
curvature are loaded in bending.

Find: Compare the bending stresses between the straight beam and the
curved beam.

-— “~—ph—

| |
n( . )L I

Centroidal axis | 27| dA =bdp
- /
f I\ SER

c=

.l
CG_l

1
2

A curved rectangular bar with radius of curvature T equal to

section depth h (giving r/c = 2) and a straight rectangular bar.



LAV TR G GLTIVE R Bending Stresses in Straight and Curved Beams

Assumptions: D b=
1. The straight bar must | 1
initially be straight. " >M b

2. The beams are loaded in - |

a plane of symmetry. P

3. The material is
homogeneous, and all
stresses are within the
elastic range. f

4. The sections where | 5 o 1" L
stresses are calculated are w\_/ NG b 2 ] l i

not too close to significant
stress raisers or to regions A curved rectangular bar with radius of curvature r equal to
where external loads are section depth h (giving r/¢ = 2) and a straight rectangular bar.

<—b—| dA =bdp

. A = area, in.? VA
app“ed- I = moment of inertia, in.* p=rI
- . . J = polar moment of inertia, in.* y==¢
5. Initial plane sections remain plane after e
loading. T | _f;ﬁ
6. The bending moment is positive; thatis, it ! 77— ST
tends to straighten an initially curved beam. l T 7z — b’
6
| fp —=




Analysis:

1. For the direction of loading shown in Figure 4.12, the conventional straight-
beam formula gives

Mc oM oM
o; = + = . T, = —W

2. From Eq. 4.10,

_ A bh h 1
T e T e U s
o nir,/r; n.Joas
p b/ dplp o1
.
: o e =r.-(ry-1;)/LN(r, / r;
= 0.089761h e~ (ToTi)/LN(ro /1)
3. From Eq. 4.9, * r,=15handr,=.5handr,=h
M(0.5h — 0.089761h) 9.141M .
o= + _ = 5 Mg
(0.089761h)(bIh)(0.5h) bh~ ﬂf""; "i
M(0.5h + 0.089761h) 4.380M M ;
7o = 0089761 h)(bh)(1.5h) bi? g, =——| 2
E"!l.rﬂ
4. From Eq. 4.11 with Z = bh*/6, og; = KiMc/l = K;M/Z
oo = —K,Mcll = —K,M/Z
9.141 4.380
K; = 6 1.52 and K, = 6 - 0.73

Comment: These values are consistent with those shown for other sections In
Figure 4.11 for r/c = 2.
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Values of KinEg. 4.11: o = KE

3.5

3.0

2.5

2.0

1.5

1.0
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Round or elliptical

Trapezoidal

¥
_B
i
b
: I
I or hollow rectangular 6 _‘f_ I:I B

0.5
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~ Values of K; for inside fiber as at 4
¥
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’--‘-————.__ \
. Values of K for outside fiber as at B
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™~ UorT
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4

5 6
Ratio v/
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neutral

axis

dA

FIGURE

Shear due to transverse loading =

Common case is both shear and bending moment on the beam.
Fig shows a point loaded beam shear and moment diagram

Cutting our segment P of width dx around A, cut from outer side
at c upto depth y, it is seen that the M(x;) to left < M(x,) to right
and the difference being dM

Similarly for stresses (can be seen in fig b) since the stresses
are proportion to moment

M(x1) M(xy) = M(x]) + dM 3 FE S

-
|
I\
>
57
d
»
:|<—
| =
. o)
iy
-
,v’/
= Q
5
/

(b) Enlarged view of removed element P

(a) Beam segment with element P cut out

4-19

Segment of a Beam in Bending and Transverse Shear - Shown Removed at Point A in Figure 4-18

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

i

J

loading diagram

8 !

shear diagram

moment diagram

FIGURE 4-18

Shear Force and Bending
Moment in a Beam

2011 Pearson Education, Inc. publishing as Pr



30

Shear due to transverse loading

« Similarly for stresses (can be seen in fig b) since the stresses A;‘
are proportion to moment. This stress imbalance is countered 1 |
by shear stress T component | If
. . . R R
« Stress acting on left hand side of p at a distance y from neutral : :
axis Is stress times the differential area dA at that point . _my , loading diagram
. . . I :
« The total force acting on the left hand side will then be A Al
- Similarly for right hand side &= [ #=a fu I:. o ,
« Shear force on the top face is Fry =1hdx ]
« Where bdx is the area of the top face of the element v
0 [
M(x1) M(xp) = M(x1) + dM 5 :/,_\’\ shear diagram

dx |-— - . 2 \\
o ™ / by T by .

/ M(x) A - Q M(x) /:_ — \ \
utra 7 o o\ 6+do | Wi
]‘%T( ‘_"—ff?—‘%\\—' i 3‘( ok E ey / ) /| x

dA — $ < P //- ) f ¢ \ e I / 0 !

s e cH .
Nt \ e moment diagram
' FIGURE 4-18

(b) Enlarged view of removed element P

’4— b —»‘ —

(a) Beam segment with element P cut out

FIGURE 4-19

Segment of a Beam in Bending and Transverse Shear - Shown Removed at Point A in Figure 4-18
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Shear Force and Bending
Moment in a Beam

2011 Pearson Education, Inc. publishing as Pr



Shear due to transverse loading *

For equilibrium, the forces acting on pis O Fpy=Fyy-Fis
Gives an expression for shear stress asa ~ war=[ S522a- [ 2
function of change in momentum wrt X M1

. . . ~an
Since slope of dM/dx is the magnitude of
the shear function V

Vv
Assigning the integral as Q, then b T _,I:'d"
Shear stresses vary across
And becomes 0 when c=y, T
And maximum at neutral axis ~ ¢_-Y2
Ib

A common rule of thumb is the shear stress due to transverse
loading in a beam will be small enough to ignore if the length
to depth ratio of the beam is 10 or more. Short beams below
that ratio should be investigated for both transverse shear
and bending.

/\\1 \

‘f\

(a) ()
Marked and unloaded Loaded as a beam

fod

loading diagram

moment diagram

FIGURE 4-18

Shear Force and Bending
Moment in a Beam

2011 Pearson Education, Inc. publishing as Pr



T, = VIA T, = VA
4 3
; Tmax = gwﬂ ‘ Tmax = EWA

| NA | / N.A.

—t— —
| | _ |
solid round sections solid rectangular sections
_ 4

Tmax — 3 V/A Tmax — %V}"rﬁ

For a hollow round section, the stress distribution depends on the ratio of inside to
outside diameter, but for thin-wall tubing. a good approximation of the maximum
shear stress 1s

Toax = 2VIA (4.15)
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load
flange

___H neutral %
axis
web
vV
flange Toiax =——
Aweb
(a) I-beam shape T
(b) Stress distribution
FIGURE 4-21

e |
Shear-Stress Distribution and
Maximum in an [-Beam



Determine the shear stress distribution for the beam and loading
shown in Figure 4.18. Compare this with the maximum bending

stress.

lso,eocr N
i {
60 80
X - X
) ==
¥
le— 60—+ f 40,000 N 40,000 N f
< 100 >l 100 >
+40,000 N
V
~40,000 N
y /\
FiGURE 4.18

Sample Problem 4.2. Beam shear stress distribution. Note:
all dimensions are in millimeters; section properties are

A = 2400 mm>; I, = 1840 X 10° mm”.
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Known: A rectangular beam with given cross-sectional geometry has a specified
central load.

Find: Determine the shear stress distribution and the maximum bending stress.

Assumptions:
1. The beam is initially straight.

2. The beam is loaded in a plane of symmetry.

3. The shear stress in the beam 1s uniform across the beam width at each location
from the neutral axis.




Analysis:

1. With reference to Figure 4.14 and Eq. 4.12, it i1s known at the outset that 7 =
at the top and bottom surfaces. This gives a start in plotting the shear stress dis-
tribution in Figure 4.20. As the imaginary parallel saw cuts (described in con-
nection with Figure 4.14) proceed down from the top to increasing depth, the
areas exposed to the slightly unbalanced bending stresses increase, thereby
causing the compensating shear stress at the bottom of the imaginary segment
to increase parabolically. This continues to a saw cut depth of 10 mm.
Figure 4.19a illustrates the imaginary segment just before the saw cuts break
through the interior surface of the section. The shear stress at this level (which
acts on bottom area 60 - dx) 1s calculated using Eq. 4.12 as

—

v o[rc 40.000 fj’:’m

= — ydA = y(60dy)
Ib yY=¥o

(1.840 X 10%)(60) Jy=30

27 |y=40

40,000 y2 _

—————(60)| - = 7.61 N/mm?, or 7.61 MPa
(1.840 X 107)(60) 2 y=30




2. With a shightly deeper saw cut, the inner surface 1s broken through, and the area
over which the shear stress acts is suddenly reduced to 20 dy, as shown in Fig-
ure 4.19b. The unbalanced bending forces acting on the segment sides are virtually
unchanged. Thus, the only term that changes in Eq. 4.12 1s b, which 1s reduced by
a factor of 3, thereby giving a shear stress three times as high, or 22.83 MPa.



3. As the saw cut depth increases until it reaches the neutral axis, the area over which
the shear stress acts remains the same, while greater and greater imbalances build
up as additional areas dA are exposed. But, as shown in Figure 4.19¢, these added
areas dA are only one-third as large as those in the top portion of the section.
Hence, the increased shear stress at the neutral axis is not as great as might at first
be expected. When using Eq. 4.12 to find 7 at the neutral axis. note that two inte-
grals are involved, one covering the range of y from 0 to 30 mm and the other from
30 to 40 mm. (The latter integral, of course, has already been evaluated.)

v [f 40,000 y=30 y=40
T=— VdA = 6 {/ (20 d}aJJrf (60 dy)}
Ib Jy=y, (1.840 x 10%)(20) L Jy=0 =30
40,000 y2 |y=30
= 20)| — +22.83

———(20)
(1.840 X 10%)(20) 2 |y=0
= 32.61 N/mm?. or 32.61 MPa

These calculations enable the shear stress plot in Figure 4.20 to be drawn.

T=32.61 MPa

7= 22.83 MPa
o  7=7.61MPa




4. By way of comparison, the maximum bending stresses occur in the top and bot-
tom surfaces of the beam, haltway along its length, where the bending moment
is highest. Here, the bending stress is computed as

Mc (40,000 X 100)(40)

I 1.84 x 10°
= 86.96 MPa

Comment: Recalling that the shear stress must be zero at the exposed inner surface
of the section, it 1s apparent that the evenly distributed shear stress assumed in
Figure 4.19a 1s incorrect, and that the shear stresses in the outer supported portions
of the section at this level will be higher than the calculated value of 7.61 MPa. This
s of little importance because, to the degree that shear stresses are of concern, atten-
tion will be focused at the level just below, where the calculated value of 7 is three
times as high, or at the neutral axis where it 1s a maximum.

= 86.96 N/mm?

o

T=32.61 MPa

7= 22.83 MPa
o  v=7.61 MPa




Induced Stresses, Mohr Circle Representation )

k =2 Ozz Ozz
—
& Y Tzx Tyz Tox Tyz
_.i g X —_— j z txz Ty.x Gy),' t_X'Z tyx ny
s, Ty Ty
‘ 0.\'.,\' 0.\3.
g y
Along axis direction Opposite axis direction
(a) Surface normals % (b) Positive stress components (c) Negative stress components

FIGURE 4-1

The Stress Cube, lts Surface Normélg, and Its Stress Components

YA

X

Two-Dimensional Stress
FIGURE 4-2 Element




Axis of the stresses is arbitrarily chosen for convenience.

Normal and shear stresses at one point will vary with
direction along the coordinate system.

There will be planes where the shear stress is 0, and the
normal stresses acting on these planes are principal
stresses, and planes as principal planes

There will be planes where the shear stress components

are 0, and the normal stresses acting on these planes are

principal stresses, and planes as principal planes
Direction of surface normals to the

*
Tyx Gyy

(a) Applied stresses

03

O]

planes is principal axes .

And the normal stresses acting in
these directions are principal normal
stresses

The principal shear stresses, act on
planes at 45° to the planes of B mgy
principal normal stresses

(b) Principal normal
stresses

FIGURE 4-3

Principal Stresses on a
Two-Dimensional Stress
Element

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

(c) Principal shear

stresses
y T_»
X



The principal shear
stresses from principal
normal stresses can be
calculated as

Since usually ¢,>0,>03,
Tmax IS T13 and the
direction of principal
shear stresses are

45° to the principal
normal planes and are
mutually orthogonal

stress function

FIGURE 4-4

The Three Roots of the
Stress Function for a
Plane Stress Case

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

03

O]

(b) Principal normal
stresses

FIGURE 4-3

Principal Stresses on a
Two-Dimensional Stress
Element

l.: ‘t:;l

(c) Principal shear

stresses
y L
i
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The Mohr’s Circle

» Mohr circle is a graphical method find the principal stresses

Problem: A biaxia) siress element as shown in Figore 4-2 has o, = 40 000
pei, oy = <20 000 psl, and Ty = 30 000 pai cew. Use Mobr's circles ook
to determine the princlpal stresses. Check the result with a numerical = f—‘»
method.

(@) The stress cube

(b) Constructing the first circle (¢) The three Mohr's circles

FIGURE 4-5

The Stress Cube and Mohr's Circles for Example 4-1
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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The Mohr’s Circle

t.\“\ 0
I
=
G, ‘\\\
(@) The stress cube 1 S so
(b) Constructing the first circle (¢) The three Mohr's circles

7 Two of the three principal normal stresses are then found at the two intersections that
this Mohrs circle makes with the normal stress axis at points Py and Py
Oy =52 426 psi at P) and 03 = 32 426 psi at Py,

8 Since there were no applied stresses in the = direction in this example, it is a 2-D
stress siate, and the thind principal stress, o5, is zem, located at point O, which is
also labeled P,
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The Mohr’s Circle

(@) The stress cube

(b) Constructing the first circle (¢) The three Mohr's circles

8 Since there were no applied stresses in the = direction in this example, it is a 2-D
siress siate, and the third principal stress, o, is zem, loceted at point O, which is
also labeled Py

9 There are still two other Mohr's circles (o be drawn. The three Mohr's circles are
defined by the diameters (&~ €a), (0 O2), and (07— 03), which are the lines PPy,
P3Py, and FaPy. The three circles are shown in Figure 4-5c.
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The Mohr’s Circle

T13

10 Exwend horizontal tangent lines from the top and bottom extremes of each Mohr's {2

circle 10 intersect the shear (vertical) axts. This determines the values of the

principal shear stresses associated with each pair of princips] normal stresses: T)3=

42 426, T3 =26 213, and Ty = 16 213 pei. Note that despite having only two nonzero

principal normal stresses, there gre three nongero principal shear stresses. However, only -
the largest of these, Ty, = T3 = 42 426 psi, is of interest for design purposes.

We can also determine the angles (with respect to our original xyz axes) of the
principal normal and principal shesr stresses from the Mohr's circle, These angles
are only of academic interest if the material is homogeneous and isotropic. If it is g
ﬂ“wmmmﬁﬂm Mw.ﬂhm'ﬁh (c) The three Mohr's circles
principal stresses are then important. The angle 2¢-= ~45° in Figare 4-5a0 represents

the orientation of the principal normfl stress with respect to the x axis of our onginal

systiem. Note that the line DC on the Mohr plane is the x axis in real space and the .
angles are messured according o Mohr's lefi-handed convention (cw+). Since
angles on the Mohr plane are double those in real space, the angle of the principal
stress o) with respect to the real-space x axis, is § = -22.5°. The stress 03 will be
90" from o and the maxtmiom shear stress 13 will be 45° from the ) axis in real space.

Tyx

-
G\
y (@) The stress cube
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: Figure 4.23 represents a stationary shaft and pulley subjected to a 2000-1b static
. load. Determine the location of highest stresses in the l-in.-diameter section, and
i calculate the stresses at that point.

. SOLUTION

Known: A shaft of given geometry is subjected to a known combined loading.
Find: Determine the magnitude and location of the highest stresses.

Schematic and Given Data:

FIGURE 4.23

Shaft subjected to combined loading. For a solid
l-in.-diameter shaft: A = wd*/4 = 0.785 in.E;
I = wd*64 = 0.049 in.*; and

J = wd"32 = 0.098 in.* (see Appendix B-1).

,/

. Top of shaft

FiGure 4.24
"B is at bottom of shaft, opposite "A"  Loecation of highest stresses.




Assumptions: 49

1. The stress concentration at the I-in.-diameter shaft step can be ignored.

2. The compressive stress on the shaft surface caused by atmospheric pressure has
negligible effects.

Analysis:

« The shaft is subjected to torsion, bending, and transverse shear. Torsional stresses
are max @ shaft surface. Bending stresses are a maximum at points A and B

« Transverse shear stresses are relatively small compared to bending stresses, and
equal to zero at points A and B

V=2000Ib
9 2000 1o
M =4000 in-Ib
T=6000 Ib in. 4000 in-lb
Load diag.
2000 Ib
2000 Ib Shear diag.
I_I 2000 1o
Moment diag.

\J 4000 in-Ib

Ficure 4.25

Free-body and load diagrams.



2.

In Figure 4.25, imagine the shaft to be cut off at the section containing A and B,
and consider the member thus obtained as a free body in equilibrium. This 1s a
convenient way of being certain that all loads acting on the cutting plane are
identified. In this case there are the three loads, M, T, and V, as shown. Note that
the free body is indeed in equilibrium, the summation of all forces and mo-
ments being zero. Also in Figure 4.25 are the load, shear, and moment diagrams

for the i1solated free body.

Compute the direct stresses associated with loads.
Bending stresses (tension at A; compression at B):

Me (4000 in - 1b)($in.)
I 0.049in*

Torsional stresses (over the entire surface):

7y (60001b-in)(%in.)
Tey = — = = 30,612 psi
SO 0.098 in.* g

= 40,816 ps1 = 40.8 ksi

0y —

30.6 ksi

!




Trmax = 37 KSi
¥ (0, +30.6)

a1 = 57 ki

}

o6”

. 4+
a5 =—17 Ksi

x (40.8, -30.6)

FIGURE 4.27

Mohr ecirele representation at point A of Figure 4

Tyx = 30.6 Kksi
—_—
¥ Try
‘%I A IF'UA':A‘D'BHH
Tay v
——
T_TI

Direct view of
element A

25,



v =-37 ksi

J/HJ=2D ksi

oo =-17 ksi /

Ficure 4.28 FiGURE 4.29
Prinecipal element at A (direct view) Maximum shear element at A (direct view)
shown in relation to x and v faces. shown in relation to x and vy faces.

6. Figure 4.28 shows the magnitude and orientation of the highest normal stresses.
It may also be of interest to represent similarly the highest shear stresses. This is
done in Figure 4.29. Observe again the rules of

a. rotating in the same direction on the element and the circle, and

b. using angles on the circle that are rwice those on the element.

Comment: In support of neglecting the transverse shear stress in step 1, it is of

interest to note that its maximum value at the neutral bending axis of the 1-in.-diam-
eter shaft is 4V/3A = (4)(2000 1b)/[(3)(7)(1 in.)%/4] = 3.4 ksi



@ Stress Equations Related to Mohr’s Circle)-

o, T T Oy — Uy -
f_'.rl?crg — X 2 ¥y + ,\I/‘TE},- + ( 2 ) {4_16]
2T
2 = tan™' ——— (4.17)
x y
= \I.'}’Tiy + (ax ; bl )2 (4.18)

+o



When the principal stresses are known and it 1s desired to determine the stresses
acting on a plane oriented at any angle ¢ from the #1 principal plane, the equations are

a| T 0> ay — O
Ty = > + 5 cos 2d (4.19)

oy — g7
T = 7 sin 2¢b (4.20)

t— T3

71

' 3
L




@ Three-Dimensional Stresses )

¥ (3)
(1} (2) (3) (3)
) A | | |
—f —— - (1) *l-'—zT-——FIIl}' - F— (2]
d /r |
: (2) (= 2) ! t t
(@) (b) () () (&)
Original element Principal element 1-2 plane 1-3 plane 2-3 plane

FiGure 4.32
Elements representing the state of stress at point A.

Tmax = 37

« Since the largest of the three Principal circle

Mohr circles always represents
the maximum shear stress as
well as the two extreme values of
i +ir
norma}l stress, Mohr called this 17 0 0.0) 57 0
the principal circle.




@ Three-Dimensional Stresses )

. Correct value of 7z
/ Erroneous value of 7,4, obtained if o5 is neglected

o (tangential) %\77
2 _
S

o (axial) oz = 0 (radial) —

FiGURE 4.33b

Example of biaxial stress where correet determination of 7, requires taking o4 into consideration.
Internally pressurized evlinder illustrates biaxial stress states where correct determination of Ty, requires
taking o3 into account. Note that (1) for an element on the inside surface, o3 is negative and numerically
equal to the internal fluid pressure and (2) for thin-wall eylinders oy =~ o/2.

« A common example in which the maximum shear stress would be missed if we
failed to include the zero principal stress in the Mohr plot is the outer surface of a
pressurized cylinder.

» Here, the axial and tangential stresses are tensile principal stresses, and the
unloaded outer surface ensures that the third principal stress is zero.

» Figure illustrates both the correct value of maximum shear stress and the incorrect
value obtained from a simple two-dimensional analysis.

« The same situation exists at the inner surface of the cylinder, except that the third
principal stress (which acts on the surface) is not zero but a negative value
numerically equal to the internal fluid pressure.



Three-Dimensional Stresses )

Known: A member has a location of critical three-dimensional stress.

Find: Determine the principal normal stresses, the maximum shear stress, and draw
the three Mohr circles.

Schematic and Given Data:

o, =60,000 1, =10,000

Ficure 4.34a

Element at eritical point showing state of
o, =-20,000 T, = —15,000 psi stress,

o, = 40,000 7, = 20,000



Assumptions:
1. The stress is completely defined by the normal and shear stresses given.

2. The member behaves as a continuum.

Analysis:
1. The three principal stresses are found by finding the roots of the characteristic
equation:

o -lLo*+ho-13=0 (a)

where the first, second, and third stress invariants, I, I, and I5 are given as

- P

L=o, Oy+0y0;+0,0;— Tfy— Tyr— fo (c)
13=0'x0'_v0'z+27'xy7'yz7'zx—0'x7'§z—Udngx—o'zT)%y (d)

2. The characteristic equation is solved for the principal normal stresses.
01,07 and 03, where g1> 092> 03.
3. The principal shear stresses are then computed as 713 7,; and 7, where

|€T|—0‘3|
2
- |02 i 01|

2

T13:—



|ﬂ'3 — f?z|
2

4. We start by computing the first, second, and third stress invariants:
Iy = oy +0y+0;=060000+ 40,000 —20.000 = 80,000
L =oy0p+0y0;+0;0,— Ti}, — 1'2},E — T%l
= (60,000)(40,000) + (40,000)(-20,000) + (60,000)(-20.000)
= —(=10,000)% = (2.000)? — (- 15.000)* = —-3.25F®

T32

_ 2 2 2

= (60,000)(40,000) (=20,000) + 2(=10,000)(20,000)(-15,000)
— 60,000(20.,000)% — (40,000)(-15,000)?
— (=20.000)(~10.000)* = -7.3E"

5. Next we substitute values for the stress invariants into the characteristic equation
and solve for the principal normal stresses:

o’ — Lo’ + Lo + ;=0
o —80.0000%=325E8% + T3ER =0
o1 = 69.600: oy = 38.001; o3 = —27.601 psi



6. The principal shear stresses can then be computed as 73, 751 and 735, using

loy—o3|  169,600—(—27,601)]

= 48.600
T13 b 7
loa—o | 38,001-69.600] 15700
T21 — 5 - 7 = 1,
|{T3,—ﬂ'2| |—27,601—(38,001)| _
Ty = = = 3,280 psi

- 2 2
Comment: The maximum shear stress, since oy > 07 > 3. IS Tpax = T13-
A Mohr’s three-circle diagram is shown below.

+T

Tla_ —

73 0 o2 o]

FIGURE 4.34b

Sample Problem 4.4. Mohr
circle repesentation of the
stress state at a eritical point

for Figure 4.34a



@ Stress Concentration Factors, Kt)‘

rfgftl_\’__ﬁﬁx\— J..u'n

(e)
» Figure indicates lines of force flow through a tensile link.

« Uniform distribution of these lines exist in regions away from the ends.
« At the ends, the force flow lines indicate stress concentration near outer surface.

* We need to evaluate the stress concentration associated with various geometric
configurations to determine maximum stresses existing in a part

* The first mathematical treatments of stress concentration were published after
1900 with experimental methods for measuring highly localized stresses

* Inrecent years, FEM studies have also been employed. The results of many of
these studies are available in the form of published graphs giving values of the
theoretical stress concentration factor, K, (based on a theoretical elastic,
homogeneous, isotropic material), for use in the equations

O max — Kfﬂrnﬂm ElIll:l Tmax — Kann:rm {4'2“



@ Stress Concentration Factors, Kt)

For eg, the maximum stress for axial loading would be P/A * appropriate K; .

* Note that the stress concentration graphs are plotted on the basis of dimensionless
ratios, indicating that only part shape (not size) is involved. Also note that stress
concentration factors are different for axial, bending, and torsional loading.

* In many situations involving notched parts in tension or bending, the notch not only
increases the primary stress but also causes one or both of the other principal
stresses to take on nonzero values.

« This is referred to as the biaxial or triaxial effect of stress raisers (“stress raiser” is a
general term applied to notches, holes, threads, etc.).

« Consider, for example, a soft rubber model of the grooved shaft in tension illustrated
In Figure 4.36b. As the tensile load is increased, there will be a tendency for the
outer surface to pull into a smooth cylinder.

« This will involve an increase in the diameter and circumference of the section in the
plane of the notch. The increased circumference gives rise to a tangential stress,
which is a maximum at the surface. The increase in diameter is associated with the
creation of radial stresses. (Remember, though, that this radial stress must be zero
at the surface because there are no external radial forces acting there.)



FIGURE 4.36

Grooved shaft (a) bending: (b) axial load: (¢) torsion [7].
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FiIGURE 4.35

Shaft with fillet (a) bending: (b) axial load: (¢) torsion [7].
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FIGURE 4.35
Shaft with fillet (a) bending: (b) axial load: (¢) torsion [7T].
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FIGURE 4.35
Shaft with fillet (a) bending: (b) axial load: (¢) torsion [7].
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FiIGURE 4.36

Grooved shaft (a) bending; (b) axial load: (¢) torsion [7].

3.0

l'l-ll‘llll 'I"l“l 111 111 | 11 I.F'l 111 | 11 I_
— ]
264\ \ ! ¥ N
1'\ ‘i"'. —
S WA VA Fnom = A:f = % N
22—\ AN\ md
| 1\ \\\\
Y2 TNTOR
18—\ N N
NN ~
R N i‘“‘k\aﬁ
. Did = 2
. R"'*-—-—-.ER““"--—-__ o
1.2 | —1.03
T~ 1.01
]__D'D L1 11 L1 1 IIDIII L1 1 L1 1 IG-EI L1 1 L1 1 IIDI3

(a)



FIGURE 4.36

Grooved shaft (a) bending: (b) axial load: (¢) torsion [7].
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FIGURE 4.36

Grooved shaft (a) bending: (b) axial load: (¢) torsion [T].
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FiGure 4.37

Shaft with radius hole [7].

Axial load:
T = £ = P
nom — -
A (mwD%4) - Dd

Bending (in this plane):
_ Mc _ M

Tnom = =
I (=D332) - (dD%/6)
Torsion:
Thom = Ic _ d
I (wD3n16) - (dD?/6)



FIGURE 4.38

Bar with shoulder fillet (@) bending: (b) axial load [7].
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FiGURE 4.38

Bar with shoulder fillet (a) bending: (b) axial load [7].
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FIGURE 4.39

Notched flat bar (a) bending: (b) tension [7].
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FIGURE 4.39

Notched flat bar (a) bending: (b) tension [7].
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FiGure 4.40

Plate with eentral hole (a) bending [7]: (b) axial hole [ 10].
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FiGure 4.40

Plate with central hole (a) bending [7]: (b) axial hole [ 10].

\

\\ o S

hol
= 1t
\ | 4 _P__P

i

\ / Toom = o T -

\

.
Unloaded \\

hole
y N\

/
N

[

0.1

0.2 0.3 04 0.5
dib

(b)

0.6



FiGURE 4.41
T-head member with an

axial load [7].
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@ Importance of Stress Concentration )

K, factors given in the graphs are theoretical (hence, the subscript t) or
geometric factors based on a theoretical homogeneous, isotropic, & elastic mat’l

Real materials have microscopic irregularities causing a certain nonuniformity of
microscopic stress distribution, even in notch-free parts.

Hence, the introduction of a stress raiser may not cause as much additional
damage as indicated by the theoretical factor.

Moreover, real parts—even if free of stress raisers—have surface irregularities
(from processing and use) that can be considered as extremely small notches.

The extent to which we must take stress concentration into account depends on
* (1) the extent to which the real material deviates from the theoretical and
* (2) whether the loading is static, or fatigue

For materials permeated with internal discontinuities, such as gray cast iron,
stress raisers usually have little effect, regardless of the nature of loading, as
geometric irregularities affect less than the internal irregularities.



@ Importance of Stress Concentration )

« For fatigue & impact loading of engineering materials, K, must be considered

* For the case of static loading, K;is important only with unusual materials that
are both brittle and relatively homogeneous;

* When tearing a package wrapped in clear plastic film, a sharp notch in the
edge is most helpful!

« or for normally ductile materials that, under special conditions, behave in a
brittle manner

« For the usual engineering materials having some ductility (and under conditions
such that they behave as ductile), it is customary to ignore K, for static loads.



@ Importance of Stress Concentration )

Figure show two flat tensile bars each having a minimum CSA of A, each a
ductile material having the “idealized” stress—strain curve shown in e.

« The load on the

- Same cross-section area =A—___ Stress con. factor= K. = 2
unnotched bar can be P P ’
. 'y )
iIncreased to the .
product of area times o 1 __J — S
yield strength before i
. 4
fallure QCCUFS as (a1} Unr]otched {h) Notched
shown in c. —y
! F = 51; H ;:r :.S'T
« Since the grooved bar stress Y s | Stress I‘/_ ) al
in b has a K, of 2, F=AS, F=% =4
. . . . — - —_— A— 4+ —
yielding will begin at g-f
only half the load, as / |' =
shown in d. () )
. . ad =35,
* This is repeated as N E
« ,, } L Stress| > a
curve of f. Asthe g Da—

. F ——
load is mcreased, the S amm— %@*——
stress distribution § |- -
(shown in f) becomes © | |

(¢) Stress-strain curve (f) Stress gradients—see Figure 4.43

“b,” “c,” and finally “d.”



@ Importance of Stress Concentration )

These curves reflect a continuous deepening of local yielding, which began at the
root; but gross yielding involving the entire CS begins only if “d” is reached.

Note that the load

. Same cross-section area = A

e

i

associated with curve “d”
is identical to the P
unnotched load capacity

Also note that curve “d”
can be achieved without
significant stretching of

the part. r

AS,

The part as a whole

(a) Unnotched

Stress

cannot be significantly

(c)

elongated without yielding
the entire CS. S

So, for practical purposes, *
the grooved bar will carry

the same static load as
the ungrooved bar.

£

(e) Stress—strain curve

Stress con. factor =K, =2

F F
— —-
R
(b} Notched
Tay = 5}.."2
| Tax = .5'}.
45 N Stress| ¥
AS, ——
F=— :r
K, —
— B
- | =
(d)
o=235,
\ | Stress | .
N
F —— ~ "—d c
N

-

(f) Stress gradients—see Figure 4.43



@ Residual Stresses Caused by Yielding—Axial Lﬂading)m

 When a part is yielded
nonuniformly throughout a CS,
residual stresses remain in this CS
after the external load is removed.

* For eg, the 4 levels of loading of
the notched tensile bar shown in f.

« This same bar and the 4 levels of
loading are represented in the left
column

* Note that only slight yielding is
involved—not major yielding such
as often occurs in processing.

* The middle column shows the
change in stress when the load is
removed.

(d) Load causes total yielding

I

Load stress

Ficure 4.43

-0
+ ___\\I|
__/
-0
.Y
f_g//
-2, -0
_

+ Load removal
stress change

—0+

Residual stress

Residual stresses caused by vielding of a notched tensile bar of K, = 2 for

stress gradients a to d in Figure 4.42f.



@ Residual Stresses Caused by Yielding—Axial Lﬂading)m

Except for a, where the did not
cause Yyielding at the notch root,
the stress change when the load is
removed does not exactly cancel
the stresses by applying the load.

Hence, residual stresses remain
after the load is removed. These
are shown in the right column

In each case, the stress change
caused by removing the load is

elastic.

It must be remembered, too, that
this development of residual stress
curves was based on assuming
that the material conforms to the
idealized stress—strain curve

So the residual stress curves can
only be good approximations.

(d) Load causes total yielding

I

Load stress

Ficure 4.43

-0
+ ___\\I|
__/
-0
.Y
f_g//
-2, -0
-/

+ Load remaoval
stress change

—0+

Residual stress

Residual stresses caused by vielding of a notched tensile bar of K, = 2 for

stress gradients a to d in Figure 4.42f.



@ Residual Stresses Caused by Yielding—Bending and Torsional Loading )

Figure illustrates residual stresses
caused by the bending of an unnotched
25 * 50-mm rectangular beam.

made of steel having an idealized
stress—strain curve with Sy = 300 MPa.

Unknown moment M, produces the

stress distribution shown in Figure, with
yielding to a depth of 10 mm. Let us first
determine the magnitude of moment M1

If the distributed stress pattern is
replaced with concentrated forces F1
and F2 at the centroids of the
rectangular and triangular portions of
the pattern, respectively,

M1 is equal to the sum of the couples
produced by F1 and F2. The magnitude
of F1 is equal to the product of the
average stress (300 MPa) times the
area over which it acts (10 mm * 25
mm).

0

300 MPa

F

F2+

—

10 mm

? -

(

{

10 mm

——

F3
F1

My

(B)

(d)

(e)

FIGURE 4.44

0

!

'——300 MPa
(a) Given information (see text)

300 396

-396

4ot
6

_ (0.025)(0.050)°

- (DO2I0050F

Z=1.042 %102 m?

Z

50 mm ——-

Load stress

-96 0

B2

-96 0

Residual stress

62

-96 0

Residual stress

» 62

Residual stress

+

Load removal stress change

-104 0

62"

Load stress

0 396

-
© 238

Load stress

-204 O

-
-122 '\

Load stress

Residual stresses in an unnotched rectangular beam.

Residual stress

-200 0O

Total stress (straight beam)

0] 300

Total stress (ready to yield)

-300 0

Total stress (ready to yield)



@ Residual Stresses Caused by Yielding—Bending and Torsional Loading )

« Similarly, F2 is equal to an average
stress of 150 MPa times an area of 15
mm * 25 mm. The moment arms of the
couples are 40 mm and 20 mm,

300 MPa

— 10 mm

{ -

respectively
M, = (300 MPa x 2350 mm?)(0.040 m) + (150 MPa x 375 mm?)(0.020 m)
= 4125 N-m
« After M, is removed
o = MI/Z = 4125 N-m/(1.042 x 1075 m?) (

."r'f]_

* Note that at this point the beam is
slightly bent

{2}

* Figure 4.44c shows that the desired
center portion stress-free condition
requires superimposing a load that
develops a compressive stress of 62
MPa, 10 mm below the surface “

'——-300 MPa

— 3_96 K IDB P.El — 396 Mpﬂ (a) Given information (see text)

_396 O_‘,’_l 0 mm

Load remaoval stress change

-104 O

2%

_

Load stress

g b2
6

_ (0.025)(0.050)?

- &

Z=1042x 1072 m?

50 mm —— - ——

Residual stress

-200 O

Total stress (straight beam)



@ Residual Stresses Caused by Yielding—Bending and Torsional Loading )

With this load in place, total stresses are

as shown.

Since center portion stresses are zero,
the beam is indeed straight.

Stress 396 MPa is due to moment of

4125 Nm.

By simple proportion, a stress of 104
MPa requires a moment of 1083 N # m.

Let us now determine the elastic bending
moment capacity of the beam after the
residual stresses have been established.

A moment in the same direction as M,
can be added that superimposes a
surface stress of +396 MPa without
yielding. It is of 4125 Nm.

The release of original moment M, =
4125 Nm caused no yielding; so, it can
be reapplied.

4ot
6

_ (0.025)(0.050)°

- (DO2I0050F

Z=1.042 %102 m?

Z

50 mm —— - ——

Residual stress

-200 0O

Total stress (straight beam)

0] 300

Total stress (ready to yield)

-300 0

Total stress (ready to yield)

300 MPa
0
Fp|—= 10 mm
Py i
+ T -— Fz
10 mm - (F
My 1‘
——-300 MPa
(a) Given information (see text)
0 30039  -396 o lomm
ST T T TEm N T
— —._ — + _——
() Load stress + Load removal stress change
-96 0 -104 0
62 _520
— — + - —
Residual stress + Load stress
-9 0 0 396
62 -
- 238
— — + — —
(d) Residual stress + Load stress
-9 0 -204 0
) 62 122
— — + — —
(e) Residual stress + Load stress
FIGURE 4.44

Residual stresses in an unnotched rectangular beam.



@ Residual Stresses Caused by Yielding—Bending and Torsional Loading )

» Figure e shows that in the direction
opposite the original moment M,, a
moment giving a surface stress of 204
MPa is all that can be elastically
withstood.

« This corresponds to moment of 2125Nm.

* An overload causing yielding produces
residual stresses that are favorable to
future loads in the same direction and
unfavorable to future loads in the
opposite direction.

« Furthermore, on the basis of the
idealized stress—strain curve, the
increase in load capacity in one direction
is exactly equal to the decrease in load
capacity in the opposite direction.

4ot
6

_ (0.025)(0.050)°

- (DO2I0050F

Z=1.042 %102 m?

Z

50 mm ——-

300 MPa
0
Fp|—= 10 mm
Bl 1
10 mm - (F
."r'f]_ +
——-300 MPa
(a) Given information (see text)
0 30039  -396 o lomm
: ___‘_____Z_gg___—r _______________

(3] Load stress

-96 0

M 62

(c) Residual stress

-96 0

Y

(d) Residual stress

-96 0

62

(&) Residual stress

FIGURE 4.44

+

Load removal stress change

-104 0

Load stress

-204 O

122"

Load stress

Residual stresses in an unnotched rectangular beam.

Residual stress

-200

Total stress (straight beam)

0] 300

Total stress (ready to yield)

-300 0

Total stress (ready to yield)



@ Thermal Stresses @

We ve seen stresses caused by external loads. Stresses can also be caused by
expansion and contraction due either to temperature changes or to a material
phase change.

* Itis important to become familiar with the basic principles. When the temperature
of an unrestrained homogeneous, isotropic body is uniformly changed, it expands
(or contracts) uniformly in all directions, according to the relationship

e = aAT

« where g is the strain, a is the thermal expansion coef and AT is the temperature
change. Values of a for several common metals are given in Appendix C-1.

» If restraints are placed on the member during the temperature change, the
resulting stresses can be determined by

* (1) computing the dimensional changes that would take place in the absence of
constraints,

* (2) determining the restraining loads necessary to enforce the restrained
dimensional changes, and

» (3) computing the stresses associated with these restraining loads.



SAMFI.E PROBLEM 4. 5 Thermal Stresses in a Tube

* We ve seen stresses caused by external loads. Stresses can also be caused by
expansion and contraction due either to temperature changes or to a material
phase change. A 10-in. L steel tube (E =30 X 108 psiand . =7 X 10% per ° F)
having a CSA of 1 in? is installed with “fixed” ends so that it is stress-free at
80° F. In operation, the tube is heated throughout to a uniform 480° F. Careful
measurements indicate that the fixed ends separate by 0.008 in. What loads are
exerted on the ends of the tube, and what are the resultant stresses?

« Known:A
given length of Schematic and Given Data:
steel tubing
with a known
CSA expands
0.008 in. from

a stress-free < 10.000 in. —> <—10.008 in.—=
condition at

80° E when T=280°F T=480°F

the tube is
heated to a
uniform
480° F P=01b P=01b P = 60,000 Ib P =60,000 Ib




Assumptions:
1. The tube material is homogeneous and isotropic.

2. The material stresses remain within the elastic range.

Analysis:
1. For the unrestrained tube
€ = aAT = (7 ¥ 107%)400) = 2.8 x 10
AL = Le = 101in. (2.8 X 107°) = 0.028 in.

2. Since the measured expansion was only 0.008 in., the constraints must apply
forces sufficient to produce a deflection of 0.020 in. From the relationship

s _PL
" AE

which is from elementary elastic theory, and reviewed in Chapter 3,

P(10)
0.020 = P or P = 00,000Ib
(1)30 > 10%)

3. Because the area is unity, o = 60 ksi.

Comment: Since these answers are based on elastic relationships, they are valid
only if the material has a yield strength of at least 60 ksi at 480°F.



If stresses caused by temperature change are undesirably large, the best
solution is often to reduce the constraint. - using expansion joints, loops,
or telescopic joints

Thermal stresses also result due to temperature gradients - if a thick metal
plate is heated in the center of one face with a torch, the hot surface is
restrained from expanding by the cooler surrounding material; it is in a
state of compression.

Then the remote cooler metal is forced to expand, causing tensile
stresses.

If the forces and moments do not balance for the original geometry, it will
distort or warp to bring about internal equilibrium.

If stresses are within the elastic limit, the part will revert to its original
geometry when the initial temperature conditions are restored.

If some portion of the part yields, this portion will not tend to revert to the
Initial geometry, and there will be warpage and internal (residual) stresses
when initial temperature conditions are restored. This must be taken into
account in the design



Residual stresses are added to any subsequent load stresses in order to
obtain the total stresses.

If a part with residual stresses is machined, the removal of residually
stressed material causes the part to warp or distort. As this upsets the
Internal equilibrium.

A common (destructive) method for determining the residual stress in a
particular zone of a part is to remove very carefully material from the zone
and then to make a precision measurement of the resulting change in
geometry. (Hole drilling method)

Residual stresses are often removed by annealing. The unrestrained part
IS uniformly heated (to a sufficiently high temperature and for a sufficiently
long period of time) to cause virtually complete relief of the internal
stresses by localized yielding.

The subsequent slow cooling operation introduces no yielding. Hence, the
part reaches room temperature in a virtually stress-free state.



@ Importance of Residual Stresses )

* In general, residual stresses are important in situations in which stress
concentration is important.

« These include brittle materials involving all loading types, and the fatigue and
impact loading of ductile as well as brittle materials.

* For the static loading of ductile materials, harmless local yielding can usually
occur to relieve local high stresses resulting from either (or both) stress
concentration or superimposed residual stress.

» Itis easy to overlook residual stresses because they involve nothing that ordinarily
brings them to the attention of the senses. When one holds an unloaded machine
part, for example, there is normally no way of knowing whether the stresses are
all zero or whether large residual stresses are present.

« areasonable gualitative estimate can often be made by considering the thermal
and mechanical loading history of the part.

* An interesting example shows that residual stresses remain in a part as long as
heat or external loading does not remove them by yielding.



@ Importance of Residual Stresses )

* The Liberty Bell, castin 1753, has
residual tensile stresses in the
outer surface because the casting
cooled most rapidly from the inside
surface.

« After 75 years of satisfactory
service, the bell cracked, probably
as a result of fatigue from
superimposed vibratory stresses
caused by ringing the bell.

* Holes were drilled at the ends to
keep the crack from growing, but
the crack subsequently extended
itself.

« Almen and Black cite this as proof
that residual stresses are still
present in the bell.




