MECH 423 Casting, Welding, Heat Treating and NDT

Time: _ _ W _ F 14:45 - 16:00

Credits: 3.5 Session: Fall

Heat Treatment

Lecture 6

Lecture 6

1

Heat Treatment

- This is a stupendously amazing concept that can produce some quite amazing changes in certain materials WITHOUT having to change component shape!
 - Softens cold-worked metals (annealing)
 - Strengthens some metals (quench & temper, ppt. harden)
 - Spheroidizes high carbon steels for easier machining.
 - Surfaces can be selectively hardened
 - Phase changes can be utilized for strengthening, shape memory affects etc.
- Requires understanding of PHASE DIAGRAMS!

Phase Diagrams (Review)

- **Phases** "physically distinct, chemically homogeneous and mechanically separable portion of a substance"
- Equilibrium phase diagrams variables are temperature, pressure, composition. E.g P-T, T-C.
- T-C phase diagrams determined by cooling curves. (Liquidus, solidus, freezing range)
- **Solubility-** solubility limits non (insoluble), partial or complete solubility.
- Diagrams give
 - phases present
 - composition of phases
 - amounts of phases present.

Three Phase Reactions

- E.g.
- Eutectic Liquid \rightarrow solid₁ + solid₂
- Peritectic L + $S_1 \rightarrow S_2$
- Eutectoid $S_1 \rightarrow S_2 + S_3$

Compounds

- Sometimes formed at particular ratios of two metals or a metal and a non-metal.
- (two metals Intermetallic compound Fe_3AI).
- Fixed composition Stoichiometric E.g. Fe₃C Iron carbide (cementite)

- Some intermetallic compounds can exist over changes in composition - Non-stoichiometric
- Sometimes known as Intermediate phases
- Eg. Cu Zn system, Mg Pb system, Cu Al system

Stoichiometric intermetallic compound

Non-stoichiometric intermetallic compound

l ecture 6

Solid Phases in Fe-Fe₃C System

- α Ferrite; Interstitial solid solⁿ of C in BCC iron. Max solubility = 0.02%C at 723°C
- γ Austenite; Interstitial solid Solⁿ
 of C in FCC Iron; Max solubility =
 2.08% at 1148°C (≈ 0.8 % at
 723°C)

FIGURE 4.10 The iron–carbon equilibrium diagram: α , ferrite; γ , austenite; δ , δ –ferrite; Fe₃C, cementite.

- δ Ferrite Interstitial solid Solⁿ of C in $\frac{400}{0}$ 1 2 3 4 5 BCC iron. (lattice constant "a" is larger than for α - ferrite). Max solubility = 0.09%C at 1485°C.
- Fe₃C Cementite Iron Carbide (Intermetallic Compound). (3 atoms Fe to 1 atom C) or 93.3 wt% Fe + 6.67 wt% C (Hard + Brittle) Lecture 6 6

Lever Rule

l ecture 6

- > t_1 the alloy X is liquid and < t_3 it is solid
- At t₁ the tie line runs from S₁ to L₁ and is to left of composition X
- At t₃ the tie line runs from S₃ to L₃ and is to right of composition X
- At t₂, it can be proved that the line to the left of point a gives the proportion of liquid and the line to the right gives the proportion of solid
- At t₂ the proportion can be calculated by

$$\frac{a-S_2}{L_2-S_2}$$
 X100%

The Eutectoid Reaction

- This particular combination of phases formed through this reaction is known as **Pearlite** (particular mixture of these two phases (α+Fe₃C) formed through the eutectoid reaction)
- As Eutectoid Reaction (like eutectic) lamellar structure formed)
- So **<u>Pearlite</u>** (α + Fe₃C) formed by the Eutectoid Reaction is

The Eutectoid Reaction

- This particular combination of phases formed through this reaction is known as **Pearlite** (particular mixture of these two phases (α+Fe₃C) formed through the eutectoid reaction)
- As Eutectoid Reaction (like eutectic) lamellar structure formed)
- So **<u>Pearlite</u>** (α + Fe₃C) formed by the Eutectoid Reaction is

$$\alpha (0.77 \text{ wt } \% \text{ C}) \stackrel{\text{cooling}}{\underset{\text{heating}}{\longrightarrow}} \alpha (0.02 \text{ wt } \% \text{ C}) + \text{Fe}_{3} C (6.7 \text{ wt } \% \text{ C})$$

$$\% \alpha = \frac{6.67 - 0.77}{6.67 - 0.0218} x100 = 88.7\%$$

% $Fe_3C = \frac{0.77 - 0.0218}{6.67 - 0.0218} x100 = 11.3\%$

Microstructure Development in Fe-C

- 0.77wt%c Eutectoid Steel
- < 0.77wt%c Hypoeutectoid</pre>
- >0.77wt%c Hypereutectoid
- Slow Cooling of Eutectoid Steel
- A eutectoid steel heated into the γ region (austenitized) and then slow cooled below 727°C will go through the eutectoid reaction:

 $\gamma \rightarrow \alpha + Fe_3C$ (form 100% pearlite)

Microstructure Development in Fe-C

FIGURE 9.26 Schematic representation of the formation of pearlite from austenite; direction of carbon diffusion indicated by arrows.

Growth direction

of pearlite

Carbon diffusion

(< 0.77%C) eg 0.4%C steel

Have to heat to higher T to get 100% γ (austenite) » 900°C
 Slow Cooled:

 $\gamma \rightarrow 800^{\circ}C \rightarrow \gamma + \alpha'$ (Proeutectoid/Primary Ferrite)

 $\gamma + \alpha' \rightarrow 712^{\circ}C \rightarrow \alpha' + \alpha + Fe_{3}C$ (Pearlite)

- Amounts of each:
- In this case because we want to distinguish between α and α' calculate just above transformation temp to get α' .
- Final grain consists proeutectoid α, formed before cooling down; and alternate layers of eutectoid α, and Fe₃C forming the pearlite structure

• Increasing amounts of α while cooling - calculated using lever rule

FIGURE 9.27 Schematic representations of the microstructures for an iron-carbon alloy of hypoeutectoid composition C_0 (containing less than 0.76 wt% C) as it is cooled from within the austenite phase region to below the eutectoid temperature.

FIGURE 9.28 Photomicrograph of a 0.38 wt% C steel having a microstructure consisting of pearlite and proeutectoid ferrite. 635×.

A portion of the $Fe-Fe_3C$ phase diagram used in computations for relative amounts of proeutectoid and pearlite microconstituents for hypoeutectoid (C'_0) and hypereutectoid (C'_1) compositions.

FIGURE 9.29

(> 0.77%C) eg 1.2%C steel

• Heat to \approx 950°C to Austenitize (slow cool)

 $\gamma \rightarrow \gamma$ + (Fe₃C) ' (Proeutectoid/ Primary Fe₃C) 1.2%C 1.1% 6.67%

Then at 727°C: $\gamma + Fe_3C \rightarrow \alpha + Fe_3C + Fe_3C'$ pearlite

- So below Eutectoid temp (723°C) there is Fe_3C and pearlite.
- Proeutectoid Cementite usually appears as white band along grain boundaries and Pearlite is lamallae.

FIGURE 9.30 Schematic representations of the microstructures for an iron-carbon alloy of hypereutectoid composition C_1 (containing between 0.76 and 2.14 wt% C), as it is cooled from within the austenite phase region to below the eutectoid temperature.

FIGURE 9.31 Photomicrograph of a 1.4 wt% C steel having a microstructure consisting of a white proeutectoid cementite network surrounding the pearlite colonies. 1000×.

A portion of the $Fe-Fe_3C$ phase diagram used in computations for relative amounts of proeutectoid and pearlite microconstituents for hypoeutectoid (C'_0) and hypereutectoid (C'_1) compositions.

FIGURE 9.29

For a 99.65%Fe and 0.35C alloy at temp below eutectoid calculate the fractions of

total ferrite and cementite phases

$$\% W_{\alpha} = \frac{6.7 - 0.35}{6.67 - 0.02} x100 = 95\% \quad \% W_{Fe_{3C}} = \frac{0.35 - 0.02}{6.67 - 0.02} x100 = 5\%$$

Proeutectoid ferrite and pearlite phases

$$\% W_p = \frac{0.35 - .022}{0.76 - 0.022} x100 = 44\% \ \% W_{\alpha'} = \frac{0.76 - 0.35}{0.76 - 0.022} x100 = 56\%$$

eutectoid ferrite is total ferrite without proeutectoid ferrite

$$W_{\alpha e} = W_{\alpha} - W_{\alpha'}$$
 $W_{\alpha e} = 95 - 56 = 39\%$

Influence of Other Alloying Elements

- Elements like Titatnium, Chromium have significant effect on the eutectoid temperature and eutectoid composition (%C) of Iron
- In addition they also influence formation of pearlite with varying fractions of proeutectoid phase
- Generally steels are alloyed for different reasons like corrosion resistance etc.

FIGURE 9.32 The dependence of eutectoid temperature on alloy concentration for several alloying elements in steel.

FIGURE 9.33 The dependence of eutectoid composition (wt% C) on alloy concentration for several alloying elements in steel.

Controlling Eutectoid Reaction

- Amount: more eutectoid (hard) by increasing %C initially.
- Cooling rate: Increased cooling rate means finer lamallae ® higher strength
- OTHER STRUCTURES
- These can be produced by different types of cooling and thermal treatments. Eg. Bainite, Martensite

Processing Heat Treatments

- For Steels:
- Annealing generally describes a heat treatment which will soften metal, or remove certain affects.
- Three stages of annealing
 - Heating to the desired temperature
 - Holding or "soaking" at that temperature
 - Cooling, usually to room temperature

Purpose of Annealing

- Relieve Internal Stresses
 - Internal stresses can build up in metal as a result of processing.
 - Stresses may be caused by previous processing operations such as welding, cold working, casting, forging, or machining.
 - If internal stresses are allowed to remain in a metal, the part may eventually distort or crack.
 - Annealing helps relieve internal stresses and reduce the chances for distortion and cracking.

Purpose of Annealing

- Increasing Softness, Machinability, and Formability
 - A softer and more ductile material is easier to machine in the machine shop.
 - An annealed part will respond better to forming operations.
- Refinement of Grain Structures
 - After some types of metalworking (particularly cold working), the crystal structures are elongated.
 - Annealing can change the shape of the grains back to the desired form.

Annealing

Temperature (°C)

Full annealing

- For hypoeutectoid steels Heat into austenite region (A₃ + 50°C).
 Sufficient time for full austenitization, then cooled slowly in the furnace (≈ 20°C per hour) to less than ≈ 690°C then air-cooled.
 Gives a coarse pearlitic (and ferrite) structure soft and ductile.
- For hypereutectoid steels similar except heat into austenite +
 cementite region (A₁ + 50°C). Gives a coarse pearlitic (and spheroidal cementite) structure.
- Time and energy consuming (uniform properties throughout structure).

Process annealing

- A heat treatment used to negate the effects of cold work, i.e., to soften and increase the ductility of a previously strain-hardened metal
- In process annealing, parts are not as completely softened as they are in full annealing, but the time required is considerably lessened.
- Process annealing is frequently used as an intermediate heat-treating step during the manufacture of a part.

A part that is stretched considerably during manufacture may be sent to the annealing oven three or four times before all of the stretching is completed.

Alteration of Grain Structure as a Result of Plastic Deformation

FIG. 7.11 Alteration of the grain structure of a polycrystalline metal as a result of plastic deformation. (*a*) Before deformation the grains are equiaxed. (*b*) The deformation has produced elongated grains.

Process annealing

- Primarily used to restore ductility to low carbon (0.25%) steels (c.f. recrystallization) during cold-working operations.
- steels are heated to below A₁ (10-20°C below) typically 600-700°C and held long enough for ferrite recrystallisation and then cooled.
- Changes ferrite morphology and structure but does not significantly affect carbides or induce phase changes.
- Lower temperatures so cheaper and less scaling.

Process annealing

- Recovery and recrystallization processes are allowed to occur
- 1. Recovery
- Some of the stored internal strain energy is relieved by virtue of dislocation motion, as a result of enhanced atomic diffusion at the elevated temperature.
- 2. Recrystallization
- Recrystallization is the formation of a new set of strain free and equiaxed grains that have low dislocation densities and are characteristic of the precold-worked condition.
- Ordinarily a fine-grained microstructure is desired; the heat treatment is terminated before appreciable grain growth has occurred. Lecture 6 30

Stress Relief Annealing

- Can be used to relieve residual stresses in large steel castings, welded assemblies, cold-formed products.
- Heated to below A₁, typically 500-600°C) and then cooled.

Normalizing

- The name "normalizing" comes from the original intended purpose of the process — to return steel to the "normal" condition it was in before it was altered by cold working or other processing.
- Heating the alloy to 55 to 85°C above the A₃ or A_{cm} and holding for sufficient time so that the alloy completely transforms to austenite, followed by <u>air</u>

FIG. 11.9 The iron-iron carbide phase diagram in the vicinity of the eutectoid, indicating heat treating temperature ranges for the plain carbon steels.

<u>cooling</u>

Lecture 6

Temperature (°F)

Normalizing

- To refine grains and produce a more uniform and desirable size distribution for steels that are plastically deformed
- Normalizing does not soften the material as much as full annealing
- The cooling process does not leave the material as ductile or as internally stress-free.
 - A normalized part will usually be a little stronger, harder, and more brittle than a full-annealed part.
 Lecture 6

Spheroidizing

- Used to soften higher carbon (>0.6%) steels having high cementite contents; pearlite and primary Fe₃C.
- Want to make the Fe3C forms spheroids; this softens & toughens the higher C steels. (useful for machining and cold-forming operations).
 - Held just below Eutectoid temp (A1) for a long time; slow cooled.
 - Prolonged cycling above and below A1; slow cooled.
 - For tool steels; Heat to 750-800°C, hold for several hours and slow cool.
- NOTE: Increase hardness of these materials by subsequent normalizing, or Q&T.

Spheroidizing

FIGURE 10.10 Photomicrograph of a steel having a spheroidite microstructure. The small particles are cementite; the continuous phase is α ferrite. 1000×.

FIGURE 10.3 For an iron-carbon alloy of eutectoid composition (0.76 wt% C), isothermal fraction reacted versus the logarithm of time for the austenite-to-pearlite transformation.

Isothermal Transformation

Time (s)

- Conventional heat treatment for • producing martensitic steels
- continuous and rapid cooling of an ٠ austenitized specimen in some type of quenching medium, such as water, oil, or air
 - The optimum properties of a steel that has been quenched and then tempered can be realized only if,
- during the quenching heat treatment, ٠ the specimen has been converted to a high content of martensite Lecture 6 36

Isothermal Transformation

Lecture 6

Isothermal transformation diagram for a eutectoid iron-carbon alloy, with superimposed isothermal heat treatment curve (ABCD). Microstructures before, during, and after the austenite-to-pearlite transformation are shown.

Photomicrographs of (a) coarse pearlite and (b) fine pearlite. 3000×.

Bainite and Matensite

FIGURE 10.11 The body-centered tetragonal unit cell for martensitic steel showing iron atoms (circles) and sites that may be occupied by carbon atoms (crosses). For this tetragonal unit cell, c > a.

FIGURE 10.12 Photomicrograph showing the martensitic microstructure. The needleshaped grains are the martensite phase, and the white regions are austenite that failed to transform during the rapid quench. 1220×.

FIGURE 10.8 Replica transmission electron micrograph showing the structure of bainite. A needle of bainite passes from lower left to upper right-hand corners, which consists of elongated particles of Fe₃C within a ferrite matrix. The phase surrounding the bainite needle is martensite.

Strengthening of Steel

- Problem with Martensite M_{50} and M_{90} is that the remaining is austentite
- Which causes instability and cracking
- M100 happens much below room temperature.
- To avoid cracking, alloys are added to steel to increase the M_{100} temperature

ite.

Strengthening of Steel

Table 4 Effects of alloy elements on the heat treatment of quenched and tempered alloy steels

0

Effect of alloy on hardenability during quenching	Effect of alloy on tempering
Manganese contributes markedly to hardenability, especially in amounts greater than 0.8%. The effect of manganese up to 1.0% is stronger in low- and high-carbon steels than in medium-carbon steels.	 <u>Manganese</u> increases the hardness of tempered martensite by retarding the coalescence of carbides, which prevent grain growth in the ferrite matrix. These effects cause a substantial increase in the hardness of tempered martensite as the percentage of manganese in the steel increases.
<u>Nickel</u> is similar to manganese at low alloy additions, but is less potent at the high alloy levels. Nickel is also affected by carbon content, the medium-carbon steels having the greatest effect. There is an alloy interaction between manganese and nickel that must be taken into account at lower austenitizing temperatures.	<u>Nickel</u> has a relatively small effect on the hardness of tempered martensite, which is essentially the same at all tempering temperatures. Because nickel is not a carbide former, its influence is considered to be due to a weak solid-solution strengthening.
<u>Copper</u> is usually added to alloy steels for its contribution to atmospheric-corrosion resistance and at higher levels for precipitation hardening. The effect of copper on hardenability is similar to that of nickel, and in hardenability calculations it has been suggested that the sum of copper plus nickel be used with the appropriate multiplying factor of nickel.	 <u>Copper</u> is precipitated out when steel is heated to about 425–650 °C (800–1200 °F) and thus can provide a degree of precipitation hardening.
Silicon is more effective than manganese at low alloy levels and has a strengthening effect on low-alloy steels. However, at levels greater than 1% this element is much less effective than manganese. The effect of silicon also varies considerably with carbon content and other alloys present. Silicon is relatively ineffective in low-carbon steel but is very effective in high-carbon steels.	• Silicon increases the hardness of tempered martensite at all tempering temperatures. Silicon also has a substantial retarding effect on softening at 316 °C (600 °F), and has been attributed to the inhibiting effect of silicon on the conversion of ϵ -carbide to cementite(a).
Molybdenum is most effective in improving hardenability. Molybdenum has a much greater effect in high-earbon steels than in medium-carbon steels. The presence of chromium decreases the multiplying factor, whereas the presence of nickel enhances the hardenability effect of molybdenum(b).	 <u>Molybdenum</u> retards the softening of martensite at all tempering temperatures. Above 540 °C (1000 °F), molybdenum partitions to the carbide phase and thus keeps the carbide particles small and numerous. In addition, molybdenum reduces susceptibility to tempering embrittlement.
Chromium behaves much like molybdenum and has its greatest effect in medium-carbon steels. In low-carbon steel and carburized steel, the effect is less than in medium-carbon steels, but is still significant. As a result of the stability of chromium carbide at lower austenitizing temperatures, chromium becomes less effective.	<u>Chromium</u> , like molybdenum, is a strong carbide-forming element that car be expected to retard the softening of martensite at all temperatures. Also, by substituting chromium for some of the iron in cementite, the coalescence of carbides is retarded.
<u>Vanadium</u> is usually not added for hardenability in quenched and tempered structural steels (such as ASTM A 678, grade D) but is added to provide secondary hardening during tempering. <u>Vanadium</u> is a strong carbide former, and the steel must be austenitized at a sufficiently high temperature and for a sufficient length of time to ensure that the vanadium is in solution and thus able to contribute to hardenability. Moreover, solution is possible only if small amounts of vanadium are added (c).	• Vanadium is a stronger carbide former than molybdenum and chromium and can therefore be expected to have a much more potent effect at equivalent alloy levels. The strong effect of vanadium is probably due to the formation of an alloy carbide that replaces cementite-type carbides at high tempering temperatures and persists as a fine dispersion up to the A_1 temperature.
Tungsten has been found to be more effective in high-carbon steels than in steels of low carbon content (less than 0.5%). Alloy interaction is important in tungsten-containing steels, with manganese-molybdenum-chromium having a greater effect on the multiplying factors than silicon or nickel additions.	• Tungsten is also a carbide former and behaves like molybdenum in simple steels. Tungsten has been proposed as a substitute for molybdenum in reduced-activation ferritic steels for nuclear applications(d).
Titanium, niobium, and zirconium are all strong carbide formers and are usually not added to enhance hardenability for the same reasons given for vanadium. In addition, titanium and zirconium are strong nitride formers, a characteristic that affects their solubility in austenite and hence their contribution to hardenability.	• <u>Titanium</u> , niobium, and zirconium should behave like vanadium because they are strong carbide formers.
Boron can considerably improve hardenability, the effect varying notably with the carbon content of the steel. The full effect of boron on hardenability is obtained only in fully deoxidized (aluminum-killed) steels.	Boron has no effect on the tempering characteristics of martensite, but a detrimental effect on toughness can result from the transformation to

nonmartensitic products.

Strengthening of Steel

Isothermal transformation diagram for an iron-carbon alloy of eutectoid composition and the isothermal heat treatments (a), (b), and (c) in Example Problem 10.1.

FIGURE 10.15

Continuous Cooling Curve

FIGURE 10.16 Superimposition of isothermal and continuous cooling transformation diagrams for a eutectoid iron-carbon alloy.

- Isothermal transformation curves are valid only if maintained at same elevate temperature
- It is not practical for heat treatment
- Hence continuous cooling curves are drawn

Continuous Cooling Curve

Continuous Cooling Curve

FIGURE 10.18 Continuous cooling transformation diagram for a eutectoid ironcarbon alloy and super imposed cooling curves, demonstrating the dependence of the final mi crostructure on the transformations that oc cur during cooling.

FIGURE 10.20 (a) Yield strength, tensile strength, and Brinell hardness versus carbon concentration for plain carbon steels having microstructures consisting of fine pearlite. (b) Ductility (%EL and %AR) and Izod impact energy versus carbon concentration for plain carbon steels having microstructures consisting of fine pearlite.

FIGURE 10.21 (a) Brinell and Rockwell hardness as a function of carbon concentration for plain carbon steels having fine and coarse pearlite as well as spheroidite microstructures. (b) Ductility (%AR) as a function of carbon concentration for plain carbon steels having fine and coarse pearlite as well as spheroidite microstructures.

Strength of Martenstic Steel

FIGURE 10.22

Hardness as a function of carbon concentration for plain carbon martensitic and fine pearlitic steels.

Quenching & Tempering

- In order to get martensitic steels need continuous, rapid cooling.
- Use quenching medium such as water, oil, air in order to get a high martensite content then temper.
- During cooling, impossible to get uniform cooling rate throughout specimen; surface always cools faster then interior thus variation in microstructure formed.
- Successful heat treating of steels to get predominantly martensite throughout cross section depends mainly on:
 - composition of steel alloy
 - type of quenching medium
 - size and shape of specimen

Tempering Steel

FIGURE 10.23 Electron micrograph of tempered martensite. Tempering was carried out at 594°C (1100°F). The small particles are the cementite phase; the matrix phase is α ferrite. 9300×.

- As quenched Martensite M₅₀ has not enough ductility and toughness to be a good engineering structure
- To improve on these martensite is given subsequent heating below eutectoid temperature called tempering
- But strength and hardness decreases with increase in tempering temperature and time
 Lecture 6

Tempering Steel

Tempering Steel

FIGURE 10.25 Hardness versus tempering time for a waterquenched eutectoid plain carbon (1080) steel.

Tempering Alloy Steel

FIGURE 10.26 Possible transformations involving the decomposition of austenite. Solid arrows, transformations involving diffusion; dashed arrow, diffusionless transformation.

Quenching Media

<u>Steel</u>

<u>Quenchant</u>

Severity

of quench

water

oil

air

Brine

- plain carbon steels
- low/med alloyed steels
- high alloy steels
- Martempering
- <u>3 Stages of Quenching</u> (liquid quenchants)

Fig 17 The three stages of quenching. Source: Ref

- <u>Vapour Blanket</u>: cooling medium is vapourized; forms thin "blanket" around sample. Low cooling rate.
- <u>Boiling Stage</u>: vapour no longer sustainable as T dropping; liquid boils on contact to form discrete vapour bubbles that leave surface. <u>Effective heat</u> <u>transfer</u>.
- <u>Convection Stage</u>: Temp is below boiling pt. of liquid, relies on convection of liquid to move heat away – slow Agitation - by pumps/impellors etc.

Defects & Distortions in Heat Treating

- Over-heating & "burning" (low alloy steels)
- Long time at high T causes MnS dissolution & reprecipitation along gbs - intergranular fracture. Occurs during forging/good temp control required.
- Residual Stresses Heat treatment often causes these.
- macro: long-range residual stresses, act over large regions compared to grain size, (design of parts).
- - micro: residual (short-range, tenelated stresses), lattice defects,

precipitates, about grain size.

Defects & Distortions in Heat Treating

- Effects of Residual Stresses
 - dimensional changes, & crack initiation
- dimensional changes often occur when residual stress is eliminated eg. machining.
- Compressive Residual Stresses: Often useful as can reduce effect of imposed tensile stresses (reduce likelihood of fatigue, etc.) These type of residual stresses are often deliberately achieved during processing.
- Tensile Residual Stresses: Undesirable, especially at surface (some heat-treatments especially with phase transformations).
- Control Residual Stresses: By stress-relieving. Grinding of layers.

Residual Stresses Steels

Table 6 A considered summary of the maximum residual stresses in surface heat-treated steels

			Residual stre	ss (longitudinal)
Steel	e 19	Heat treatment	MPa	ksi
832M13 (type)	Carburized at 97 0.8% surface c	0 °C (1780 °F) to 1 mm (0.04 in.) case with carbon		× _
	Direct-quenched		280	40.5
	Direct-quenched	, -80 °C (-110 °F) subzero treatment	340	49.0
	Direct-quenched tempered	, -90 °C (-130 °F) subzero treatment,	200	29.0
805A20	Carburized and c	menched	210 340(0)	25 0 40 0
805A20	 Carburized to 1. (1690 °F), direct 	1-1.5 mm (0.043-0.06 in.) case at 920 °C et oil quench, no temper	190-230	27.5-33.5
805A17		· · · · · · · · · · · · · · · · · · ·	4(X)	. 58
805A17	Carburized to 1. (1690 °F), dired	1-1.5 mm (0.043-0.06 in.) case at 920 °C	150-200	22-29
897M39 905M39	Nitrided to case	depth of about 0.5 mm (0.02 in.)	400-600	58.0-87.0
Cold-rolled steel	Induction burden	and untermanent	8(X)-1(X)	116.0-145.0
cond roned steel	Induction harden	and tompered	1(XX)	145.0
	Induction harden	ied, tempered 200 °C (390 °F)	650	94.0
	Induction harden	ied, tempered 300 °C (570 °F)	350	51
	induction harden	ied, tempered 400 °C (750 °F)	170	24.5
(a) Immediately subsu	rface, that is, 0.05 mm	(0.002 in.). Source: Ref 29		

Defects & Distortions in Heat Treating

- Quench Cracking: Caused by excessive quenching stresses.
 Due to:
- Part Design: sharp corners, keyways, splines etc. stress concentrations. Use less severe quench (oil) etc.
- Steel Grade: some grades (higher % c etc) more susceptible
- Part Defects: stringers, inclusions etc.
- Heat-Treating: higher austenitizing temps more likely to cause cracking; coarse grain size; non-uniform cooling, soft spots from inadequate cooling (tongs etc.)

Defects & Distortions in Heat Treating

- Quench Cracking: Caused by excessive quenching stresses.
 Due to:
- Decarburization changes %C thus changes transformation (CCT) times.
- Warpage: rapid heating/non uniform/quenching residual stresses already present (rolling, grinding etc), uneven hardening & (scale).
 Long or thin parts.
- Use proper procedures, protect surfaces, fixtures.

Heat Treating Tool Steels

- Usually have high %carbon plus alloying elements for hardness.
 Cr, V, W, Mo (carbide formers etc.).
- Usually formed first (forged/machined) then heat-treated (not often normalized as air-cooling can cause hardening).
- Quenching medium depends on composition & thickness. Often "hot-quenched" in oil 540%/650%
- Tempered (+ often double-tempered to remove untempered martenite from transformation of retained austenite).
- \rightarrow Quench \rightarrow M + Retained $\gamma \rightarrow$ Temper \rightarrow MT + M \rightarrow Temper \rightarrow MT

Heat Treating Tool Steels

AISI	UNS			Compo.	sition (wt%)	a		
Number	Number	C	Cr	Ni	Мо	W	V	Typical Applications
M1	T11301	0.85	3.75	0.30 max	8.70	1.75	1.20	Drills, saws; lathe and planer tools
A2	T30102	1.00	5.15	0.30 max	1.15	-	0.35	Punches, embossing dies
D2	T30402	1.50	12	0.30 max	0.95		1.10 max	Cutlery, drawing dies
O1	T31501	0.95	0.50	0.30 max	_	0.50	0.30 max	Shear blades, cutting tools
S1	T41901	0.50	1.40	0.30 max	0.50 max	2.25	0.25	Pipe cutters, con- crete drills
W1	T72301	1.10	0.15 max	0.20 max	0.10 max	0.15 max	0.10 max	Blacksmith tools, wood-working tools

Table 12.3 Designations, Compositions, and Applications for Six Tool Steels

" The balance of the composition is iron. Manganese concentrations range between 0.10 and 1.4 wt%, depending on alloy; silicon concentrations between 0.20 and 1.2 wt% depending on alloy.

Heat Treating Tool Steels

Table 3 Har	dening and tempering	of tool steel							
		Preheat te	mperature	Jening Hardening t	emperature	Time at temperature,	Quenching	Tempering	temperature
Type	Rate of heating	J*	۰F	с.	4.	mim	medium(a)	ç	-F
Molybdenum hig M1, M7, M10 M2	h-speed steels Rapidly from preheat Rapidly from preheat	730-845 730-845	1350–1550 1350–1550	1175–1220 1190–1230	2150–2225(b) 2175–2250(b)	25 25	0, A, or S 0, A, or S	540-595(c) 540-595(c)	1000-1100(c) 1000-1100(c)
M3, M4, M30, M33, M34 M6 M41 M42 M43 M43 M44	Rapidly from preheat Rapidly from preheat Rapidly from preheat Rapidly from preheat Rapidly from preheat Rapidly from preheat Rapidly from preheat	730-845 790 730-845 730-845 730-845 730-845 730-845 730-845 730-845 730-845	1350–1550 1450 1350–1550 1350–1550 1350–1550 1350–1550 1350–1550 1350–1550	1205–1230(b) 1175–1205(b) 1220–1245(b) 1190–1215(b) 1190–1215(b) 1190–1215(b) 1190–1215(b) 1190–1220(b)	2200–2250(b) 2150–2206(b) 2175–2275(b) 2175–2210(b) 2175–2210(b) 2175–2210(b) 2175–2220(b) 2175–2220(b)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0, A, or S 0, A, or S	540-595(c) 540-595(c) 540-595(c) 540-595(d) 510-595(d) 510-595(d) 510-625(d) 525-565(d)	1000-1100(c) 1000-1100(c) 1000-1100(c) 1000-1100(d) 950-1100(d) 950-1100(d) 950-1100(d) 950-1100(d) 950-1160(d) 975-1050(d)
M46 M47 Tungton high-sn	Rapidly from preheat	730-845	1350-1550	1180–1205(b)	2150-2200(b)	2-5	0, A, or S	525-595(d)	(0)0011-076
Lungsten inguest T1, T2, T4, T8 T5, T6 T15	Rapidly from preheat Rapidly from preheat Rapidly from preheat	815-870 815-870 815-870	1500-1600 1500-1600 1500-1600	1260–1300(b) 1275–1300(b) 1205–1260(b)	2300–2375(b) 2325–2375(b) 2200–2300(b)	25 25 25	0, A, or S 0, A, or S 0, A, or S	540-595(c) 540-595(c) 540-650(d)	1000-1100(c) 1000-1100(c) 1000-1200(d)
Chromium hot-v H10 H11, H12 H13 H14 H19	ork steels Moderately from preheat Moderately from preheat Moderately from preheat Moderately from preheat	815 815 815 815 815 815	1500 1500 1500 1500	1010-1040 995-1025 995-1040 1010-1065 1095-1205	1850-1900 1825-1875 1825-1900 1825-1900 1850-1950 2000-2200	15-40(e) 15-40(e) 15-40(e) 15-40(e) 2-5	A A A A A A A A A A A A A A A A A A A	540-650 540-650 540-650 540-650 540-705	1000-1200 1000-1200 1000-1200 1000-1200 1000-1300
Molybdenum ho H41, H43 H42	t work steels Rapidly from preheat Rapidly from preheat	730-845 730-845	1350-1550	1120-120	2000-2175 2050-2225	2-5 2-5	0. A. or S 0. A. or S	565-650 565-650	1050-1200
Tungsten hot wa H21, H22 H23 H24 H25 H26	rk steels Rapidly from preheat Rapidly from preheat Rapidly from preheat Rapidly from preheat Rapidly from preheat	815 845 815 815 815 870	1500 1550 1500 1500 1600	1095-1205 1205-1260 1095-1230 1150-1260 1175-1260	2000-2200 2200-2300 2000-2250 2100-2300 2150-2300	22222 22222 22222	A or 0 0 0 A or 0 0, A, or S	\$95-675 \$95-675 \$65-650 \$65-675 \$65-675 \$65-675	1100-1250 1200-1500 1050-1200 1050-1200 1050-1250
Medium-alloy ai A2 A3 A4 A6 A7 A9 A10 A10	r-hardening cold work steels Slowly Slowly Slowly Slowly Very slowly Very slowly Slowly Slowly Slowly	790 790 673 653 815 790 790	1450 1450 1250 1200 1200 1450 1450 1200	925-980 955-980 815-870 830-870 955-980 980-1010 980-1010 980-1025	1700–1800 1750–1800 1500–1600 1525–1600 1525–1600 1525–1600 1500–1800 1800–1875 1800–1875	20-45 20-45 20-45 20-45 20-45 20-45 20-45 30-60	~~~~~	175-540 175-540 175-425 150-425 150-540 175-595 510-620 175-425	350-1000 350-1000 350-1000 350-1000 350-1000 350-1100 350-1150 350-1150 350-1150 350-1150
Oil-hardening co 01 05 07	old work steels Slowly Slowly Slowly Slowly	650 650 650	1200 1200 1200	790-815 760-800 790-815 790-815 845-885	1450-1500 1400-1475 1450-1500 W:1450-1525 O:1550-1625	10-30 5-20 10-30 10-30	0 0 0 or W	175-260 175-260 175-315 175-290	350-500 350-500 350-550 350-550
Shock-resisting S1 S2 S5 S7	steels Slowly Slowly Slowly Slowly	650(f) 760 650-705	 1200(f) 1400 1200-1300	900–955 845–900 870–925 925–955	1650-1750 1550-1650 1600-1700 1700-1750	15-45 5-20 5-20 15-45	0 B or W A or O	205-650 175-425 175-425 205-620	400-1200 350-800 350-800 400-1150
Mold steels P2 P4 P5 P6 P20 P20		900-925(g) 900-925(g) 970-995(g) 900-925(g) 900-925(g) 870-900(h) Do noi	1650-1700(g) 1650-1700(g) 1775-1825(g) 1650-1700(g) 1650-1700(g) 1650-1700(g) 1660-1650(h)	830-845(h) 800-830(h) 970-995(h) 845-870(h) 790-815(h) 815-870 705-730	1525-1550(h) 1475-1525(h) 1775-1825(h) 1775-1825(h) 1550-1600(h) 1550-1600(h) 1500-1600 1300-1350	15 15 15 15 15 15 15 60–180	0 0 0 0 0 0 0 0 0 0 0 0 0	175-260 175-260 175-480 175-260 175-260 175-230 480-595(j) 510-550	350-500 350-500 350-900 350-500 350-450 350-450 350-450 350-450
 (a) O, oil quench; (25 °F) lower than (27 °E) lower than (2) Carburizing to (g) Carburizing to 	A, air cool; S, salt bath quench; I given in this line. (c) Double tem open-furmace heat treatment. For open-furmace heat treatment. For premis, (k) Recommended for large	 W. water quench; Pering recommend pack hardening, a Carburized casi tools and tools 	B, brine quench. (b led for not less that common rule is to e hardness. (j) P21 with intricate secti with intricate	(continued)) When the high-ten n 1 h at temperature heat 1.2 min/mm (30 is a precipitation-ha	nperature heating is ca rach inc. (d) Triple o minin.) of cross sect indening steel having :	trried out in a salt h tempering recomm ion of the pack. (f) a thermal treatment	ath, the range of 1 ended for not less Preferable for large t that involves sol	temperatures shouthan 1 h at temp than 1 h at temp e tools to minimiz ution treating and	ald be about 15 °C crature each time. e decarburization. aging rather than

Heat Treating Steels

Table 12.4Designations, Compositions, Mechanical Properties,and Typical Applications for Austenitic, Ferritic, Martensitic, andPrecipitation-Hardenable Stainless Steels

				Me	chanical Prope	erties	
AISI Number	UNS Number	Composition (wt%)ª	<i>Condition^b</i>	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications
				Ferritic			
409	S40900	0.08 C, 11.0 Cr, 1.0 Mn, 0.50 Ni, 0.75 Ti	Annealed	380 (55)	205 (30)	20	Automotive ex- haust compo- nents, tanks for agricul- tural sprays
446	S44600	0.20 C, 25 Cr, 1.5 Mn	Annealed	515 (75)	275 (40)	20	Valves (high tempera- turc), glass molds, com- bustion chambers
				Austenitic			
304	S30400	0.08 C, 19 Cr, 9 Ni, 2.0 Mn	Annealed	515 (75)	205 (30)	40	Chemical and food pro- cessing equipment, cryogenic vessels
316L	S31603	0.03 C, 17 Cr, 12 Ni, 2.5 Mo, 2.0 Mn	Annealed	485 (70)	170 (25)	40	Welding con- struction

778 / Heat Treating of Stainless Steels and Heat-Resistant Alloys

ing	x stainless	
anneal	I duple	
babnar	selected	
ecomn	es for	
9 R	eratur	
fable	emp	toole

	14 A	Annealing temperature(a)
UNS No.	Designation	°C (°F)
S32900	329	925-955 (1700-1750)
S32950	7 Mo Plus	995-1025
S31500	3RE60	975-1025
S31803	SAF 2205	1020-1100
:		1020-1100
S31260	DP-3	1065-1175
S32550	Ferralium 255	(1950–2150) (1950–2150)

(a) Cooling from the annealing temperature must be also must be consistent with limitations of distortion.

IS. of (12 that maximum hardness produced by air cooling in the center sections up to approximately 305 mm (in.) thick.

various annealed the heat-treated conditions from fully Surface hardness ranges for

y hardened are given in Fig 4. martensitic stainless steels are more sensitive to heat-treating variables than are carbon and low-alloy steels; rejection rates due to faults in heat treating are correspond-ingly high. to fully hardened The martensitic

cleaned thoroughly before they are placed in the furnace. Proper cleaning is particularimportant when the heat treatment is to Grease, oil, and even location lines made by an ordinary lead pencil can cause carburization. Perspiration stains from fingerprints are a source of chloride contamination and contamination, all parts and heat-treating fixtures must be atmosphere. ly important when the heat tre be performed in a protective Prior Cleaning. To avoid

the hardness of Effect of heat treatments on the ha wrought martensitic stainless steels 4 Fig

atmopermitted to make unobstructed contact with scaling in oxidizing atmos. Furthermore, a protective at cannot be effective unless it is severe metal surfaces cause spheres. sphere may

steels to S or stainless stee being heated t the austenitizing range of 925 to 1065 (1700 to 1950 °F) and then cooled in air of 925 to 1065 Martensitic Preheating. Martensitic normally are hardened by oil.

stainless carbon and alloy steels. Accordingly, high thermal gradients and high stresses during rapid heating may cause warpage and cracksteels is characteristically lower than that of ing in some parts. To avoid these problems, recommended in the martensitic stainless steels. In annealing or hardening, the following parts of conductivity is usually preheated: thermal treatment of preheating should be The

- parts section Heavy
- and reentrant Parts with both thin and thick sections
 - Parts with sharp corners angles
 - parts Heavily ground

Procedures for hardening and tempering wrought martensitic stainless steels to specific strength and hardness levels

Table 10

	Temper	nture(b)			ڔ			Tensik a	strength	Hardnes
Type		Ч.	Quenching medium(c)	nim	max	min	max	MPa	ksi	HRC
403 410	975-1010	1700-1850	Air or oil	565	605	1050	1125	760-965	110-140	25-31
014 '004				205	370	400	700	1105-1515	160-220	38-47
414	025-1050	1700-1925	Air or oil	595	650	1100	1200	760-965	110-140	25-31
				230	370	450	700	1105-1515	160-220	38-49
A16 A16Ca	0101-200	1700-1850	Oil	565	605	1050	1125	760-965	110-140	25-31
410, 41000	0101-077		5	230	370	. 450	700	1105-1515	160-220	35-45
007	080-1065	1800-1950	Air or oil(e)	205	370	400	700	1550-1930	225-280	48-56
121	080-1065	1800-1950	Air or oil(e)	565	605	1050	1125	860-1035	125-150	26-3
104				230	370	450	700	1210-1515	175-220	40-47
AADA	1010-1065	1850-1950	Air or oilte)	150-	370	300	700	::		49-57
AADR	1010-1065	1850-1950	Air or oil(e)	. 150	370	300.	200			53-59
AADC AADF	1010-1065	1850-1950	Air or oil(e)	11	160	:	325	:		60 mir
TOLL SOUTH					190		375	:		58 mir
			1		230	:	450	:		57 mir
					355	:	675	:		52-56

.

(a) Preheating to a temperature within the process annealing range for "Table 12) is recommended for thin-gage parts, heavy services proving provide of the process annealing range for "Table 12) is recommended for thin-gage parts, heavy service provide provid

Temper Embrittlement

• The toughness of some steels can be reduced by tempering at certain

temperatures (between 375 and 575°C and slow cooling). Usually

due to presence of impurities (Mn, Ni, Cr, Sb, P, As, Sn).

- Avoid temper embrittlement by:
- 1) controlling composition
- 2) Temper above 575°C or below 375°C followed by fast cooling