
C O M P 4 4 2 / 6421
C o m p i le r D e s i g n

Grammars and Parsing

Instructor:
TAs:

Dr. Joey Paquet

Vashisht Marhwal

Hamed Jafarpour

paquet@cse.concordia.ca

vmarhwal97@gmail.com
hamed.jafarpour@concordia.ca

1

mailto:paquet@cse.concordia.ca
mailto:h_lai@encs.concordia.ca

A s s i g n m e n t 2 :Syntax Analysis (Highl ights)

● To achieve assignment #2, there are 2 stages:

○ Transform the grammar into an LL(1) grammar

○ Implement theparser

● The implementation absolutely cannot start before the grammarhasbeen transformed.

○ Set of tools to help achieve the transformation

○ Sampleusage of these tools.

Th e Goal of A s s i g n m e n t 2

1. Convert the given CFG to an LL(1) grammar

a. Use tools to help your transformation procedure

b. Change EBNF to non-EBNF representation in grammar

c. Remove ambiguities and left recursions

d. After each transformation step,verify that your grammarwas not broken

2. Implement a LL(1) parser

a. Recursive descent predictive parsing

b. Table-driven predictiveparsing

Obstacles to overcome in Assignment 2

4

Quick review

1. Ambiguity

2. Non-deterministic

3. Left recursion

For in-detail theory, see the lecture slide set [syntax analysis: introduction].

Ambiguity Grammar

Grammar: E ->E +E |E *E | id

Input string: id *id +id

Requirement of the parse tree:

A tree that its in order traversal should give the string same as the input string

5

Ambiguity Grammar

The solution for ambiguity is rewrite the grammar (that’s exactly what you need to do in

assignment 2) to make it unambiguous.

In this case, we want to enforce precedence of multiplication over addition.

original: E ->E +E |E *E | id

modified:

E ->E’+E |E’

E’ -> id *E’ | id

6

Non-deterministic Grammar

1. backtracking can solve this problem,but it is inefficient;

2. introduce a new non-terminal which we refer as left factoring

7

Left Recursion

Garmmar:A ->Aα|β

By analyze these three possibilities, our goal is to construct something like: A ->βα*
But we don’t allow *in the grammar, so we can replace a*with a new non-terminal A’,so we have:

A ->βA’

A’ ->αA’|ε

8

Example: r e m ovi ng E B N F constructs

Assume you was given a grammar as following,with EBNF repetition:

commaSeparatedList -> a {,a} | EPSILON

You should remove the EBNF repetition and come up with the following grammar:

commaSeparatedList

commaSeparatedListTail

-> a commaSeparatedListTail
| EPSILON

-> ,a commaSeparatedListTail
| EPSILON

Exampl e : r e m o v i n g left recursion

After removal of all EBNF format instances, assume you have something like:

expr -> expr + term | term

term -> term * factor | factor

factor -> '(' expr ')' | 'x'

Remove left recursions (onexpr and term) using the transformation shown in class:

A t o C C k f g E d i t

● Tool that allows you to analyze your grammar and locate possible ambiguities in the

grammar.

● After you grammar is entered, it also allows you to enter a string representing a token

stream and verify if this token stream is derivable from the grammar. If it is, it generates a

parse tree and a derivation for it.

● How to install A to CC were described in previous labs

H o w to c o m e u p with the proper g r a m m a r ?

- You receive the initial grammar in EBNF in assignment 2 description already

- You need to remove the EBNF since AtoCC kfgEdit cannot understand this form

- Perform left factoring (if necessary)

- Remove left recursion (if exist, unfortunately, they exist in the given grammar)

It is strongly suggested that every time you make a single transformation step, that you use

AtoCC to check whether your transformation broke the grammar or not.

Don’t try to correct many errors in one shot, it is easy to get lost. Plus, if you make a mistake in

one transformation step and you carry on without checking, your further transformation will be

made on a wrong grammar and thus be invalid.

E xa m p l e
--- H o w to u s e Ato C C for verification

W h a t you s h ou l d d o?

1. Locate a specific error and identify the faulty productions (shown in red)

2. Copy the related productions into the grammar transformation tool

mentioned above(https://cyberzhg.github.io/toolbox/cfg2ll).

3. Copy the correction from the tool and paste it into AtoCC

4. Do some modification to adapt to AtoCC format

5. Check the grammar again

Note: Don’t try to solve more than one production at a time. When you solve one production’s

error, use the tool to check to make sure you are not bringing new errors.

https://cyberzhg.github.io/toolbox/cfg2ll

result from the tool after modification, adapted toAtoCC

E x a m p l e
--- H o w to u s e U n i v e rs i t y o f C a l g a r y To o l

U n d e r s t a n d t h e f o r m a t o f
U n i v e r s i t y C a l g a r y g r a m m a r t o o l

● Go to the link – (https://smlweb.cpsc.ucalgary.ca/start.html)

● Enter the grammar in below format.

https://smlweb.cpsc.ucalgary.ca/start.html

U s e P r e v i o u s E x a m p l e

Vi e w s t a t i s t i c s

● .

Transforming to LL(1) Grammar

● .

Transforming to LL(1) Grammar

● .

G r a m m a r i s L L (1)

● .

First Set and Follow Set

30

example 1 in format of university of calgary tool :

E -> T E'.

E' ->

| + T E'.
T -> F T'.

T' ->

|* F T'.

F -> 0

| 1

| (E).

Note: Here, E‘ -> represents the epsilon

31

G e n e r a t e L L (1) Pa r s i n g Ta b l e

● .

G e n e r a t e L L (1) Pa r s i n g Ta b l e

First Set and Follow Set

34

example 2:

S ->A B C D E

A ->a |εB ->b |εC ->c

D ->d |ε

E ->e |ε

Note: covert the grammar into corresponding format before

using the tool

First Set and Follow Set

35

example 3:

S ->B b |C d

B ->a B |ε

C ->c C |ε

First Set and Follow Set

36

example 4:

S ->A C B |C b B |B a

A ->d a |B C

B ->g |ε

C ->h |ε

T o o l g i v e n i n A s s i g n m e n t h a n d o u t

T h a n k s

