COMP 442 /6421
Compiler Design

Grammars and Parsing

Instructor: Dr Joey Paquet
TAs: Vashisht Marhwal

Hamed Jafarpour

mailto:paquet@cse.concordia.ca
mailto:h_lai@encs.concordia.ca

Assignment 2 :Syntax Analysis (Highlights)

e To achieve assignment #2, there are 2 stages:
o Transform the grammarinto an LL(1) grammar

o Implement the parser

e Theimplementation absolutely cannot start before the grammar has been transformed.

o Setof tools to help achieve the transformation

o Sample usage of these tools.

The Goal of Assignment 2

1. Convertthe given CFG to an LL(1) grammar
a. Usetools to help your transformation procedure
b. Change EBNF to non-EBNF representation in grammar
Cc. Remove ambiguities and left recursions
d. After each transformation step, verify that your grammar was not broken

2. ImplementalLL(1) parser
a. Recursive descent predictive parsing
b. Table-driven predictiveparsing

Obstacles to overcome in Assignment 2

Quick review
1. Ambiguity

2. Non-deterministic
3. Leftrecursion

For in-detail theory, see the lecture slide set [syntax analysis: introduction].

Ambiguity Gmmmar

Grammar: E->E +E |E*E |i
Input string: id *id +id

Requirement of the parse tree:

A tree that its in order traversal should give the string same as the input string

Ambiguity Grammar

The solution for ambiguity is rewrite the grammar (that’s exactly what you need to doin
assignment 2) to make it unambiguous.

In this case, we want to enforce precedence of multiplication over addition.

original: E->E +E |E *E |id
modified:
E->E'+E|E’

E'->id *E' |id

Non-deteministic Grammar

A— afy | aps | aps

1. backtracking can solve this problem, but it is inefficient;
2. introduce a new non-terminal which we refer as left factoring

A > oA

A= B | B | B3

Left Recursion

Garmmar: A ->Aa| B

By analyze these three possibilities, our goal is to construct something like: A ->pBa*
But we don't allow *in the grammar, so we can replace a*with a new non-terminal A, so we have:

A ->BA’
A ->aA’|e

Example: removing EBNFconstructs

Assume you was given a grammar as following, with EBNF repetition:
commaSeparatedList -> a {,a} | EPSILON
You should remove the EBNF r ition and com with the following grammar:
commaSeparatedList -> a commaSeparatedListTail

| EPSILON

commaSeparatedListTail -> ,a commaSeparatedListTail
| EPSILON

Example: removing left recursion

After removal of all EBNF format instances, assume you have something like:

expr -> expr + term | term
term -> term * factor | factor
factor -> "(' expr ')' | 'x'

Remove left recursions (on expr and term) using the transformation shown in class:

1- Isolate each set of productions of the form:
A - Ada; | Ao, | Adas | .. (left-recursive)
A= Bi]| Bl Bs| (non-left-recursive)
2- Introduce a new non-terminal A’

3- Change all the non-recursive productions on A to:
A = BA" | BA" | BsA |
4- Remove the left-recursive production on A and substitute:
A —> e | A" | aA | oA | ... (right-recursive)

AtoCC kfgEdit

e Tool that allows you to analyze your grammar and locate possible ambiguities in the
grammar.

e After you grammar is entered, it also allows you to enter a string representing a token
stream and verify if this token stream is derivable from the grammar. Ifit is, it generates a
parse tree and a derivation for it.

e How to install A to CC were described in previous labs

How tocome up with the proper grammar?

- You receive the initial grammar in EBNF in assignment 2 description already

- You need to remove the EBNF since AtoCC kfgEdit cannot understand this form
- Perform left factoring (if necessary)

- Remove left recursion (if exist, unfortunately, they exist in the given grammar)

It is strongly suggested that every time you make a single transformation step, that you use
AtoCC to check whether your transformation broke the grammar or not.

Don't try to correct many errors in one shot, it is easy to get lost. Plus, if you make a mistake in
one transformation step and you carry on without checking, your further transformation will be
made on a wrong grammar and thus be invalid.

Example

---How to use AtoCC for verification

File Help
] * H y > >
Hew Open Save | Validate Grammar isregular 2 Export Automaton Export Compiler

KkfG Edit | Language Grammar IDel ivation | LL(1) conditions | Definition

kfG Edit
Define Grammar

msert: 5}) | Format: [[T sform: ene (3 B L5 | Panels: | [T

Grammar Symbol List

<

How to define a grammar:
e You only need to define your production rules here!
Terminals can also be written within ' '. Terminals will become black and non-terminals red.
First non-terminal on the left side will automatically be the start symbol!
A grammar example for palindroms over {a,b}*:
S->aSa|bSb | EPSILON
For epsilon rules just leave a blank in a rule or write EPSILON:

Genesis-x7 Software 2007 - 2008

®=@ 4 KfG Edit
File Help %

¥ H /] / >
Hew Open Save Validate Grammar isregular 2 Export Automaton Export Compiler

KfG Edit | Language | Grammar | Derivation] LL(1) con | Definition |

kfG Edit i
First&Foliow [

LL(1) Conditions: with:
g =
a = E =%
ap = s

O Check Condition 1

O Check Condition 2 ;
First-Sets:

© s LL(1) Grammar 2 FIRST (“0)
FIRST (1)

FIRST (u2)

Oy oy

- ((, id)
{(, id)
{(, id)} {(, id)

ag =
ay = /
g = *

F
F

First-Sets:

FIRST (ug) = {(, id}
FIRST (1) = {(, id)

FIRST (u2) = {(, id}

Co Oy G2
{(, id}[{(, id)})
{(, id)

Genesis-X7 Software 2007 - 2008

O3
ay (G ddd| - (¢, id)
L ap UG ddy[t(, ddy| -

\

first set intersection

| |
H(, did)[((, id)
[ay (¢, id}| - |

Cap (G A da)| -

go to the very end of the page

LL(l1) first condition not fulfilled!

E = O | 01 | a3

Whatyou should do?

((, id}[((, id)
ay [ddy| - [, id)
oy [((, id)[t(, id)| -

Locate a specific error and identify the faulty productions (shown in red)
2. Copy the related productions into the grammar transformation tool

mentioned above().
3. Copy the correction from the tool and paste it into AtoCC
4. Do some modification to adaptto AtoCC format
5. Check the grammar again

—

Note: Don't try to solve more than one production at a time. When you solve one production’s
error, use the tool to check to make sure you are not bringing new errors.

https://cyberzhg.github.io/toolbox/cfg2ll

1E —> T ETailTail
2T -—> F TTailTail
3F -> (E)

4 | id

SETail -> + T

[| = T

?TTail -> * F

8 .o/

9ETailTail -> ETail ETailTail

1@ | EPSILON

11 TTailTail -> TTail TTailTail
| EPSILON

result from the tool after modification, adapted toAtoCC

File Help

kfG Edit
* W | > >
Hew Open Save Validate Grammar is reg X

Automaton Export Compiler
KfG Edit] Language] Grammar | Derivatio

kfG Edit

First&Follow SRS

Definition

LL(1) Conditions: with:
g = T ETialTial
O Check Condition 1 3
First-8Setas:
) Check Condition 2 FIRST (ag) = {((, id}
@ is LL(1) Grammar ? T —» O
with:

g = F TTialTial

First-Sets:

LL(1) first condition Fulfilled!
FIRST (cg) = {(,

) LL(1} second condition fulfilled!
id}

Lo |

F - O | 0y

with:
ap = id
ay = (E)

First-Sets:

FIRST (¢zg) = {id}
FIRST (x1) = {(}

Qg O
g =

Oq 23 e

ETail — Cg | O3

with:
Genesis-X7 Software 2007 - 2008

LL(1) first condition fulfilled!

FIRST (ETailTail) = {+, -, EPSILON}
FOLLOW (ETailTail) = {§,)}
FIRST (ETailTail) n FOLLOW(ETailTail)

FIRST (TTailTail) = {*, /, EPSILON}
FOLLOW (TTailTail) = {§,), +, -}
FIRST (TTailTail) v FOLLOW (TTailTail)

LL(1l) second condition fulfilled!

Example

---How to use University of Calgary Tool

Understand the format of
University Calgary grammar tool
e Go to the link — ()

Enter the grammar in below format.

Enter a grammar:

| View Vital Statistics |

Here's a small. quick, example grammar to give you an idea of the format of the grammars

S -> id
| V assign E.
-> id.
E ->V
| num.

To see more grammars and learn more about the format of the grammars:

e |[Read about th
* Look at some

https://smlweb.cpsc.ucalgary.ca/start.html

Use Previous Example

Enter a grammar:

E->E+T
| E minus T

View Vital Statistics

View statistics

Grammar Some sentences generated by this grammar: {id, (id), id / id, id + id, id * id, ic
E 5E + T id, id + id * id, id / id * id, id + id / id, id * id * id. id minus id * id, id minus id

| E minus T
| T.
T>T *F
| T / F
| F.
F>(E)
| id.

All nonterminals are reachable and realizable.
There are no nullable nonterminals.

The endable nonterminals are: F E T.

No cycles.

nonterminal first set| follow set nullable endable
E (id -+ minus) no yes
T (id * / + minus)| no yes

F (id * / + minus)| no yes
The grammar 1s not LL(1) because:

* E 1s left recursive.
* T is left recursive.

s attempt to fx orm the grammar (to LIL(1))

Transforming to LL(1) Grammar

Grammar
ESE+T
| E minus T
[T
T 5T *F

?

Transformations for cleaning: / ?

Transformations for changing format of grammar:

View vital statistics for this grammar.

Transforming to LL(1) Grammar

Grammar
Old Grammar 7 e
Grammar Fvo il Er
ESE+T | minus T E4q
| E minus T |-
|

T> FT1.
TH>T*F

T1>* F 1y
|7 FTq
[-

ERS(RIER)
|id .

Performed the 'removing left recursion' transformation.

The grammar is now LL(1).

m

Transformations for cleaning: \uto-clean

Transformations for changing format of grammar:

View vital statistics for this grammar.

Grammar is LL(1)

Grammar Some sentences generated by this grammar:
id*id.id*i1d/id/i1d.1d/1d * 1d

E-> T E -

E, >+ T Eq
minus T Eq

F T4 -

F T4

F T4

All nonterminals are reachable and realizable.
The nullable nonterminals are: E; T,.
The endable nonterminals are: T, FE E; T.

No cycles.

nonterminal first set follow set
E (id)
+ minus)
(id) + minus
*/) + minus

nullable endable
no yes
yes yes
no yes

ves yes

(1id) * / + minus no yes

he grammar 1s LI(1).

id. id * id

’

!
'

First Set and Follow Set

example 1 in format of university of calgary tool :
E->TE.
E'->
| + TE"
T->FT.
T->
|*FT.
F->0
| 1
| (E).

Note: Here, E' -> represents the epsilon

Grammar Some senfences generated by this grammar: |1, 0,

Es TE'. ¥1*1,0%0%*0}

E' »

|+ TE". FIRST(E) = FOLLOW(E) = {$,)}
FIRST(E?) FOLLOW(E?) = {$,)}
FIRST(T) FOLLOW(T) {+,%,)}
FIRST(T?) FOLLOW(T?) {+,%,)}
FIRST(F) = FOLLOW(F) = {*,+,%,)}

All nonterminals are reachable and realizable.
The nullable nonterminals are: E' T".

The endable nonterminals are: T'FEE' T.
No cycles.

nonterminal first set follow set nullable endable

E 01() no yes
E' 4) yes yes
T 01()+ no yes
T v)+ yes yes

01¢(yes

31

Generate LL(1) Parsing Table

All nonterminals are reachable and realizable.
The nullable nonterminals are: E' T".

The endable nonterminals are: T'F E E' T.
No cycles.

nonterminal first set follow set nullable endable
E 01 (no yes
E' + yes yes
T 01¢(no yes
T * yes yes
F 01¢(no yes

The grammar 1s LL(1).

SRESRATAEARSAAT grainmartio I T.(1))
generate L1 (1) parsing table

Generate LL(1) Parsing Table

Grammar

s 1y [el v Jo] = | + |
B | [e-TEE-TEE-TE[|
» &epsilon [E' — &epsilon EEED“

EE
T | JroPTfroFTEorT] [

> &epsilon |T' — (Lepallonzzz T' — &epsilon

T
G B =10 =T =T R B

Return home to enter a new grammar.

First Set and Follow Set

example 2:

S->ABCDE
A->aleB->b|eC->c
D->d]|e

E->ele

Note: covert the grammar into corresponding format before
using the tool

34

\ First Set and Follow Set

example 3:

S->Bb|Cd
B->aB|¢
C->cC|e

35

\ First Set and Follow Set

example 4:

S->ACB|CbB|Ba
A->da|BC
B->g|e

C->h]|e

36

Tool given in Assignment handout

In assignment 2 ZIP file refer the read me file.

Follow the steps given in read me file

Remove the ambiguity from the grammar
Convert the grammar to the university of Calgary grammar tool or A to CC format

Analyze your grammar .

Thanks

