
Concordia University
Department of Computer Science

and Software Engineering

Compiler Design (COMP 442/6421)
Winter 2024

Assignment 5, Code Generation

Deadline: Tuesday April 5th, 2024
Evaluation: 8% of final grade
Late submission: penalty of 50% for each late working day

In this assignment, you are to implement a code generation phase for the language as described in the previous assignments.
The following section lists the different specific constructs/concepts for which code generation needs to be implemented for all
the aspects of the language to become executable.

Problem statement

1. Memory allocation: As variables are declared, memory space must be allocated that will eventually be used to store their
values. Memory cells are either identified using a unique Moon assembly code label, or an offset relative to the stack frame on
which the variable will reside during execution of the function scope in which it is declared. The size of the allocated memory
block should depend on the declared type/kind of variable (integer, float, array, object, array of objects, etc.) and should be
stored in the symbol table entries for each declared variable.

2. Functions: The code generated for functions should be associated with a Moon assembly code subroutine, i.e. a block of
code that can be jumped to using a label, then when the function resolves, jump back to the instruction following the initial jump.
Parameters should be passed/received during the function call. The return value should be passed to the calling function when
the function resolves. If a call to a member function is made, the member function should have access to the data members of
the object from which it was called.

3. Statements: Every kind of statement as defined in the grammar should be translated into executable Moon code: assignment
statement, conditional statement, loop statement, input/output statements, return statement, etc.

4. Aggregate data elements access: Aggregate data types such as arrays and objects contain a group of data values. The
code must be generated so that contained member values in such an aggregated value can be accessed when referred to as
factors in an expression or the left-hand side of an assignment statement. This includes access to array elements and object
members. Access to these should be implemented using offset calculation.

5. Expressions: Computing of the resulting value of an entire expression, including the simple case when an expression is
either a variable name or a single literal value, up to complex expressions involving all kinds of operators (arithmetic, logical,
and relational), array indexed with expressions, deeply nested object member access using the dot operator, etc. This involves
memory allocation for literal values, temporary results, and register allocation/deallocation when necessary.

Work to submit

Document

You must provide a short document that includes the following sections:

Section 1. Analysis : Using the (1-5) itemized list provided below (see “Implementation”), provide a checklist that identifies

what code generation items are either implemented or not implemented in your assignment.
Section 2. Design : I – Overall design – Description/rationale of the overall structure of the solution and the roles of the

individual components used in the applied solution. II – Phases – Description of the purpose of each phase involved
in the implementation of this assignment.

Section 3. Use of tools : Identify all the tools/libraries/techniques that you have used in your implementation and justify why
you have used these particular ones as opposed to others.

Implementation

1. Memory allocation marks

1.1 Allocate memory for basic types (integer, float). 1.0

1.2 Allocate memory for arrays of basic types. 0.5

1.3 Allocate memory for objects. 0.5
1.4 Allocate memory for arrays of objects. 0.5

2. Functions marks

2.1 Branch to a function’s code block, execute the code block, branch back to the calling function. 1.0

2.2 Pass parameters as local values to the function’s code block. 1.0
2.3 Upon execution of a return statement, pass the return value back to the calling function. 1.0

2.4 Call to member functions that can use their object’s data members. 1.0

3. Statements marks

3.1 Assignment statement: assignment of the resulting value of an expression to a variable, independently of what is the
expression to the right of the assignment operator.

1.5

3.2 Conditional statement: implementation of a branching mechanism. 1.0

3.3 Loop statement: implementation of a branching mechanism. 1.0

3.4 Input/output statement: execution of a keyboard input statement should result in the user being prompted for a value from
the keyboard by the Moon program and assign this value to the parameter passed to the input statement. Execution of a
console output statement should print to the Moon console the result of evaluating the expression passed as a parameter
to the output statement.

2.0

4. Aggregate data elements access marks
4.1. For arrays of basic types (integer and float), access to an array’s elements. 1.0

4.2. For arrays of objects, access to an array’s element’s data members. 1.0

4.3. For objects, access to members of basic types. 1.0

4.4. For objects, access to members of array or object types. 1.0

5. Expressions marks
5.1. Computing the value of an entire complex expression. 2.0

5.2. Expression involving an array factor whose indexes are themselves expressions. 1.0

5.3. Expression involving an object factor referring to object members. 1.0

Notes : (1) Difficulty rating is provided as green: easy, yellow: medium, red: harder. (2) Marking elements with higher marks
indicate constructs that are necessary to have in order to demonstrate that the generated code runs correctly. (3) This is the list
of code generation elements due for assignment 5. More code generation elements are going to be added on the grading
scheme for the final project requirements.

•••• Output of moon code in a file : The Moon code should be output to a file, including comments in the generated code to
highlight the structure of the code generated for each syntactical construct. When compiling a file named, for example,
originalfilename.src, the code generator should write the Moon code into a file named originalfilename.moon.

•••• Test cases : Write a set of source files that enable to test the code generation for all syntactical structures that you can
generate code for, including simple cases that test isolated syntactical constructs, and more complex cases that test
combinations of syntactical constructs.

•••• Driver : Include a driver that reads your test cases and generates, for each test case file, the corresponding .moon file.

Assignment submission requirements and procedure

• Each submitted assignment should contain four components: (1) the source code, (2) a group of test files, (3) a brief report,

and (4) an executable named compilerdriver, that does the code generation for all your test files. For each
originalfilename.src test file, the corresponding originalfilename.moon files should be generated.

• The assignment statement provides test files (.src) and their corresponding output files.

• The source code should be separated into modules using a comprehensible coding style.

• The assignment should be submitted through moodle in a file named: “A#_student-id” (e.g. A1_1234567, for Assignment
#1, student ID 1234567) and the report must in a PDF format.

• You may use any language you want in the project and assignments but the only fully supported language during the lab is
Java.

• You have to submit your assignment before midnight on the due date on moodle.

• The file submitted must be a .zip file

The marking will be done in a short presentation to the marker. A schedule will be provided to you by email in the days before
the due date. You will be given a short time for the presentation, so make sure that you are ready to effectively demonstrate all
the elements mentioned in the “Work to submit” section above.

Evaluation criteria and grading scheme

Analysis:

Using the (1-5) itemized list provided above (see “Implementation”), provide a checklist that identifies
what code generation items either implemented or not implemented in your assignment. For each
item, indicate what file/line number is testing it. (Document Section1)

ind 2.1 2 pts

Design/implementation:

Description/rationale of the overall structure of the solution and the roles of the individual components
used in the applied solution. (Document Section 2 – I)

ind 4.3 2 pts

Description of the purpose of each phase involved in the implementation of this assignment.
(Document Section 2 – II)

ind 4.3 3 pts

Correct implementation according to the above-stated requirements (see “Problem statement” and
“Implementation” above).

ind 4.4 20 pts

Output of executable Moon code in a corresponding .moon file. ind 4.4 3 pts

Completeness of test cases. ind 4.4 15 pts

Use of tools:

Description/justification of tools/libraries/techniques used in the analysis/implementation. ind 5.2 2 pts

Successful/correct use of tools/libraries/techniques used in the analysis/implementation. ind 5.1 3 pts

Total 50 pts

