
C O M P 4 4 2 / 6421
C o m p i l e r D e s i g n

Instructor:
TAs:

Dr. Joey Paquet

Vashisht Marhwal

Hamed Jafarpour

paquet@cse.concordia.ca
vmarhwal97@gmail.com

hamed.jafarpour@concordia.ca

1

Code Generation II

mailto:paquet@cse.concordia.ca
mailto:h_lai@encs.concordia.ca
mailto:h_lai@encs.concordia.ca

Content

2

- Commands for running moon code

- Important notes for Assignment 5

- Code generation for function definitions and function call stack

Commands for running moon code

• require c compiler. on linux system following commands can be runnable
• gcc moon.c -o moon
• ./moon sample.m lib.m

Example
source code →assembly code

How to do Assignment 5 ?

7

Assignment 5 is fairly involved

• You will likely not have time to implement every feature of the language.

• Familiarize yourself with the Moon processing environment

• Implement simple statements for compiler code generation

• Read/Write critical for testing

• Simple arithmetic requires few memory considerations

• Pick a static memory scheme

• Use Tags or stack-based approach

• Prioritize the implementation of language features

◦By difficulty

◦By utility

◦By grade weight

Important notes for Tag

based approach

8

• Tags in moon code are necessary for jumping between functions and
conditional structures

• They are straightforward to use, but make sure generated tags are always
unique

• Prefixes can help with this

• Be careful of tricky edge cases:

• Function overloading

• Function overriding and inheritance

• Similar free functions and member functions

• If using tag for memory, uniqueness is much harder

Example

• class_function_functionName_param1Type_param2Type

• if_22, then_22, else_227

Code generation: suggested sequence

9

Suggested sequence:

• variable declarations (integers first)

• expressions (one operator at a time)

• assignment statement

• read and write statements

• conditional statement

• loop statement

Tricky parts:

• function calls

• expressions involving arrays and classes (offset calculation)

• floating point numbers (non-native in Moon)

• function call stack

• expressions involving access to object members (offset calculations)

• calls to member functions (access to object’s data members)

Solution:

• Branching to the function’s code
• Passing/storing the parameter values
• Storing/passing the return value

Code generation: Function definitions

10

Example:

Code generation: Function definitions

11

• previous example uses static memory allocation for a function, which is assuming
that there can be at most one instance of a function being executed at any time.

• To allow more than one instance of a function to execute at the same time, a
dynamic memory allocation scheme is necessary, i.e. a function call stack

Code generation: Function definitions

12

• with recursive function calls, the problem is that several instances of the same
function can be running at the same time, hence there is a need to store a
separate state of each function instances of the same function.

• To enable more than one function instance to run at the same time, all the
variables and parameters of a running function are stored in a stack frame which
is dynamically allocated on a function call stack.

• Another problem with multiple function instances is that r15 is used to store the
return address that is going to be branched upon after a call. If there is more than
one consecutive call (i.e. main calls f1, then f1 calls f2), then the return address
needs to be stored in the function call’s stack frame.

multiple function call instances

13

• The location of the stack frame on top of the stack (topofstack) is managed by adding/subtracting stack
frame sizes as an accumulated offset from the base address of the stack (fstack).

• Before a function is called, topofstack is incremented by the stack frame size of the function currently being
executed.

• Then, when the functions’ code uses its local variables, it refers to them using offsets relative to topofstack.

• After the function returns, the calling function “removes” the called function’s stack frame, i.e. topofstack is
decremented by its function call stack frame size.

function call stack and stack frames

14

function call stack and stack frames

15

program{
int a;
float b;
… f1(…) … }

int f1(…){
float a[2];
int b;
… f2(…) …}

int f2(…){
int x,y; }

topofstack = fstack+sizeof(program)

f2()

f1()

topofstack = fstack+sizeof(program)+sizeof(f1)
(int) x
(int) y

(int) b

(float) a[0]

(float) a[1]

program
fstack

(int) a

(float) b

• The first step is to compute the size of all variables involved in the compiled program.
• These can be stored in the symbol tables.
• Memory also needs to be reserved for intermediate results, and literal values used in the compiled program.
• Then you can compute the offset of each element in a reserved block

function call stack: compute variables/block

sizes and offsets

16

Example

function call stack: compute variables/block

sizes and offsets

17

program{
int a;
int b;
int c;
a = 1;
put(a);
b = 2;
put(b);
c = 3;
put(c);
a = a + b c;
put(a + 6);

} // result = 13

Function calls using stack: full example

18

Function calls using stack: full example

19

Function calls using stack: full example

20

Thanks!

21

