
X
Submi�ed by: 

Marker: 
General Notes: 

Notes %mark ra�o le�er
0% 100.00% 1 Part 1 : Commandprocessor and command processor adapter

0% 100.00% 2 Part 2 : Game startup phase

0% 100.00% 3 Part 3 : Game play: main game loop

0% 100.00% 4 Part 4 : Order execu�on imlementa�on

0% 100.00% 5 Part 5 : Game log observer: commands and orders

Grading rubric ra�o Part 1 Part 2 Part 3 Part 4 Part 5 Score ra�o Total marks

All notes

1 :  : 
0% 10.00% 1.1 :  : 
0% 0.00% X 1.1.1 Students are fully aware of the correct Warzone game rules to implement during the presenta�on 1.1.1 : X : 
0% 60.00% 1.2 :  : 
0% 0.00% X 1.2.1 Upon star�ng the applica�on, a command line op�on is set to either read commands from the console or from a given file. 1.2.1 : X : 
0% 0.00% X 1.2.2 Commands can be read from the console using the class 1.2.2 : X : 
0% 0.00% X 1.2.3 Commands can be read from a file using the  class that is a subclass of the  class 1.2.3 : X : 
0% 0.00% X 1.2.4 Commands are save in a list of commands in the command processor 1.2.4 : X : 
0% 0.00% X 1.2.5 Commands can be validated by the command processor 1.2.5 : X : 
0% 0.00% X 1.2.6 All data members of user-defined class type are of pointer type. 1.2.6 : X : 
0% 0.00% X 1.2.7 Classes declared in the  header file. Func�ons implemented in  file. Absence of inline func�ons 1.2.7 : X : 
0% 0.00% X 1.2.8 All classes implement a correct copy constructor, assignment operator, and stream inser�on operator. 1.2.8 : X : 
0% 0.00% X 1.2.9 Absence of memory leaks. 1.2.9 : X : 
0% 0.00% X 1.2.10 Driver  demonstrates that commands can be read from the console using the CommandProcessor class. 1.2.10 : X : 
0% 0.00% X 1.2.11 Driver  demonstrates that commands can be read from a saved text file using the FileCommandProcessorAdapter class. 1.2.11 : X : 
0% 0.00% X 1.2.12 Driver  demonstrates that commands that commands that are invalid in the current game state are rejected and valid commands result in the correct effect and state change. 1.2.12 : X : 
0% 10.00% 1.3 :  : 
0% 0.00% X 1.3.1 All is implemented in the file duo named  and no other files. 1.3.1 : X : 
0% 0.00% X 1.3.2 Presence of classes named , , , and organized according to the adapter design pa�ern as depicted on the assignment handout 1.3.2 : X : 
0% 0.00% X 1.3.3 The public method can be used by the GameEngine to read and save a command when needed. 1.3.3 : X : 
0% 0.00% X 1.3.4 The protected  method reads a string from the console. 1.3.4 : X : 
0% 0.00% X 1.3.5 The protected  method saves the command in the list of commands. 1.3.5 : X : 
0% 0.00% X 1.3.6 The method can be used to save the effect of the command as a string inside the Command object. 1.3.6 : X : 
0% 0.00% X 1.3.7 The  command can be used to validate if a given command is valid in the current game state. 1.3.7 : X : 
0% 10.00% 1.4 :  : 
0% 0.00% X 1.4.1 The program never crashed during the demonstra�on or code review 1.4.1 : X : 
0% 0.00% X 1.4.2 Students were very clear in technical discussions during the demonstra�on 1.4.2 : X : 
0% 10.00% 1.5 :  : 
0% 0.00% X 1.5.1 All user-defined classes, methods, free func�ons, and operators are documented 1.5.1 : X : 
0% 0.00% X 1.5.2 Clear/consistent naming conven�on is used 1.5.2 : X : 
0% 0.00% X 1.5.3 Absence of commented-out code 1.5.3 : X : 

 :  : 
2 :  : 

0% 10.00% 2.1 :  : 
0% 0.00% X 2.1.1 Students are fully aware of the correct Warzone game rules to implement during the presenta�on 2.1.1 : X : 
0% 0.00% X 2.1.2 Code is implemen�ng game mechanics that is fully according the Warzone game 2.1.2 : X : 
0% 60.00% 2.2 :  : 
0% 0.00% X 2.2.1 In the start state, the loadmap command results in successfully loading a readable map, transi�oning to the maploaded state 2.2.1 : X : 
0% 0.00% X 2.2.2 In the maploaded state, the validatemap command is used to validate the map. If successful, the game transi�ons to the mapValidated state 2.2.2 : X : 
0% 0.00% X 2.2.3 In the mapValidated state, the addplayer command can be used to create new players and insert them in the game (2-6 players). 2.2.3 : X : 
0% 0.00% X 2.2.4 In the playersAdded state, the gamestart command results in fairly distribu�ng the territories among all players 2.2.4 : X : 
0% 0.00% X 2.2.5 In the playersAdded state, the gamestart command results in randomly determine the order of play of the players in the game 2.2.5 : X : 
0% 0.00% X 2.2.6 In the playersAdded state, the gamestart command results in giving 50 ini�al armies to each player 2.2.6 : X : 
0% 0.00% X 2.2.7 In the playersAdded state, the gamestart command results in each player to draw 2 cards each from the deck 2.2.7 : X : 
0% 0.00% X 2.2.8 In the playersAdded state, the gamestart command results transi�ng to the play phase 2.2.8 : X : 
0% 0.00% X 2.2.9 Invalid commands for the current state are rejected. 2.2.9 : X : 
0% 0.00% X 2.2.10 All data members of user-defined class type are of pointer type. 2.2.10 : X : 
0% 0.00% X 2.2.11 Classes declared in the GameEngine.h header file. Func�ons implemented in the  file. Absence of inline func�ons 2.2.11 : X : 
0% 0.00% X 2.2.12 All classes implement a correct copy constructor, assignment operator, and stream inser�on operator. 2.2.12 : X : 
0% 0.00% X 2.2.13 Absence of memory leaks. 2.2.13 : X : 
0% 0.00% X 2.2.14 Driver  clearly demonstrates the effect of the loadmap command (see 2.2.1) 2.2.14 : X : 
0% 0.00% X 2.2.15 Driver  clearly demonstrates the effect of the validatemap command (see 2.2.2) 2.2.15 : X : 
0% 0.00% X 2.2.16 Driver  clearly demonstrates the effect of the addplayer command (see 2.2.3) 2.2.16 : X : 
0% 0.00% X 2.2.17 Driver  clearly demonstrates the effect of the gamestart command (2.2.4 to 2.2.8) 2.2.17 : X : 
0% 10.00% 2.3 :  : 
0% 0.00% X 2.3.1 All is implemented in the file duo named , and no other files. 2.3.1 : X : 
0% 0.00% X 2.3.2 Presence of a  that implements the whole startup phase as described in the assignment handout 2.3.2 : X : 
0% 10.00% 2.4 :  : 
0% 0.00% X 2.4.1 The program never crashed during the demonstra�on or code review 2.4.1 : X : 
0% 0.00% X 2.4.2 Students were very clear in technical discussions during the demonstra�on 2.4.2 : X : 
0% 10.00% 2.5 :  : 
0% 0.00% X 2.5.1 All user-defined classes, methods, free func�ons, and operators are documented 2.5.1 : X : 
0% 0.00% X 2.5.2 Clear/consistent naming conven�on is used 2.5.2 : X : 
0% 0.00% X 2.5.3 Absence of commented-out code 2.5.3 : X : 

 :  : 
3 :  : 

0% 10.00% 3.1 :  : 
0% 0.00% X 3.1.1 Students are fully aware of the correct Warzone game rules to implement during the presenta�on 3.1.1 : X : 
0% 60.00% 3.2 :  : 
0% 0.00% X 3.2.1 Players get the correct amount of reinforcement during te reinforcement phase during game play, a�er which the issue orders phase starts. 3.2.1 : X : 
0% 0.00% X 3.2.2 Each player's  method is called in round-robin fachion during the issue orders phase. 3.2.2 : X : 
0% 0.00% X 3.2.3 A�er all players have signified that they dont have any more orders to isse, the orders execu�on phases starts. 3.2.3 : X : 
0% 0.00% X 3.2.4 A player can create any kind of order automa�cally without any user interac�on, inlcuding those that can only be created using cards. 3.2.4 : X : 
0% 0.00% X 3.2.5 During the orders execu�on phase, the game engine gets the top order from the list of each players orders list in a round-robin fashion and executes them one by one. 3.2.5 : X : 
0% 0.00% X 3.2.6 Once all orders of all players have been executed, the game engine goes back to the reinforcement phase. 3.2.6 : X : 
0% 0.00% X 3.2.7 If during order execu�on one player controls all territories, the game goes to the win state, a�er which the replay command would put the game back into the start state, or the quit command to stop the applica�on. 3.2.7 : X : 
0% 0.00% X 3.2.8 All data members of user-defined class type are of pointer type. 3.2.8 : X : 
0% 0.00% X 3.2.9 Classes declared in header file as specified in the assignment. Func�ons implemented in cpp file as specified in the assignment. Absence of inline func�ons 3.2.9 : X : 
0% 0.00% X 3.2.10 All classes implement a correct copy constructor, assignment operator, and stream inser�on operator. 3.2.10 : X : 
0% 0.00% X 3.2.11 Absence of memory leaks. 3.2.11 : X : 
0% 0.00% X 3.2.12 Driver clearly demonstrates that a player receives the correct number of armies in the reinforcement phase (showing different cases) 3.2.12 : X : 
0% 0.00% X 3.2.13 Driver  clearly demonstrates that a player will only issue deploy orders and no other kind of orders if they s�ll have armies in their reinforcement pool 3.2.13 : X : 
0% 0.00% X 3.2.14 Driver  clearly demonstrates that a player can issue advance orders to either defend or a�ack, based on the toA�ack() and toDefend() lists 3.2.14 : X : 
0% 0.00% X 3.2.15 Driver  clearly demonstrates that  a player can play cards to issue orders 3.2.15 : X : 
0% 0.00% X 3.2.16 Driver  clearly demonstrates that a player that does not control any territory is removed from the game 3.2.16 : X : 
0% 0.00% X 3.2.17 Driver  clearly demonstrates that the game ends when a single player controls all the territories 3.2.17 : X : 
0% 10.00% 3.3 :  : 
0% 0.00% X 3.3.1 All is implemented in the file duo named ,  and no other files, except for issueOrder(), who must be implemented in the file duo . 3.3.1 : X : 
0% 0.00% X 3.3.2 Presence of a  that implements the whole reinfrocement phase as described in the assignment handout 3.3.2 : X : 
0% 0.00% X 3.3.3 Presence of a that implements the whole order issuing phase as described in the assignment handout 3.3.3 : X : 
0% 0.00% X 3.3.4 Presence of a  that implements the en�re orderexecu�on phase as described in the assignment handout 3.3.4 : X : 
0% 10.00% 3.4 :  : 
0% 0.00% X 3.4.1 The program never crashed during the demonstra�on or code review 3.4.1 : X : 
0% 0.00% X 3.4.2 Students were very clear in technical discussions during the demonstra�on 3.4.2 : X : 
0% 10.00% 3.5 :  : 
0% 0.00% X 3.5.1 All user-defined classes, methods, free func�ons, and operators are documented 3.5.1 : X : 
0% 0.00% X 3.5.2 Clear/consistent naming conven�on is used 3.5.2 : X : 
0% 0.00% X 3.5.3 Absence of commented-out code 3.5.3 : X : 

 :  : 
4 :  : 

0% 10.00% 4.1 :  : 
0% 0.00% X 4.1.1 Students are fully aware of the correct Warzone game rules to implement during the presenta�on 4.1.1 : X : 
0% 60.00% 4.2 :  : 
0% 0.00% X 4.2.1 All orders (Deploy, Advance, Airli�, Bomb, Blockade, Nego�ate) are implemented. 4.2.1 : X : 
0% 0.00% X 4.2.2 All orders are properly validated before being executed. 4.2.2 : X : 
0% 0.00% X 4.2.3 All orders execu�on result in the correct effect. 4.2.3 : X : 
0% 0.00% X 4.2.4 All data members of user-defined class type are of pointer type. 4.2.4 : X : 
0% 0.00% X 4.2.5 Classes declared in the  header file. Func�ons implemented in the  cpp file. Absence of inline func�ons 4.2.5 : X : 
0% 0.00% X 4.2.6 All classes implement a correct copy constructor, assignment operator, and stream inser�on operator. 4.2.6 : X : 
0% 0.00% X 4.2.7 Absence of memory leaks. 4.2.7 : X : 
0% 0.00% X 4.2.8 Driver  clearly demonstrates that each order is validated before being executed. 4.2.8 : X : 
0% 0.00% X 4.2.9 Driver  clearly demonstrates that ownership of a territory is transferred to the a�acking player if a territory is conquered as a result of an advance order. 4.2.9 : X : 
0% 0.00% X 4.2.10 Driver clearly demonstrates that one card is given to a player if they conquer at least one territory in a turn (not more than one card per turn). 4.2.10 : X : 
0% 0.00% X 4.2.11 Driver  clearly demonstrates that the nego�ate order prevents a�acks between the two players involved 4.2.11 : X : 
0% 0.00% X 4.2.12 Driver  clearly demonstrates that the blockade order transfers ownership to the Neutral player 4.2.12 : X : 
0% 0.00% X 4.2.13 Driver  clearly demonstrates that  all the orders described above can be issued by a player and executed by the game engine. 4.2.13 : X : 
0% 10.00% 4.3 :  : 
0% 0.00% X 4.3.1 All is implemented in the file duo 4.3.1 : X : 
0% 0.00% X 4.3.2 Presence of a  pure virtual method, and an overridden method in every Order subclass ( ) that contains all the necessary informa�on to execute the order. 4.3.2 : X : 
0% 10.00% 4.4 :  : 
0% 0.00% X 4.4.1 The program never crashed during the demonstra�on or code review 4.4.1 : X : 
0% 0.00% X 4.4.2 Students were very clear in technical discussions during the demonstra�on 4.4.2 : X : 
0% 10.00% 4.5 :  : 
0% 0.00% X 4.5.1 All user-defined classes, methods, free func�ons, or operators are documented 4.5.1 : X : 
0% 0.00% X 4.5.2 Clear/consistent naming conven�on is used 4.5.2 : X : 
0% 0.00% X 4.5.3 Code is clear and there is zero presence of commented-out code 4.5.3 : X : 

 :  : 
5 :  : 

0% 10.00% 5.1 :  : 
0% 0.00% X 5.1.1 Students are fully aware of the correct Warzone game rules to implement during the presenta�on 5.1.1 : X : 
0% 60.00% 5.2 :  : 
0% 0.00% X 5.2.1 When a command is read, it is wri�en in the log file as a result of using the Observer pa�ern as described in the assignment descrip�on. 5.2.1 : X : 

0.00% X 5.2.2 When a command is executed, its effect is wri�en in the log file as a result of using the Observer pa�ern as described in the assignment descrip�on.
0% 0.00% X 5.2.3 When an order is inserted in a player's list of orders, the order is wri�en into the log file as a result of using the Observer pa�ern as described in the assignment descrip�on. 5.2.3 : X : 
0% 0.00% X 5.2.4 When an order is executed, its effect is wri�en into the log file as a result of using the Observer pa�ern as described in the assignment descrip�on. 5.2.4 : X : 
0% 0.00% X 5.2.5 When the game engine state changes, the new state is wri�en into the log file as a result of using the Observer pa�ern as described in the assignment descrip�on. 5.2.5 : X : 
0% 0.00% X 5.2.6 All data members of user-defined class type are of pointer type. 5.2.6 : X : 
0% 0.00% X 5.2.7 Classes declared in the  header file. Func�ons implemented in the  file. Absence of inline func�ons 5.2.7 : X : 
0% 0.00% X 5.2.8 All classes implement a correct copy constructor, assignment operator, and stream inser�on operator. 5.2.8 : X : 
0% 0.00% X 5.2.9 Absence of memory leaks. 5.2.9 : X : 
0% 0.00% X 5.2.10 Driver clearly demonstrates that the , , , , and  classes are all a subclass of the  and  classes 5.2.10 : X : 

0% 0.00% X 5.2.11
Driver  clearly demonstrates that the CommandProcessor::saveCommand(), Order::execute(), Command::saveEffect(), OrderList::addOrder(), and GameEngine::transi�on() methods are effec�vely using the Observer pa�erns’ No�fy(Subject) method to trigger the wri�ng of an
entry in the log file 5.2.11 : X : 

0% 0.00% X 5.2.12 Driver  clearly demonstrates that when commands are entered on the console or read from a file, the commands are wri�en to the gamelog.txt file, and their effect is wri�en to the log file when the commands are executed 5.2.12 : X : 
0% 0.00% X 5.2.13 Driver  clearly demonstrates that when when an order is added to the order list of a player, the game log observer is no�fied which results in outpu�ng the order to the log file 5.2.13 : X : 
0% 0.00% X 5.2.14 Driver  clearly demonstrates that when an order is executed, the game log observer is no�fied which results in outpu�ng the effect of the order to the log file 5.2.14 : X : 
0% 0.00% X 5.2.15 Driver  clearly demonstrates that when the GameEngine changes its state, thegame log observer is no�fied and the new state is output to the log file. 5.2.15 : X : 
0% 10.00% 5.3 :  : 
0% 0.00% X 5.3.1 The classes , , , and  are implemented in a file duo named 5.3.1 : X : 
0% 0.00% X 5.3.2 The classes , , , , and  are subclasses of the  class and use the  method to signify the  of a state change 5.3.2 : X : 
0% 10.00% 5.4 :  : 
0% 0.00% X 5.4.1 The program never crashed during the demonstra�on or code review 5.4.1 : X : 
0% 0.00% X 5.4.2 Students were very clear in technical discussions during the demonstra�on 5.4.2 : X : 
0% 10.00% 5.5 :  : 
0% 0.00% X 5.5.1 All user-defined classes, methods, free func�ons, or operators are documented 5.5.1 : X : 
0% 0.00% X 5.5.2 Clear/consistent naming conven�on is used 5.5.2 : X : 
0% 0.00% X 5.5.3 Code is clear and there is zero presence of commented-out code 5.5.3 : X : 

Knowledge/Correctness of Game Rules 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Compliance of solu�on with Stated Problem 12 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Add/remove some lines with red cells to add/remove evalua�on criteria Modularity of Solu�on 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
When you add lines, add them only in the middle of the area, or else the calcula�on is going to be wrong Mastery of Language/Tools/Libraries 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
To add lines, add a new row, then copy into it one of the exis�ng rows. Code readability: name conven�ons, clarity of code, use of comments 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
To remove parts, remove the en�re block above, then remove the corresponding column in the green table to the right
To add more than 5 parts, it's more compilcated...

1 :  :
1.1 :  :
1.1.1 : X :
1.2 :  :
1.2.1 : X :
1.2.2 : X :
1.2.3 : X :
1.2.4 : X :
1.2.5 : X :
1.2.6 : X :
1.2.7 : X :
1.2.8 : X :
1.2.9 : X :
1.2.10 : X :
1.2.11 : X :
1.2.12 : X :
1.3 :  :
1.3.1 : X :
1.3.2 : X :
1.3.3 : X :
1.3.4 : X :
1.3.5 : X :
1.3.6 : X :
1.3.7 : X :
1.4 :  :
1.4.1 : X :
1.4.2 : X :
1.5 :  :
1.5.1 : X :
1.5.2 : X :
1.5.3 : X :
 :  :
2 :  :
2.1 :  :
2.1.1 : X :
2.1.2 : X :
2.2 :  :
2.2.1 : X :
2.2.2 : X :
2.2.3 : X :
2.2.4 : X :
2.2.5 : X :
2.2.6 : X :
2.2.7 : X :
2.2.8 : X :
2.2.9 : X :
2.2.10 : X :
2.2.11 : X :
2.2.12 : X :
2.2.13 : X :
2.2.14 : X :
2.2.15 : X :
2.2.16 : X :
2.2.17 : X :
2.3 :  :
2.3.1 : X :
2.3.2 : X :
2.4 :  :
2.4.1 : X :
2.4.2 : X :
2.5 :  :
2.5.1 : X :
2.5.2 : X :
2.5.3 : X :
 :  :
3 :  :
3.1 :  :
3.1.1 : X :
3.2 :  :
3.2.1 : X :
3.2.2 : X :
3.2.3 : X :
3.2.4 : X :
3.2.5 : X :
3.2.6 : X :
3.2.7 : X :
3.2.8 : X :
3.2.9 : X :
3.2.10 : X :
3.2.11 : X :
3.2.12 : X :
3.2.13 : X :
3.2.14 : X :
3.2.15 : X :
3.2.16 : X :
3.2.17 : X :
3.3 :  :
3.3.1 : X :
3.3.2 : X :
3.3.3 : X :
3.3.4 : X :
3.4 :  :
3.4.1 : X :
3.4.2 : X :
3.5 :  :
3.5.1 : X :
3.5.2 : X :
3.5.3 : X :
 :  :
4 :  :
4.1 :  :
4.1.1 : X :
4.2 :  :
4.2.1 : X :
4.2.2 : X :
4.2.3 : X :
4.2.4 : X :
4.2.5 : X :
4.2.6 : X :
4.2.7 : X :
4.2.8 : X :
4.2.9 : X :
4.2.10 : X :
4.2.11 : X :
4.2.12 : X :
4.2.13 : X :
4.3 :  :
4.3.1 : X :
4.3.2 : X :
4.4 :  :
4.4.1 : X :
4.4.2 : X :
4.5 :  :
4.5.1 : X :
4.5.2 : X :

1.1 Knowledge/Correctness of Game Rules

1.2 Compliance of solu�on with Stated Problem

CommanProcessor 
CommandProcessorAdapter CommandProcessor

CommandProcessing.h CommandProcessing.cpp

testCommandProcessor()
testCommandProcessor()
testCommandProcessor()

1.3 Modularity of Solu�on
CommandProcessing.cpp/CommandProcessing.h,

CommandProcessor Command FileCommandProcessorAdapter FileLineReader 
CommandProcessor::getCommand() 

CommandProcessor::readCommand()
CommandProcessor::saveCommand()

Command::saveEffect() 
CommandProcessor::validate()

1.4 Mastery of Language/Tools/Libraries

1.5 Code readability: name conven�ons, clarity of code, use of comments

2.1 Knowledge/Correctness of Game Rules

2.2 Compliance of solu�on with Stated Problem

GameEngine.cpp

testStartupPhase()
testStartupPhase()
testStartupPhase()
testStartupPhase()

2.3 Modularity of Solu�on
GameEngine.cpp/GameEngine.h

GameEngine::startupPhase()
2.4 Mastery of Language/Tools/Libraries

2.5 Code readability: name conven�ons, clarity of code, use of comments

3.1 Knowledge/Correctness of Game Rules

3.2 Compliance of solu�on with Stated Problem

issueOrder()

testMainGameLoop() 
testMainGameLoop()
testMainGameLoop()
testMainGameLoop()
testMainGameLoop()
testMainGameLoop()

3.3 Modularity of Solu�on
GameEngine.cpp/GameEngine.h Player.h/Player.cpp

GameEngine::reinforcementPhase()
GameEngine::issueOrdersPhase() 
GameEngine::executeOrdersPhase()

3.4 Mastery of Language/Tools/Libraries

3.5 Code readability: name conven�ons, clarity of code, use of comments

4.1 Knowledge/Correctness of Game Rules

4.2 Compliance of solu�on with Stated Problem

Orders.h Orders.cpp

testOrderExecu�on()
testOrderExecu�on()
testOrderExecu�on() 
testOrderExecu�on()
testOrderExecu�on()
testOrderExecu�on()

4.3 Modularity of Solu�on
Order.h/Orders.cpp

 Order::execute() execute() Deploy, Advance, Airli�, Bomb, Blockade, Nego�ate
4.4 Mastery of Language/Tools/Libraries

4.5 Code readability: name conven�ons, clarity of code, use of comments

5.1 Knowledge/Correctness of Game Rules

5.2 Compliance of solu�on with Stated Problem

LoggingObserver.h LoggingObserver.cpp

 Command CommandProcessor Order OrderList GameEngine Subject ILoggable
testLoggingObserver()

testLoggingObserver()
testLoggingObserver()
testLoggingObserver()
testLoggingObserver()

5.3 Modularity of Solu�on
Subject ILoggable Observer LogObserver LoggingObserver.cpp/LoggingObserver.h
Order OrderList GameEngine Command CommandProcessor Subject Subject::no�fy() LogObserver

5.4 Mastery of Language/Tools/Libraries

5.5 Code readability: name conven�ons, clarity of code, use of comments

Designer instruc�ons

Total 20 0.00 0.00 0.00 0.00 0.00 0.00

Marker instruc�ons
Enter values only in the red cells. Everything else is calculated automa�cally. 
In Column D, enter either A, B, C, or F for each marking element
Enter notes in column A
If there is an en�re part that has been agreed to not be graded, delete one of the columns in the green table (Part 1 to Part 5)


