
 1

Concordia University
Department of Computer Science

and Software Engineering

Advanced program design with C++
COMP 345 --- Fall 2021

Team project assignment #3

Deadline: December 3st, 2020
Evaluation: 10% of final mark
Late submission: not accepted
Teams: this is a team assignment

Problem statement

This is a team assignment. It is divided into distinct parts. Each part is about the development of a part of the topic
presented as the team project. Even though it is about the development of a part of your team project, each
assignment is to be developed/presented/tested separately. The description of each part describes what are the
features that the part should implement, and what you should demonstrate. Note that the following descriptions
describe the baseline of the assignment, and are related to the project description. See the course web page for a
full description of the team project, as well as links to the details of the game rules to be implemented.

Specific design requirements

1. All data members of user-defined class type must be of pointer type.
2. All file names and the content of the files must be according to what is given in the description below.
3. All different parts must be implemented in their own separate .cpp/.h file duo. All functions’ implementation

must be provided in the .cpp file (i.e. no inline functions are allowed).
4. All classes must implement a correct copy constructor, assignment operator, and stream insertion operator.
5. Memory leaks must be avoided.
6. Code must be documented using comments (user-defined classes, methods, free functions, operators).
7. If you use third-party libraries that are not available in the labs and require setup/installation, you may not

assume to have help using them and you are entirely responsible for their proper installation for grading
purposes.

8. All the code developed in assignment 2 must stay in the same files as specified in assignment #1:
• Map loading and in-game map implementation: Map.cpp/Map.h
• Command processing: CommandProcessing.cpp/CommandProcessing.h
• Player implementation: Player.cpp/Player.h
• Card hand and deck implementation: Cards.cpp/Cards.h
• Orders implementation: Orders.cpp/Orders.h
• Game controller implementation: GameEngine.cpp/GameEngine.h
• Game logging: LoggingObserver.cpp/LoggingObserver.h

 2

Part 1: Player strategy pattern

Using the Strategy design pattern, implement different kinds of players that make different decisions during the
issuing orders phase by implementing different versions of issueOrder(), toAttack() and toDefend() in
different ConcreteStrategy classes, whose respective behaviors are described below. The kinds of players are:

• Human player: requires user interactions to make decisions.
• Aggressive player: computer player that focuses on attack (deploys or advances armies on its strongest

country, then always advances to enemy territories until it cannot do so anymore).
• Benevolent player: computer player that focuses on protecting its weak countries (deploys or advances armies

on its weakest countries, never advances to enemy territories).
• Neutral player: computer player that never issues any order. If a Neutral player is attacked, it becomes an

Aggressive player.
• Cheater player: computer player that automatically conquers all territories that are adjacent to its own

territories (only once per turn).

You must deliver a driver that demonstrates that (1) different players can be assigned different strategies that lead
to different behavior using the Strategy design pattern; (2) the strategy adopted by a player can be changed
dynamically during play, (3) the human player makes decisions according to user interaction, and computer
players make decisions automatically, which are both implemented using the strategy pattern. The code for the
Strategy class and its ConcreteStrategies must be implemented in a new
PlayerStrategies.cpp/PlayerStrategies.h file duo. In order to have a real strategy implementation, the
following conditions must be present in your resulting implementation:

• Your Player class does not have subclasses that implement different behaviors.
• You have a PlayerStrategy abstract class that is not a subclass of the Player class.
• For each strategy as described above, you have a ConcreteStrategy class: HumanPlayerStrategy,
AggressivePlayerStrategy, BenevolentPlayerStrategy, and NeutralPlayerStrategy that are
subclasses of the PlayerStrategy class.

• Each of the ConcreteStrategy classes implement their own version of the issueOrder(), toAttack(), and
toDefend() methods.

• The Player class contains a data member of type PlayerStrategy.
• The issueOrder(), toDefend(), and toAttack() methods of the player do not implement behavior and

simply delegate their call to the corresponding methods in the PlayerStrategy member of the Player.

Design of the implementation of the different player behaviors using the Strategy pattern

 3

Part 2: Tournament mode

During the start game state, a new tournament command can be entered by the user, which triggers the
Tournament Mode. While in the tournament mode, the game should proceed without any user interaction and
show the results of the tournament at the end. The tournament command is the following:

tournament -M <listofmapfiles> -P <listofplayerstrategies> -G <numberofgames> -D <maxnumberofturns>

This command lets the user choose the parameters of the tournament, i.e.: M = 1 to 5 different maps, P = 2 to 4
different computer players strategies, G = 1 to 5 games to be played on each map, and D = 10 to 50 maximum
number of turns for each game. Once the command is entered and validated, the tournament is automatically
played by playing G games on each of the M different maps between the chosen computer player strategies. In
order to minimize run completion time, each game should be declared a draw after D turns. Once started, the
tournament plays all the games automatically without user interaction. At the end of the tournament, a report of
the results should be output to the log file, e.g.

Tournament mode:
M: Map1, Map2, Map3
P: Aggressive, Benevolent, Neutral, Cheater.
G: 4
D: 30

Results:
 Game 1 Game 2 Game 3 Game 4
Map 1 Aggressive Neutral Cheater Cheater
Map 2 Cheater Draw Cheater Aggressive
Map 3 Cheater Aggressive Cheater Draw

You must deliver a driver that demonstrates that (1) the tournament command can be processed and validated by
the CommandProcessor, and executed by the GameEngine, resulting in a tournament being played as described
above. The code for the processing of the tournament command must be implemented in the existing
CommandProcessing.cpp/CommandProcessing.h file duo. The code for the execution of the tournament must
be implemented in the existing GameEngine.cpp/GameEngine.h file duo.

Assignment submission requirements and procedure

You are expected to submit a group of C++ files implementing a solution to all the problems stated above (Part 1,
2). Your code must include a driver (i.e. a main function or a free function called by the main function) for each
part that allows the marker to observe the execution of each part during the lab demonstration. Each driver should
simply create the components described above and demonstrate that they behave as mentioned above.

You have to submit your assignment before midnight on the due date using the Moodle page for the course,
under the category “programming assignment 3”. Late assignments are not accepted. The file submitted must be
a .zip file containing all your C++ code. Do not submit other files such as the project file from your IDE. You are
allowed to use any C++ programming environment as long as you can demonstrate your assignment in on zoom
during demonstration time.

Evaluation Criteria

Knowledge/correctness of game rules:

Mark deductions: during the presentation or code review it is found that the
2 pts (indicator 4.1)

 4

implementation does not follow the rules of the Warzone game.
Compliance of solution with stated problem (see description above):

Mark deductions: during the presentation or code review, it is found that the code
does not do some of which is asked in the above description.

10 pts (indicator 4.4)

Modularity/simplicity/clarity of the solution:
Mark deductions: some of the data members are not of pointer type; or the above
indications are not followed regarding the files needed for each part.

2 pts (indicator 4.3)

Mastery of language/tools/libraries:
Mark deductions: constructors, destructor, copy constructor, assignment operators not
implemented or not implemented correctly; the program crashes during the
presentation and the presenter is not able to right away correctly explain why.

4 pts (indicator 5.1)

Code readability: naming conventions, clarity of code, use of comments:
Mark deductions: some names are meaningless, code is hard to understand,
comments are absent, presence of commented-out code.

2 pts (indicator 7.3)

Total 20 pts (indicator 6.4)

	COMP 345 --- Fall 2021

