
Using MFC (Microsoft Foundation Classes)

COMP 345

By: Rishinder Paul

Drawing basic shapes &
Strategies for your project

 Recap from previous slides.

 The CPoint Class

 The CRect Class
◦ Drawing a Rectangle

◦ Drawing a Circle/Ellipse

 Understanding the CPen & CBrush Classes

 Things to do first
◦ Understanding the Game Map

◦ Strategies for developing the Map

◦ Choosing the best Strategy

 In the previous slides we learnt how to draw a line
in MFC application.

 We used the function MoveTo(x,y) to initialize the
starting point.

 We used The function LineTo(x,y) to mark the end
point.

 As both of these functions take „x‟ and „y‟
coordinates as arguments, we can just pass a
single argument of the type CPoint, instead of two
separate ones.

 CPoint constructor.
◦ CPoint p(50,70);

 Constructs a point with coordinate x as 50
and y as 70.

 Hence to draw the same line using the CPoint
object, we write the following code:
◦ CPoint p1(50,50), P2(100,100);

◦ pDC->MoveTo(p1);

◦ pDC->LineTo(p2);

 We can add/subtract one point from the
other.

 Suppose we have a point p1(x1,y1) and
another p2(x2,y2).

 p1+p2 means a point (x1+x2,y1+y2)

 P1-p2 means a point (x1-x2,y1,y2)

 The CRect class deals with rectangles.

 Its constructor accepts the top-left and
bottom-right corner points as arguments.
◦ CRect r(p1,p2);

 To draw this rectangle, the code is:
◦ pDC->Rectangle(r);

 In the OnDraw() function, we add the
following code:
◦ CPoint p1(50,50), p2(200,200);

◦ CRect r(p1,p2);

◦ pDC->Rectangle(r);

 We use the CRect object to create a circle or
any other ellipse.

 The resulting ellipse resides inside the
rectangle‟s boundaries i.e. it inscribes the
rectangle.

 Following is the statement for invoking the
Ellipse function of our drawing object:
◦ pDC->Ellipse(r);

 Pen defines how a particular shape will have
its border i.e. its outline.

 We use the CPen object to create a pen for
our use.

 Format for CPen constructor:
◦ CPen(Pen_Type, Pen_Width, Pen_Color)

 Brush defines how a particular shape will have
its fill.

 We use the CBrush object to create a brush
for our use.

 Format for CPen constructor:
◦ CBrush(Brush_Color)

 To select a green brush and a thin red pen,
we can write the following code:
◦ CPen aPen(PS_SOLID,1,RGB(255,0,0));
◦ CBrush aBrush(RGB(0,255,0));

 RGB() lets us choose the type of color we
need for our drawing.

 Before using any of the brushes or pens, we
have to select them first by using:
◦ pDC->SelectObject(aPen);

 Well, we cannot develop an application as
long as we don‟t have the conceptual idea
about its structure and functioning.

 For this we need to know:
◦ What features are needed now.

◦ What may be needed in the future.

◦ How we should begin it.

◦ How to finish it.

 We cannot create any application by just using GUI.

 First of all we have to prepare a design strategy.

 As we are using the Object Oriented Approach, our
first concern should be to understand what all
classes do we need to implement and what should
be the relationships between them before diving
into drawing and GUI.

Team Sides

Wide Zones

End Zone
Scrimmage

Reserved Knocked Injured Dugout

Pitch

 As there are multiple solutions to a single
problem, there exist multiple strategies for
developing our game map

 Strategy 1:
◦ Have a class named Grid, which is the parent class for

PitchGrid and DugoutGrid.

 Strategy 2:
◦ Have two entirely different classes for Pitch and Dugout.

 Strategy 3:
◦ Combination of Strategy 1 and Strategy 2

 Pitch and Dugout grids have mostly the same
characteristics like edge-length, color, etc.

 One major difference between them is that
dugout cannot contain the ball.

 Another difference is that Dugout cannot allow
free player movements.

Grid

Dugout GridPitch Grid

 Pitch and Dugout are two different classes, which
do not share much in common.

 Pitch can become the parent class for the classes
WideZone, EndZone and ScrimmageZone.

 Dugout can become the parent class for the
classes Injured, Knocked and Reserved.

Dugout GridPitch Grid

Grid

Dugout GridPitch Grid

WideZone

Scrimmage

EndZone

Injured

Knocked

Reserved

 Once we have finalized which strategy will
suit our project, we can start building the
classes.

 Suppose if we want to use strategy – 1 for our
project. We have to design the classes and
implement all the relationships between
them.

 Once our program structure is ready, we can
now proceed to GUI design.

 Although we can create classes manually by
writing all the code, we can also use the IDE
to make it more easy for us.

 To create a class:
◦ Open class view from menu bar View->Class View

or By hitting Ctrl+Shift+C.

◦ Right Click on BloodB->Add->Class

◦ Select C++ Class form the list and click “Add”

◦ Choose a class name e.g. “Grid”. If this class is
inherited from another class, just mention that
class‟s name in the “base” space and click “Finish”

 Suppose if we want our „Grid‟ class to use
MFC for drawing its objects, we have to add a
drawing function in its definition. This
function should accept an object of the
drawing class as its argument. E.g.
◦ void Draw(CDC*);

 Here we have chosen the name of the
function as Draw.

 As soon as we create a class by using the
class wizard, it creates a header file for that
class with the same name. E.g. for our “Grid”
class we will have a “Grid.h” file.

 To use this class we have to include it in our
View class, where we are doing all out work.

 Hence, in the BloodBView.cpp file, along with
other includes, we write: #include “Grid.h”

Void Grid::Draw(CDC* aDC)

{

CRect r(p1,p2);

aDC->Rectangle(r);

}

We can call this function in our program as:
Grid* g=new Grid();

g->Draw(pDC);

Where pDC is the argument for our OnDraw() function in
“BloodBView.cpp” file.

 Well, you can always ask for the source code files
used in these slides, in the form of visual studio
projects by email.

 You can always ask your questions by email. My
email ID is rishinder2007@yahoo.com

 Try to go through MSDN‟s online tutorials to
develop an understanding about Visual C++ and
the MFC Libraries at:
http://msdn.microsoft.com/en-
ca/visualc/bb496952.aspx

mailto:rishinder2007@yahoo.com
http://msdn.microsoft.com/en-ca/visualc/bb496952.aspx
http://msdn.microsoft.com/en-ca/visualc/bb496952.aspx
http://msdn.microsoft.com/en-ca/visualc/bb496952.aspx

