
Concordia University
Department of Computer Science

and Software Engineering

Compiler Design (COMP 442/6421)
Winter 2023

Assignment 3: Abstract Syntax Tree Generation

Deadline: Sunday March 5th, 2023
Evaluation: 8% of final grade
Late submission: penalty of 50% for each late working day

This assignment is about complementing the parser developed in assignment 2 with syntax-directed translation to
generate an abstract syntax tree (AST) data structure that is going to be used in the later stages of the compiler as an
intermediate representation. The parser must still include the features developed in assignment 2.

The assignment handout includes two example source files. These files should be used as-is and not be altered in any
way. Completeness of testing is a major grading topic. You are responsible for providing appropriate test cases that
test for a wide variety of valid cases in addition to what is in the example source files provided.

Work to submit

Document
You must provide a short document that includes the following sections:

Section 1. Attribute grammar : Provide an attribute grammar that clearly indicates where each of the semantic

actions are inserted in the grammar’s right hand sides, as well as a list of all the semantic actions and a
brief description of their respective effect. See slide set 8.5 for an example.

Section 2. Design : Give a brief overview of the overall structure of your solution, as well as a brief description of the
role of each component of your implementation.

Section 3. Use of tools : Identify all the tools/libraries/techniques that you have used in your analysis or
implementation and justify why you have used these particular ones as opposed to others.

Implementation
• Parser augmented with syntax-directed translation: Implementation of syntax-directed translation in the existing

parser for the purpose of generating an AST data structure. The result of the execution of the parser should be the
creation of an AST data structure that corresponds to the parse tree as identified by the parsing process. The tree
must be an AST, and not a parse tree. This tree will become the intermediate representation used by the two following
assignments.

• AST output: The generated tree should be output to a file in a format that allows easy visualization of the structure
of the tree. This can be a simple text representation of the tree structure or a graphiz dot representation (see
examples in the assignment handout). This file must allow the marker to quickly verify that the generated AST is in
fact correct with regards to the parsed program. When parsing a file named, for example, originalfilename, the
parser should write into a file named originalfilename.outast a text representation of the abstract syntax tree
representing the original program.

• Test cases : Provide a set of source files that enable to test the AST generation for all syntactical structures and
sub-structures involved in the language.

• Driver: Include a driver that parses all your test files. For each test file, the corresponding outast files should be
generated (in addition to all the files that were generated by the previous assignments).

Assignment submission requirements and procedure

• Each submitted assignment should contain four components: (1) the source code, (2) a group of test files, (3) a brief

report, and (4) an executable named ASTdriver, that extracts the tokens from all your test files. For each test file,
the corresponding outast files should be generated.

• The assignment statement provides test files (.src) and their corresponding output files.
• The source code should be separated into modules using a comprehensible coding style.
• The assignment should be submitted through moodle in a file named: “A#_student-id” (e.g. A1_1234567, for

Assignment #1, student ID 1234567) and the report must in a PDF format.
• You may use any language you want in the project and assignments but the only fully supported language during

the lab is Java.
• You have to submit your assignment before midnight on the due date on moodle.
• The file submitted must be a .zip file

The marking will be done in a short presentation to the marker. A schedule will be provided to you by email in the days
before the due date. You will be given a short time for the presentation, so make sure that you are ready to effectively
demonstrate all the elements mentioned in the “Work to submit” section above.

Evaluation criteria and grading scheme

Analysis:
Attribute grammar that clearly indicates where each of the semantic actions are inserted in
the grammar’s right hand sides, as well as a list of all the semantic actions and a brief
description of their respective effect. See slide set 8.5 for an example – document Section 1.

ind 2.1 5 pts

Design/implementation:
Description/rationale of the overall structure of the solution and the roles of the individual
components used in the applied solution – document Section 2.

ind 4.3 5 pts

Correct implementation of syntax-directed translation implemented as part of a top-down
predictive parser following the grammar given in this handout, which is generating and AST
(not a parse tree) data structure that correctly represents any valid program given in input.

ind 4.4 20 pts

Output of the AST in an outast file. ind 4.4 5 pts
Completeness of test cases. ind 4.4 10 pts
Use of tools:
Description of tools/libraries/techniques used in the analysis/implementation. Description of
other tools that might have been used. Justification of why the chosen tools were selected –
document Section 3.

ind 5.2 2 pts

Successful/correct use of tools/libraries/techniques used in the analysis/implementation. ind 5.1 3 pts
Total 50 pts

	Department of Computer Science
	and Software Engineering
	Assignment 3: Abstract Syntax Tree Generation

