
Dra
ft

Mining Historical Test Logs to Predict Bugs and
Localize Faults in the Test Logs

Anunay Amar and Peter C. Rigby
Department of Computer Science and Software Engineering

Concordia University
Montréal, Canada

an_mar@encs.concordia.ca, peter.rigby@concordia.ca
Accepted to ICSE’19. Camera-ready version will be available in February.

Abstract—Software testing is an integral part of modern
software development. However, test runs can produce 1000’s of
lines of logged output that make it difficult to find the cause of a
fault in the logs. This problem is exacerbated by environmental
failures that distract from product faults. In this paper we
present techniques with the goal of capturing the maximum
number of product faults, while flagging the minimum number
of log lines for inspection.

We observe that the location of a fault in a log should be
contained in the lines of a failing test log. In contrast, a passing
test log should not contain the lines related to a failure. Lines
that occur in both a passing and failing log introduce noise
when attempting to find the fault in a failing log. We introduce
an approach where we remove the lines that occur in the passing
log from the failing log.

After removing these lines, we use information retrieval
techniques to flag the most probable lines for investigation. We
modify TF-IDF to identify the most relevant log lines related to
past product failures. We then vectorize the logs and develop
an exclusive version of KNN to identify which logs are likely to
lead to product faults and which lines are the most probable
indication of the failure.

Our best approach, LOGFAULTFLAGGER finds 89% of the
total faults and flags less than 1% of the total failed log
lines for inspection. LOGFAULTFLAGGER drastically outperforms
the previous work CAM. We implemented LOGFAULTFLAGGER
as a tool at Ericsson where it presents daily fault prediction
summaries to base station testers.

I. INTRODUCTION

Large complex software systems have 1000’s of test runs
each day leading to 10’s of thousands of test log lines [17],
[20], [34]. Test cases fail primarily due to two reasons
during software testing: a fault in the product code or
issues pertaining to the test environment [52]. If a test fails
due to a fault in the source code, then a bug report is
created and developers are assigned to resolve the prod-
uct fault. However, if a test fails due to a non-product
issue, then the test is usually re-executed and often the
test environment is fixed. Non-product test failures are a
significant problem. For example, Google reports that 84%
of tests that fail for the first time are non-product or flaky
failures [34]. At Microsoft, techniques have been developed
to automatically classify and ignore false test alarms [17]. At
Huawei researchers have classified test failures into multiple
categories including product vs environmental failure to
facilitate fault identification [20].

In this work we focus on the Ericsson teams that are
responsible for testing cellular base station software. The

software that runs on these base stations contains not
only complex signalling logic with stringent real-time con-
straints, but also must be highly reliable, providing safety
critical services, such as 911 calling. The test environment
involves specialized test hardware and RF signalling that
adds additional complexity to the test environment. For
example, testers need to simulate cellular devices, such as
when a base station is overwhelmed by requests from cell
users at a music concert.

To identify the cause of a test failure, software testers
go through test execution logs and inspect the log lines.
The inspection relies on a tester’s experience, expertise,
intuition, past run information, and regular expressions
crafted using historical execution data. The process of
inspection of the failed test execution log is tedious, time
consuming, and makes software testing more costly [49].

Discussions with Ericsson developers revealed two chal-
lenges in the identification of faults in a failing test log:
1) the complex test environment introduces many non-
product test failures and 2) the logs contain an over-
whelming amount of detailed information. To solve these
problems, we mine the test logs to predict which test
failures will lead to product faults and which lines in those
logs are most likely to reveal the cause of the fault. To
assess the quality of our techniques we use two evaluation
metrics on historical test log data: the number of faults
found, FaultsFound, and the number of log lines flagged
for investigation, LogLinesFlagged. An overview of the four
techniques are described below.
1. CAM: TF-IDF & KNN
CAM was implemented at Huawei to categorized failing

test logs and the results were presented in the technical
track of ICSE’17 [20]. Testers had manually classified a large
sample of failing test logs into categories including product
and environment failures. CAM runs TF-IDF across the logs
to determine which terms had the highest importance. They
create vectors and rank the logs using cosine similarity.
An unseen test failure log is categorized, e.g., product vs
environment failure, by examining the categories of the K
nearest neighbours (KNN).

Although CAM categorizes logs, it does not flag lines
within a log for investigation. The logs at Ericsson contain
hundreds of log lines making a simple categorization of a
log as fault or product unhelpful. Our goal is to flag the

Dra
ft

smallest number of lines while identifying as many faults
as possible. When we replicate CAM on Ericsson data only
50% of the faults are found. Since the approach cannot flag
specific lines within a log, any log that is categorized as
having a product fault, must be investigated in its entirety.
2. SKEWCAM: CAM with EKNN

Ericsson’s test environment is highly complex with RF
signals and specialized base-station test hardware. This
environment results in a significant proportion of environ-
mental test failures relative to the number of product test
failures. Due to the test environment, entire teams of testers
exclusively analyze log test failures each day examining
noisy failures to ensure that all product faults are found.
To deal with this skewed data, we modify the standard K
Nearest Neighbour (KNN) classification approach to act in
an exclusive manner. With Exclusive K Nearest Neighbour
(EKNN), instead of voting during classification, if any past
log among K neighbours has been associated with a product
fault, then the current log will be flagged as product fault.
SKEWCAM, which replaces KNN with EKNN , finds 89% of
FaultsFound with 28% of the log lines being flagged for
investigation.
3. LOGLINER: Line-IDF & EKNN
SKEWCAM accurately identifies logs that lead to product

faults, but still requires the tester to examine almost 1/3 of
the total log lines. Our goal is to flag fewer lines to provide
accurate fault localization.

The unit of analysis for SKEWCAM is each individual term
in a log. Using our abstraction and cleaning approaches, we
remove run specific information and ensure that each log
line is unique. We are then able to use Inverse Document
Frequency (IDF) at the line level to determine which lines
are rare across all failing logs and likely to provide superior
fault identification for a particular failure. LOGLINER, Line-
IDF & EKNN , can identify 85% of product faults while
flagging only 3% of the log lines. There is a slight reduction
in FaultsFound found but a near 10 fold reduction in
LogLinesFlagged for inspection.
4. LOGFAULTFLAGGER: PastFaults ∗ Line-IDF & EKNN

Inverse Document Frequency (IDF) is usually weighted
by Term Frequency (TF). Instead of using a generic term
frequency for weight, we use the number of times a log line
has been associated with a product fault in the past. The
result is that lines with historical faults are weighed more
highly. LOGFAULTFLAGGER, identifies 89% of FaultsFound
while only flagging 0.4% of the log lines. LOGFAULTFLAGGER

finds the same number of faults as SKEWCAM, but flags less
than 1% of the log lines compared to SKEWCAM’s 28%.

This paper is structured as follows. In Section II, we
provide the background on the Ericsson test process and
the data that we analyze. In Section III, we detail our
log abstraction, cleaning, DiffWithPass, and classification
methodologies. In Section IV, we describe our evaluation
setup. In Sections IV to VIII, we provide the results for our
four log prediction and line flagging approaches. In Section
IX, we contrast the approaches based on the number of
FaultsFound and LogLinesFlagged for inspection, discuss
performance and storage requirements, and describe how

we implemented LOGFAULTFLAGGER as tool for Ericsson
testers. In Section XI, we position our work in the context
of the existing literature. In Section XII, we conclude the
paper and describe our research contributions.

II. ERICSSON TEST PROCESS AND DATA

At Ericsson there are multiple levels of testing from low
level developer run unit tests to expensive simulations of
real world scenarios on hardware. In this paper, we focus
on integration tests at Ericsson. Testers are responsible for
running and investigating integration test failures. Our goal
is to help these testers quickly locate the fault in a failing
test log.

Integration testing is divided into test suites that contain
individual tests. In Figure 1, we illustrate the integration
testing process at Ericsson. There are multiple levels of
integration testing. The passing builds are sent to the next
level of integration tests. For each integration test case,
TestID, we record the TestExecutionID which links to the
result LogID and the verdict. The log contains the runtime
information that is output by the build that is under test.
For each failing test, we store the log and also store the
previous passing run of the test for future comparison with
the failing log. Failing tests that are tracked to a product
fault are recorded in the bug tracker with a TroubleReportID.
Environmental and flaky tests do not get recorded in the
bug tracker and involve re-testing once the environment
has been fixed. In this work we study a six month period
with 100’s of thousands of test runs and associated test
logs.1

III. METHODOLOGY

Discussions with Ericsson developers revealed two chal-
lenges in the identification of faults in a failing test log:
1) the complex test environment introduces many non-
product test failures and 2) the logs contain an overwhelm-
ing amount of detailed information. To overcome these
challenges, we perform log abstraction to remove contextual
information, such as run date and other parameters. Lines
that occur in both failing and passing logs are unlikely to
reveal a fault, so we perform a set difference between the
failing log and the last passing log to remove lines that
are not related to the failure (i.e. DiffWithPass). Finally, we
extract the rarest log lines and use information retrieval
techniques to identify the most likely cause of a fault. We
elaborate on each step below.

A. Log Abstraction

Logs at Ericsson tend to contain a large number of lines,
between 1300 and 5800 with a median of 2500 lines. The
size makes it difficult for developers to locate the specific
line that indicates a fault. Log abstraction reduces the
number of unique lines in a log. Although the logs do not
have a specific format, they contain static and dynamic
parts. The dynamic run specific information, such as the
date and test machine, can obscure higher level patterns.

1Ericsson requested that we not report specific test and log numbers

Dra
ftFig. 1: The Ericsson integration test process. Code has already gone through earlier developer testing stages (N-1) and

will continue to later integration stages (N+1). The data we extract is shown in the square boxes, e.g., LogID.

Fig. 2: Processing stages: First, the logs are abstracted. Second a set-difference operation is performed between the passing
and failing log (DiffWithPass). Third, only the lines present in the failing log are stored.

Dra
ft

By removing this information, abstract lines contain the
essence of each line without the noisy details.

For example, in Figure 2, the log line “Latency at 50
sec, above normal” contains static and dynamic parts.
The static parts describe the high-level task, i.e. an above
normal latency value. The latency values, are the dynamic
parts of the log line, i.e. “50" seconds. In another run, we
may obtain a “Latency at 51 sec, above normal”. Although
both logs contain the same high-level task, without log
abstraction these two lines will be treated as different.
With log abstraction, the two log lines will record the same
warning. We build upon Shang et al.’s [44] log abstraction
technique modifying it for test logs.

Anonymization: During this step we use heuristics to
recognize the dynamic part of the log line. We use heuristics
like StaticVocabulary to differentiate between the static
and the dynamic part of the log line. For example, the
test source code contains the log line print “Latency
at %d sec, above normal”, latencyValue. We
wrote a parser to find the static parts of the test code,
which we store as the StaticVocabulary. With the help of
StaticVocabulary, we replace the dynamic parts of a log
with the # placeholder. In our example, the output of log
abstraction would be “Latency at # sec, above normal”.

Unique Event Generation: Finally, we remove the ab-
stracted log lines that occur more than once in the abstract
log file. We do this because duplicate log lines represent
the same event.

B. DiffWithPass

The location of a fault should be contained in the lines of
a failing log. In contrast, a passing log should not contain
the lines related to a failure. Lines that occur in both a
passing and failing log introduce noise when attempting to
find the fault in a failing log. We introduce an approach
where we remove the lines that occur in the passing log
from the failing log. In our example, in Figure 2, the failing
log contains an above normal latency. However, the passing
log also contains this warning, so it is unlikely that the
failure is related to latency. In contrast, the line “Power
below 10 watts" occurs only in the failing log, indicating
the potential cause for the failure.

Performing the DiffWithPass operation with all the pre-
vious passing logs is computationally expensive and grows
with the number of test runs, O(n). For each failure we have
to compare with the test’s previous passing runs, which
would lead to over 455 million comparisons across our
dataset. The number of passes makes this impractical. To
make our approach scalable, we note that a passing log
represents an acceptable state for the system. We perform
a set difference of the current failing log with the last
passing log. Computationally, we perform one DiffWithPass
comparison, O(1). This approach reduces the number of
noisy lines in a log and as we discuss later reduces the
storage and computational requirements.

C. Frequency of test failures and faults

Tests with similar faults should produce similar log lines.
For example, when a test fails due to a low power problem

it produces the following abstract log line: “Power below #
watts.” A future failure that produces the same abstract log
line will likely have failed due to a low power problem.

Unfortunately, many of log lines are common and occur
every time a test fails regardless of the root cause. These
noisy log lines do not help in identifying the cause of a
specific test failure. In contrast, log lines that are rare and
that occur when a bug report is created are likely more
useful in fault localization. Our fault location technique
operationalized these ideas by measuring the following:

1) LineFailCount: the count of the number of times a log
line has been in a failing test.

2) LineFaultCount: the count of the number of times a
log line has been in a log that has a reported fault in
the bug tracker.

After performing log abstraction and DiffWithPass, we
store a hash of each failing log line in our database. In
Figure 3, we show how we increment the count when a
failure occurs and a bug is reported. We see that lines
that occur in many failures have low predictive power. For
example, “Testcase failed at #” is a common log line that
has occurred 76 times out of 80 test failures. In contrast,
“Power below #” is a rare log line that occurs 5 times out
of 80 failures likely indicating a specific fault when the test
falls.

Not all test failures lead to bug reports. As we can see
the generic log line “Testcase failed at #" has only been
present in 10 failures that ultimately lead to a bug report
being filed. In contrast, when the log line “Power below #”
occurs, testers have filed a bug report 4 out 5 times. When
predicting future potential faults this latter log line clearly
has greater predictive power with few false positives.

We further stress that the individual log lines are not
marked by developers as being related to a fault or bug
report. While this data would be desirable, we have not
come across it on industrial projects. Instead, as can be
seen in Figures 1 and 3 the failing build and associated
test failure are linked to a bug report. After performing
abstraction and DiffWithPass we store and increment the
failure and fault count for each line in the log for later
IR processing to determine which log lines have high
predictive power.

D. TF-IDF and line-IDF

Identifying faults based on test failures and bug reports
is too simplistic. Term Frequency by Inverse Document
Frequency (TF-IDF) is used to calculate the importance of
a term to a document in a collection [43]. The importance
of a term is measured by calculating TF-IDF:

TF − IDF t,d = ft,d ∗ log
N

Nt
(1)

Where ft,d denotes the number of times term t occurred
in a log “document” d, N denotes the total number of logs
for a test, and Nt denotes the number of logs for a test that
contains the term t [43] [20].

We have discussed in earlier sections that rare log lines
should be strong indicators of faults. We use IDF (Inverse

Dra
ftFig. 3: The mapping between the log line failure count and bug report count. Logs lines that have been associated with

many bug reports have high predictive power. For example “Power below #” has occurred in 5 fails and 4 times a bug
has been reported.

document frequency) to operationalize the importance of
a log line to a test log. line-IDF is defined as:

line− IDF l,d = log
N

Nl
(2)

Where N denotes the number of logs for a test, and Nl
denotes the number of logs for a test that contains the log
line l.

E. Log Vectorization

To find similar log patterns that have occurred in the
past we transform each log into a vector. Each failed log is
represented as a vector and the log lines in our vocabulary
denotes the features of these vectors. For example, if we
have N failed logs in our system then we would generate
N vectors, a vector for every failed log. The dimension of
the vectors is determined by the number of unique log
lines in our corpus. If we have M unique log lines then
the generated vectors would be M-dimensional.

Many techniques exist to assign values to the features.
We use three techniques. For CAM and SKEWCAM, were
the features are the terms in a log, we use the standard
TF-IDF formula (see Equation 1). For LOGLINER, were the
feature is a line, we use use line-IDF (see Equation 2). For
LOGFAULTFLAGGER we multiple the fault frequency of a line
by the line-IDF (see Equation 7).

F. Cosine Similarity

To find similar logs and log lines to predict faults we use
cosine similarity. It is defined as [43] [40]:

similarity = cosθ =
~L1 · ~L2

‖L1‖2‖L2‖2
(3)

Where L1 and L2 represent the feature vectors of two
different test logs. We represent each past failing log and
current failing log as vectors, and compute the cosine
similarity between the vector of current failing log and the
vectors of all the past failing logs.

During the calculation of cosine similarity we only take
top N log lines (features) from the vector of current failing
log. Since our prediction is based only on these lines we
consider these N lines to be flagged for further investiga-
tions. We are able to predict not only which log will lead to
product faults, but also which log lines are the most likely
indication for the fault.

G. Exclusive K Nearest Neighbours (EKNN)

To determine whether the current log will lead to a
bug report, we modify the K nearest neighbours (KNN)
approach as follows. For the distance function, we use the
cosine similarity of the top N lines as described above.
For the voting function, we need to consider the skew
in our dataset. Our distribution is highly skewed because
of the significant proportion of environmental failures. We
adopt an extreme scheme whereby if any of the K nearest

Dra
ft

neighbours has lead to a bug report in the past, we predict
that the current test failure will lead to a bug report. If none
of the K neighbours has lead to a past bug report, then
we predict no fault. This approach is consistent with our
overriding goal of finding as many faults as possible, but
may lead to additional log lines being flagged for inspection.

To set the value of K, we examine the distribution of test
failures and measure the performance of different values of
K from 1 to 120.

IV. EVALUATION SETUP

Ericsson testers evaluate test failures on a daily basis. As
a result, we run our simulation on a daily basis training on
all the previous days. This simple incremental simulation
framework has been commonly been used in the research
literature [3], [17], [20], [55]. Our simulation period runs
for 6 months and covers 100’s of thousands of test runs
and logs. We train and test the approaches on the nightly
software test runs for day D = 0 to D = T . To predict whether
a failure on day D = t will reveal a product fault, we train
on the historical data from D = 0 to D = t −1 and test on
D = t . We repeat this training and testing cycle for each
nightly run until we reach D = T .

Our goal is to capture the maximum number of product
faults while flagging the minimum number of log lines for
inspection. We operationalize this goal by calculating the
percentage of FaultsFound and the percentage of LogLines-
Flagged. We define FaultsFound and LogLinesFlagged as the
following:

FaultsFound = TotalCorrectlyPredictedFaults

TotalTesterReportedFaults
∗100 (4)

LogLinesFlagged = TotalFailedLogLinesFlagged

TotalLogLinesAllFailedLogs
∗100 (5)

V. RESULT 1. CAM: TF-IDF & KNN

CAM has successfully been used at Huawei to categorize
test logs [20]. We re-implement their technique and perform
a replication on Ericsson test logs. We discussed the data
processing steps in Section III. We then apply TF-IDF to
the terms in each failing log. Cosine similarity is used to
compare the current failing log with all past failing logs for
a test. CAM then calculates a threshold to determine if the
current failing log is similar to any of the past logs. The
details can be found in their paper and we use the same
threshold value of similarity at t = .7. If the value is below
the threshold, then KNN is used for classification. CAM sets
K = 15 [20], we vary the number of neighbours from K =
1 to 120.

Table I shows that the direct application of CAM to the
Ericsson dataset only finds 50% or fewer of the product
faults. We also see that increasing the value of K neighbours
does not increase the number of FaultsFound. For example,
at K = 15 CAM finds 50% of the product faults. However,
when we increase K to 30 it only captures 48% of the
product faults.

CAM is also computationally expensive and on average
it takes 7 hours to process the entire dataset. There are
two main factors that contribute to this computational cost.
First, CAM performs word based TF-IDF which generates
large term-based vectors and then calculates the cosine
similarity between the vector of current failing log and the
vectors of all the past failing logs. The time complexity
is O(|V | · |L|). Second, the algorithm computes a similarity
threshold using the past failing logs that increases compu-
tational time by O(|V |·|l |). Where V denotes the vocabulary
of terms present in the failing test logs, L denotes the total
number of failing test logs, and l denotes a smaller set of
failing test logs used during the calculation of similarity
threshold.

CAM finds 50% of the total faults. CAM flags the entire
failing log for investigation. CAM is computationally
expensive.

TABLE I: CAM: TF-IDF & KNN

K % FaultCaught % LogLineFlagged Execution Time (mins)
1 47.30 4.13 420

15 50.00 4.38 444
30 47.23 4.36 458
60 47.14 4.07 481

120 47.43 4.23 494

TABLE II: SKEWCAM: CAM with EKNN

K % FaultCaught % LogLineFlagged Execution Time (mins)
1 47.13 4.21 190

15 86.65 21.18 199
30 88.64 27.71 204
60 90.84 38.10 223

120 90.84 43.65 253

TABLE III: LOGLINER: Line-IDF & EKNN

K N % FaultCaught % LogLineFlagged
Execution Time

(mins)

1 1 47.23 0.06 30
15 1 67.48 0.14 46
30 1 68.22 0.16 52
60 1 68.22 0.17 68

120 1 68.22 0.17 91
1 10 47.27 0.56 39

15 10 82.35 2.39 85
30 10 84.60 2.98 90
60 10 86.05 3.92 98

120 10 86.05 4.26 127

VI. RESULT 2. SKEWCAM: CAM WITH EKNN

Ericsson’s test environment involves complex hardware
simulations of cellular base stations. As a result, many test
failures are environmental and do not lead to a product
fault. Since the data is skewed, we modify KNN. In Sec-
tion III-G, we define Exclusive KNN (EKNN) to predict a
fault if any of the K nearest neighbours has been associated
with a fault in the past.

Dra
ft

TABLE IV: LOGFAULTFLAGGER: PastFaults ∗ Line-iDF &
EKNN

K N % FaultCaught % LogLineFlagged
Execution Time

(mins)

1 1 53.10 0.06 36
15 1 87.33 0.33 49
30 1 88.88 0.42 54
60 1 90.41 0.54 83

120 1 90.41 0.58 119
1 10 63.00 0.80 48

15 10 88.45 3.23 88
30 10 89.20 3.99 103
60 10 90.84 5.39 124

120 10 90.84 6.04 185

We adjust CAM for skewed data. Like CAM, SKEWCAM
uses TF-IDF to vectorize each log and cosine similarity to
compare the current failing log with all previously failing
logs. However, we remove the threshold calculation as both
the study on CAM [20] and our experiments show that it has
little impact on the quality of clusters. Instead of using KNN
for clustering SKEWCAM uses EKNN . We vary the number
of neighbours from K = 1 to 120.

Table II shows that more neighbours catch more product
faults but also flag many lines. At K = 30, SKEWCAM catches
89% of the all product faults, but flags 28% of the total log
lines. Interestingly as we increase K to 120 the number of
faults found increases to only 91%, but the lines flagged
increases to 44%.

Adjusting CAM for skewed data by using EKNN allows
SKEWCAM to catch most product faults. However, the im-
provement in the number of FaultsFound comes at the cost
of flagging many lines for inspection. Testers must now face
the prospect of investigating entire log files.

Despite removing the threshold calculation, SKEWCAM is
still computationally expensive because like CAM it applies
term-based TF-IDF. Hence, it has a time complexity of
O(|V | · |L|).

SKEWCAM finds 89% of the total faults, but flags 28%
total log lines for inspection. It is also computation-
ally expensive.

VII. RESULT 3. LOGLINER: LINE-IDF & EKNN

SKEWCAM can accurately identify the logs that lead to
product faults, however it flags a large number of suspicious
log lines that need to be examined by testers.

To effectively identify product faults while flagging as few
log lines as possible, we developed a new technique called
LOGLINER. LOGLINER uses the uniqueness of log lines to
predict product faults. We calculate the uniqueness of the
log line by calculating the Inverse Document Frequency
(IDF) for each log line. Before calculating IDF, we remove
run-specific information from logs by performing data pro-
cessing as explained in Section III.

IDF is used to generate the vectors for the current failing
log and all of the past failing logs according to the equation

below. For each unique line in a log, we calculate its IDF
score, which is a reworking of Equation 2:

IDF(Line) = log
TotalNumLogs

LineInLogsCnt
(6)

In order to reduce the number of flagged log lines, we
perform our prediction using the top IDF scoring N lines
from the current failing log. We then apply cosine similarity
and compare with the K neighbours using EKNN to predict
whether the current failing test log will lead to fault.

During our experiment, we varied K from 1 to 120 and
N from 1 to 10, and studied the relationship between the
number of neighbours (K), top N lines with highest IDF
score, percentage FaultsFound, and percentage LogLines-
Flagged.

Table III shows the impact of changing these parameters.
Low parameter values N = 1 and K = 1 lead to FaultsFound
at 47% with < 1% of LogLinesFlagged. By using the top line
in a log and examining the result for the top neighbour,
we are able to perform at similar levels to CAM. CAM and
SKEWCAM use all the log lines during prediction. With N =
“all the lines in a log,” LOGLINER finds 88% of the faults,
but flags 29% of the lines, a similar result to SKEWCAM (not
shown in a figure).

Setting LOGLINER to more reasonable values, K = 30 and
N = 10, we are able to find 85% of the faults by flagging 3%
of the log lines for inspection. Drastically increasing K = 120
and keeping N = 10 we find 86% of the faults but flag 4%
of the lines.

LOGLINER finds 85% of the total faults while flagging
only 3% of the total log lines for inspection.

VIII. RESULT 4. LOGFAULTFLAGGER:
PASTFAULTS ∗ LINE-IDF & EKNN

LOGLINER flags fewer lines, but drops slightly in the
number of FaultsFound. We build on LOGLINER with LOG-
FAULTFLAGGER which incorporates faults into the line level
prediction.

IDF is usually weighted. Instead of using a generic weight,
such as term frequency, we use the number of times a log
line has been associated with a product fault in the past. We
add 1 to this frequency to ensure that the standard I DF of
the line is applied if a line has never been associated with
any faults. We weight line-IDF with the line fault frequency
(FF) according to the following equation:

FF-IDF(Line) = (LineFaultCount +1)∗ I DF (Li ne)

= (LineFaultCount +1)∗ l og
TotalNumLogs

LineInLogsCnt

(7)

As with the previous approaches, we vary the number
of neighbours from K = 1 to 120 and the number of top
lines flagged with N = 1 and 10. Table IV shows that the
value of N has little impact on the number of faults found.
Furthermore, the number of FaultsFound increases only
slightly after K ≥ 15. As a result, we use N = 1 and K = 30 for

Dra
ft

●

● ●
● ● ●

● ●
●

● ● ● ●

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Number of Neighbors (K)

P
er

ce
nt

ag
e

of
 to

ta
l f

au
lts

 fo
un

d

●

●

●
● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Number of Neighbors (K)

P
er

ce
nt

ag
e

of
 to

ta
l f

au
lts

 fo
un

d

●

●

● ●
● ● ● ● ● ● ● ● ●

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Number of Neighbors (K)

P
er

ce
nt

ag
e

of
 to

ta
l f

au
lts

 fo
un

d

●

●

●
● ● ● ●

● ● ● ● ● ●

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Number of Neighbors (K)

P
er

ce
nt

ag
e

of
 to

ta
l f

au
lts

 fo
un

d

CAM
SkewCAM
LogLiner (N=10)
FaultFlagger (N=1)

Fig. 4: FaultsFound with varying K . SKEWCAM and LOG-
FAULTFLAGGER find a similar number of faults. CAM finds
50% or less of the total faults.

further comparisons and find that LOGFAULTFLAGGER finds
89% of the total faults with 0.4% of total log lines flagged
for inspection.

Compared to SKEWCAM, LOGFAULTFLAGGER finds the
same number of faults, but SKEWCAM flags 28% of total
log lines compared LOGFAULTFLAGGER < 1%. Compared
to LOGLINER, LOGFAULTFLAGGER finds 4 percentage points
more faults with 2.5 percentage points fewer lines flagged.

LOGFAULTFLAGGER finds 89% of the total faults and
flags only 0.4% of lines for inspection.

IX. DISCUSSION

Testers want to catch a maximal number of faults while
investigating as few log lines as possible. We discuss the rea-
sons why the techniques differ in the number of correctly
identified test failures that lead to faults, FaultsFound in
Figure 4, and the number log lines used to make the predic-
tion, i.e. the lines that are flagged for manual investigation,
LogLinesFlagged, in Figure 5. The figures also provide a
visual representation of the impact of changing the number
of K neighbours. We also discuss the performance and
storage requirements and the implementation of the best
approach, LOGFAULTFLAGGER, as a tool for Ericsson testers.
CAM technique: We re-implemented Huawei’s CAM [20]

technique and evaluated it on a new dataset. CAM uses
simple term based TF-IDF to represent failed test logs as
vectors. Then it ranks the past failures with the help of
their corresponding cosine similarity score. Finally, it uses
KNN to determine whether the current test failure is due

● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50 60

0
10

20
30

40
50

Number of Neighbors (K)

P
er

ce
nt

ag
e

of
 to

ta
l l

in
es

 fl
ag

ge
d

●

●

●

●

●

●

●

●

●

●
●

●
●

0 10 20 30 40 50 60

0
10

20
30

40
50

Number of Neighbors (K)

P
er

ce
nt

ag
e

of
 to

ta
l l

in
es

 fl
ag

ge
d

●
●

● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50 60

0
10

20
30

40
50

Number of Neighbors (K)

P
er

ce
nt

ag
e

of
 to

ta
l l

in
es

 fl
ag

ge
d

● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50 60

0
10

20
30

40
50

Number of Neighbors (K)

P
er

ce
nt

ag
e

of
 to

ta
l l

in
es

 fl
ag

ge
d

CAM
SkewCAM
LogLiner (N=10)
FaultFlagger (N=1)

Fig. 5: LogLinesFlagged with varying K . SKEWCAM flags
an increasing number of lines, while LOGFAULTFLAGGER

remains constant around 1% of total log lines. CAM flags
relatively few total log lines because it predicts fewer faults
only finding 50% of the total faults.

to a product fault and presents its finding to the testers.
CAM has two major limitations. First, although the CAM
tool provides a display option to diff the failing log, it uses
the entire log in its prediction and so CAM does not flag
individual log lines that are the likely cause of the fault.
Instead it only categorizes test failures into, for example,
product vs environmental failure. The second limitation
is that CAM performs poorly on the Ericsson dataset, see
Figure 4 and 5. We can see that even when we increase
the number of K neighbours, the number of FaultsFound
does not increase and stays around 50%. CAM performs
poorly because the Ericsson data is highly skewed due to
the significant proportion of environmental failures, which
reduces the effectiveness of voting in KNN.
SKEWCAM technique: We modify CAM for skewed

datasets. SKEWCAM uses an exclusive, EKNN , strategy that
is designed for skewed data. If any of the nearest K
neighbours has had a fault in the past, SKEWCAM will flag
the log as a product fault. Figure 4 shows that SKEWCAM
plateaus finding 89% of the product faults solving the first
limitation of CAM. SKEWCAM’s major limitation is that it
flags an increasingly large number of log lines in making
its fault predictions. Figure 5 shows that as the number
of K neighbours increases so too does the number of
LogLinesFlagged. As a result, testers must manually examine
many log lines to identify the cause of the failure. Like
CAM, SKEWCAM uses the entire failed log in its prediction
providing poor fault localization within a log.

LOGLINER technique: To reduce the number of LogLines-

Dra
ft

Flagged, we introduce a new technique called LOGLINER.
Instead of using terms as the unit of prediction, LOGLINER

modifies TF-IDF by employing IDF at the log line level. The
line-IDF score helps to identify rare log lines in the current
failing log. Our conjecture is that rare lines are indicative of
anomalies, which in turn, indicate faults. LOGLINER selects
the top N most rare log lines in the current failing log. These
N lines are vectorized and used to calculate the similarity
with past failing test logs. LOGLINER plateaus at identifying
85% of the faults, while flagging 3% of the lines. Since only N
lines are used in the prediction, only N lines are flagged for
investigation by developers drastically reducing the manual
effort in fault localization.

LOGFAULTFLAGGER technique: To improve the number
of FaultsFound and reduce the number of LogLinesFlagged,
we suggest a new technique called LOGFAULTFLAGGER that
uses the association between log lines and LineFaultCount.
LOGFAULTFLAGGER uses LOGLINER’s line based IDF score
and LineFaultCount to represent log files as vectors. We
then select the top N log lines that are both rare and
associated with the most historical faults. Our experimental
result shows that the log line rarity and its association with
fault count is a strong predictor of future product faults.
Figures 4 and 5 show that LOGFAULTFLAGGER plateaus
finding 89% of the faults while consistently flagging less
than 1% of the of the total log lines for investigation.
As the figures show, in order for SKEWCAM to find the
same number of faults as LOGFAULTFLAGGER it must flag
an increasing and drastically larger number of lines for
inspection.

LOGFAULTFLAGGER not only outperforms the state-of-
the-art in terms of effectiveness, it also introduces the use
of log abstraction and DiffWithPass to test log processing
which has substantial benefits in terms of performance and
storage.

A. Performance and Log Storage

The last column of Table I, Table II, Table III, and
Table IV show the execution time of CAM, SKEWCAM, LOG-
LINER, and LOGFAULTFLAGGER respectively. We can see that
both CAM and SKEWCAM are computationally more expen-
sive than LOGLINER and LOGFAULTFLAGGER. At K = 30,
CAM, SKEWCAM, LOGLINER (N=10) and LOGFAULTFLAGGER

(N=10) take 458 minutes, 204 minutes, 90 minutes, and 54
minutes respectively to analysis six months worth of log
files. CAM and SKEWCAM are slower as they both perform
term based TF-IDF which generates large feature vectors as
a result they have a time complexity of O(|V | · |L|), where V
denotes the vocabulary of terms present in the failing test
logs, and L denotes the total number of failing test logs.
In contrast, LOGLINER and LOGFAULTFLAGGER use line-IDF
where the line is the feature unit, v , where v ¿V . As a result
LOGLINER and LOGFAULTFLAGGER have a time complexity
of O(|v |·|L|), where v denotes the set of unique log lines in
the set of failed logs.

Performing log analysis on huge log files is tedious and
expensive. CAM, SKEWCAM, LOGLINER, and LOGFAULTFLAG-
GER all require historical test logs for fault prediction and

localization. As a result, we are required to store the test
logs for a long period of time which increases the storage
overhead. To ameliorate the storage overhead, we reduce
the size of the raw log files by performing log abstraction
and DiffWithPass. Over a one month period, we calculate
the amount of reduction in the overall log storage size.
We found that with log abstraction we can reduce the log
storage size by 78%. When we employ both log abstraction
and DiffWithPass we were able to reduce the log storage
size by 94%. This reduction drastically reduces the storage
requirements and allows companies to store the important
part of test logs for a longer time period.

B. Implementing the LOGFAULTFLAGGER tool at Ericsson

LOGFAULTFLAGGER was implemented as a tool at Erics-
son. To reduce disruption and encourage adoption, a field
was added to the existing testing web dashboard to indicate
whether the test failure is predicted to lead to a product
fault or an environmental failure. The tester can click to
view the log in a DiffWithPass view that shows only those
lines that are in the current failing log. While this view is
still available, feedback from Ericsson testers indicated that
they preferred to view the flagged lines in the context of
the entire log. The view of the log was modified to highlight
the flagged log lines and allows testers to jump to the next
flagged line. Another product team at Ericsson hired one
of our researchers to re-implement LOGFAULTFLAGGER in a
new test setting. As we discuss in the threats to validity, a
short tuning stage is required, but the overall technique is
dependent only on storing historical test logs and does not
depend on a particular log format or development process.

X. THREATS TO VALIDITY

We report the results for a single case study involving
100’s of thousands of test executions over a six month
period. Since the test failure data is highly skewed because
of the significant proportion of environmental failures, we
use a large number of neighbours, K = 30. It is simple
to adjust the value of K based on the number of faults
that lead to bug reports for other projects. Indeed, the
success of LOGFAULTFLAGGER has lead to its adoption on
another Ericsson team. Although in the early stages, the
initial results are promising and since there are fewer envi-
ronmental failures the data is more balanced and standard
KNN has replaced EKNN . We have also experimented with
other models including, logistic regression, decision tress,
and random forests. Although a complete discussion is out
of the scope of this paper, we note that decision tress
and random forests perform less well than simple logistic
regression and KNN.

Our fault identification techniques use log abstraction
to pre-process the log files. During the log abstraction
process, we lose run-time specific information from the test
log. Though the run-time specific information can help in
the process of fault identification it adds substantial noise
and increases log size. We reduce the size of the log and
increase the fault localization by performing log abstraction.
However, we leave the run specific information in when the

Dra
ft

tester views the log in the LOGFAULTFLAGGER tool so that
they can find, for example, which specific node the test has
failed upon.

Although we can find 89% of all faults, we cannot predict
all the product faults because the reason for all failures
is not contained in the log, i.e. not all run information is
logged. Furthermore, when a test fails for the first time we
cannot calculate a line-IDF score or calculate the cosine
similarity with previously failing neighbours. We found that
predicting first time test failures as a product faults leads to
many false positives at Ericsson. As a result, in this work, a
first test failure has no neighbours and so we predict that
there will be no product fault. This parameter can easily be
adjusted for other projects.

XI. RELATED WORK

A. Fault Location

There is large and successful body of work on locat-
ing faults within source code. Traditional fault location
techniques use program logs, assertions, breakpoints in
debuggers, and profilers [2], [6], [10], [42]. More advanced
fault identification techniques use program slicing-based
algorithm, program spectrum-based algorithm, statistics-
based algorithm, program-state based algorithm, and ma-
chine learning-based algorithm [4], [5], [8], [9], [12], [22],
[29], [38], [46], [51], [54]. In contrast, our algorithms LOG-
FAULTFLAGGER and LOGLINER flag log lines that are likely
related to faults in the test log not the source code. Testers
can use the flagged log lines to determine the reason behind
the test failure. Techniques to trace log lines back to test
cases and ultimately to the part of the system under test
are necessary future work so that our log line location
technique can be automatically traced back to the faulty
source code.

B. Statistical Fault Prediction

Predicting software faults is an active research field. Most
fault prediction techniques predict whether a given software
module, file, or commit will contain faults. Some of the
most popular and recent fault prediction techniques use
statistical regression models and machine learning models
to predict faults in software modules [1], [7], [13], [24],
[24], [25], [27], [28], [32], [33], [35], [39], [47]. Herzig [16]
performed preliminary work combining measures such as
code churn, organizational structure, and pre-release de-
fects with pre-release test failures to predict the defects at
the file and Microsoft binary level. With the exception of
Herzig [16] the bug models we are aware of do not include
test failure information. In contrast, our model uses not
only test outcomes, but also the dynamic information from
the test logs to predict faults.

C. Log Analysis and Failure Clustering

Logs are an important part of operating a production
system. The majority of log analysis work has focused on
production logs of live systems or traces of running code.
These works have used statistical learning approaches to
identify sequences in logs [21], [36], [50], find repeating and

anomalous patterns [14], [18], [31], [45], [53], and clustering
similar logs [20], [30], [36], [37], [48]. We have adapted the
log abstraction approaches to work on test logs [21]. Since
we have an external indicator of success, i.e. a test pass or
fail, we use DiffWithPass that reduces log storage size and
helps testers in identifying the cause of the failure in a log.

D. Categorizing Test Failures

The testing literature is vast, ranging from test selection
and prioritization [11], [15], [26], [56], [58] to mutation
testing [19], [23], [57]. In this work, we focus on false alarms,
i.e. non-product failures, that are common on large complex
systems [17], [20], [34], [41]. These “false alarms” have
received attention because successful classification of false
test alarms saves time for testing teams. Throughout the
paper we have contrasted and replicated the state-of-art on
test log classification, CAM [20]. False alarms can also slow
down the development team when test failures stop the
build. For example, this issue was addressed at Microsoft
by automatically detecting false test alarms [17]. Microsoft
uses association rules to classify test failures based on
configuration information and past pass or fail results. The
classification does not consider the test logs. In contrast, we
use historical test logs to find specific log lines that tend
to be associated with product faults. This allows us to not
only ignore false alarms, but to provide the likely log line
location of the failure.

XII. CONCLUDING REMARKS

We have developed a tool and technique called LOG-
FAULTFLAGGER that can identify 89% of the faults while
flagging less than 1% of the total failed log lines for in-
vestigation by testers. While developing LOGFAULTFLAGGER

we make three major contributions.
First, using log abstraction, we are able to reduce the

log storage requirement by 78%. We also observe that
the location of a fault should be contained in the lines
of a failing log, while the last passing log should not
contain the lines related to a failure. We perform a set-
difference between the failing log and the last passing log.
DiffWithPass further reduces the storage requirement to
94%. DiffWithPass also reduces the noise present in the
failed test log helping testers isolation faults in the log.

Second, our discussions with testers revealed that they
want to find the most faults while investigating the fewest
log lines possible. We evaluate each technique on the basis
of FaultsFound and LogLinesFlagged. Previous works can
only classify test failures based on logs and do not flag
specific log lines as potential causes [21]. Testers must
manually go through the entire log file to identify the log
lines that are causing the test failure. In order to predict
product faults and locate suspicious log lines, we introduce
an approach where we train our model on a subset of log
lines that occur in current failing test log. LOGFAULTFLAG-
GER identifies the rarest lines that have lead to past faults,
i.e. PastFaults * Line-IDF + EKNN . In our Ericsson tool,
LOGFAULTFLAGGER highlights the flagged lines in the log
for further investigation by testers.

Dra
ft

Third, LOGFAULTFLAGGER drastically outperforms the
state-of-the-art, CAM [20]. CAM finds 50% of the total faults.
CAM flags the entire failing log for investigation. When CAM
is adjusted for skewed data, SKEWCAM, it is able to find 89%
of the total faults, as many LOGFAULTFLAGGER, however, it
flags 28% of the log lines compared to the less than 1%
flagged by LOGFAULTFLAGGER.

REFERENCES

[1] E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models. Journal of Systems and Software, 83(1):2–17, 2010.

[2] T. Ball and J. R. Larus. Optimally profiling and tracing programs.
ACM Transactions on Programming Languages and Systems (TOPLAS),
16(4):1319–1360, 1994.

[3] P. Bhattacharya and I. Neamtiu. Fine-grained incremental learn-
ing and multi-feature tossing graphs to improve bug triaging. In
Proceedings of the 2010 IEEE International Conference on Software
Maintenance, ICSM ’10, pages 1–10, Washington, DC, USA, 2010. IEEE
Computer Society.

[4] Y. Brun and M. D. Ernst. Finding latent code errors via machine
learning over program executions. In Proceedings. 26th International
Conference on Software Engineering, pages 480–490, May 2004.

[5] H. Cleve and A. Zeller. Locating causes of program failures. In
Software Engineering, 2005. ICSE 2005. Proceedings. 27th International
Conference on, pages 342–351. IEEE, 2005.

[6] D. S. Coutant, S. Meloy, and M. Ruscetta. Doc: A practical approach
to source-level debugging of globally optimized code. ACM SIGPLAN
Notices, 23(7):125–134, 1988.

[7] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of
bug prediction approaches. In Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on, pages 31–41. IEEE, 2010.

[8] V. Debroy, W. E. Wong, X. Xu, and B. Choi. A grouping-based strategy
to improve the effectiveness of fault localization techniques. In
Quality Software (QSIC), 2010 10th International Conference on, pages
13–22. IEEE, 2010.

[9] R. A. DeMillo, H. Pan, and E. H. Spafford. Critical slicing for software
fault localization. In ACM SIGSOFT Software Engineering Notes,
volume 21, pages 121–134. ACM, 1996.

[10] J. C. Edwards. Method, system, and program for logging statements to
monitor execution of a program, Mar. 25 2003. US Patent 6,539,501.

[11] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving
regression testing in continuous integration development environ-
ments. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 235–245.
ACM, 2014.

[12] K. O. Elish and M. O. Elish. Predicting defect-prone software modules
using support vector machines. Journal of Systems and Software,
81(5):649–660, 2008.

[13] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact of
classification techniques on the performance of defect prediction
models. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1, pages 789–800. IEEE Press, 2015.

[14] D. W. Gurer, I. Khan, R. Ogier, and R. Keffer. An artificial intelligence
approach to network fault management. Sri international, 86, 1996.

[15] H. Hemmati. Advances in techniques for test prioritization. Advances
in Computers. Elsevier, 2018.

[16] K. Herzig. Using pre-release test failures to build early post-release
defect prediction models. In Software Reliability Engineering (ISSRE),
2014 IEEE 25th International Symposium on, pages 300–311. IEEE,
2014.

[17] K. Herzig and N. Nagappan. Empirically detecting false test alarms
using association rules. In Proceedings of the 37th International
Conference on Software Engineering - Volume 2, ICSE ’15, pages 39–48,
Piscataway, NJ, USA, 2015. IEEE Press.

[18] J.-F. Huard and A. A. Lazar. Fault isolation based on decision-theoretic
troubleshooting. 1996.

[19] Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. IEEE Transactions on Software Engineering,
37(5):649–678, Sept 2011.

[20] H. Jiang, X. Li, Z. Yang, and J. Xuan. What causes my test alarm?:
Automatic cause analysis for test alarms in system and integration
testing. In Proceedings of the 39th International Conference on
Software Engineering, pages 712–723. IEEE Press, 2017.

[21] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. An automated
approach for abstracting execution logs to execution events. Journal
of Software: Evolution and Process, 20(4):249–267, 2008.

[22] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing, pages 273–282. ACM, 2005.

[23] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 654–665, New
York, NY, USA, 2014. ACM.

[24] Y. Kastro and A. B. Bener. A defect prediction method for software
versioning. Software Quality Journal, 16(4):543–562, 2008.

[25] T. M. Khoshgoftaar, K. Gao, and N. Seliya. Attribute selection and
imbalanced data: Problems in software defect prediction. In Tools
with Artificial Intelligence (ICTAI), 2010 22nd IEEE International
Conference on, volume 1, pages 137–144. IEEE, 2010.

[26] J.-M. Kim and A. Porter. A history-based test prioritization tech-
nique for regression testing in resource constrained environments.
In Software Engineering, 2002. ICSE 2002. Proceedings of the 24rd
International Conference on, pages 119–129. IEEE, 2002.

[27] S. Kim, E. J. W. Jr., and Y. Zhang. Classifying software changes: Clean
or buggy? IEEE Transactions on Software Engineering, 34(2):181–196,
March 2008.

[28] P. Knab, M. Pinzger, and A. Bernstein. Predicting defect densities in
source code files with decision tree learners. In Proceedings of the
2006 international workshop on Mining software repositories, pages
119–125. ACM, 2006.

[29] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue. Experimental
evaluation of program slicing for fault localization. Empirical Software
Engineering, 7(1):49–76, 2002.

[30] C. Lim, N. Singh, and S. Yajnik. A log mining approach to failure
analysis of enterprise telephony systems. In Dependable Systems and
Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, pages 398–403. IEEE, 2008.

[31] A. Lin. A hybrid approach to fault diagnosis in network and system
management. Hewlett Packard Laboratories, 1998.

[32] T. Mende and R. Koschke. Effort-aware defect prediction models. In
Software Maintenance and Reengineering (CSMR), 2010 14th Euro-
pean Conference on, pages 107–116. IEEE, 2010.

[33] T. Mende, R. Koschke, and M. Leszak. Evaluating defect prediction
models for a large evolving software system. In Software Maintenance
and Reengineering, 2009. CSMR’09. 13th European Conference on,
pages 247–250. IEEE, 2009.

[34] J. Micco. Flaky tests at google and how we mitigate
them. https://testing.googleblog.com/2016/05/flaky-tests-at-google-
and-how-we.html, May 2016.

[35] J. Moeyersoms, E. J. de Fortuny, K. Dejaeger, B. Baesens, and
D. Martens. Comprehensible software fault and effort prediction: A
data mining approach. Journal of Systems and Software, 100:80–90,
2015.

[36] M. Nagappan. Analysis of execution log files. In Software Engineering,
2010 ACM/IEEE 32nd International Conference on, volume 2, pages
409–412. IEEE, 2010.

[37] M. Nagappan and M. A. Vouk. Abstracting log lines to log event
types for mining software system logs. In 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010), pages 114–
117, May 2010.

[38] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Predicting
vulnerable software components. In Proceedings of the 14th ACM
conference on Computer and communications security, pages 529–540.
ACM, 2007.

[39] A. Okutan and O. T. Yıldız. Software defect prediction using bayesian
networks. Empirical Software Engineering, 19(1):154–181, Feb 2014.

[40] F. Pop, J. Kołodziej, and B. Di Martino. Resource Management for
Big Data Platforms: Algorithms, Modelling, and High-Performance
Computing Techniques. Springer, 2016.

[41] M. T. Rahman and P. C. Rigby. The impact of failing, flaky, and high
failure tests on the number of crash reports associated with firefox
builds. In Proceedings of the 2018 Foundations of Software Engineering
(Industry Track), ESEC/FSE 2018. ACM, 2018.

[42] D. S. Rosenblum. A practical approach to programming with asser-
tions. IEEE Transactions on software engineering, 21(1):19–31, 1995.

[43] G. Salton and M. J. McGill. Introduction to modern information
retrieval. 1986.

Dra
ft

[44] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and
P. Martin. Assisting developers of big data analytics applications when
deploying on hadoop clouds. In Proceedings of the 2013 International
Conference on Software Engineering, pages 402–411. IEEE Press, 2013.

[45] J. W. Sheppard and W. R. Simpson. Improving the accuracy of
diagnostics provided by fault dictionaries. In Vlsi test symposium,
1996., proceedings of 14th, pages 180–185. IEEE, 1996.

[46] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim. Reducing features
to improve code change-based bug prediction. IEEE Transactions on
Software Engineering, 39(4):552–569, 2013.

[47] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A general
software defect-proneness prediction framework. IEEE Transactions
on Software Engineering, 37(3):356–370, 2011.

[48] J. Stearley. Towards informatic analysis of syslogs. In Cluster
Computing, 2004 IEEE International Conference on, pages 309–318.
IEEE, 2004.

[49] G. Tassey. The economic impacts of inadequate infrastructure for
software testing. National Institute of Standards and Technology, RTI
Project, 7007(011), 2002.

[50] R. Vaarandi. A data clustering algorithm for mining patterns from
event logs. In IP Operations & Management, 2003.(IPOM 2003). 3rd
IEEE Workshop on, pages 119–126. IEEE, 2003.

[51] M. Weiser. Program slicing. In Proceedings of the 5th international
conference on Software engineering, pages 439–449. IEEE Press, 1981.

[52] J. A. Whittaker. What is software testing? and why is it so hard? IEEE
software, 17(1):70–79, 2000.

[53] H. Wietgrefe, K.-D. Tuchs, K. Jobmann, G. Carls, P. Fröhlich, W. Nejdl,
and S. Steinfeld. Using neural networks for alarm correlation in
cellular phone networks. In International Workshop on Applications
of Neural Networks to Telecommunications (IWANNT), pages 248–255.
Citeseer, 1997.

[54] F. Wotawa. Fault localization based on dynamic slicing and hitting-
set computation. In Quality Software (QSIC), 2010 10th International
Conference on, pages 161–170. IEEE, 2010.

[55] J. Xuan, H. Jiang, Z. Ren, and W. Zou. Developer prioritization in
bug repositories. In Proceedings of the 34th International Conference
on Software Engineering, ICSE ’12, pages 25–35, Piscataway, NJ, USA,
2012. IEEE Press.

[56] S. Yoo and M. Harman. Regression testing minimization, selection
and prioritization: a survey. Software Testing, Verification and Relia-
bility, 22(2):67–120, 2012.

[57] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang. Predictive
mutation testing. IEEE Transactions on Software Engineering, pages
1–1, 2018.

[58] Y. Zhu, E. Shihab, and R. PC. Test re-prioritization in continuous
testing environments. In 2018 IEEE International Conference on
Software Maintenance and Evolution, page 10, 2018.

	Introduction
	Ericsson Test Process and Data
	Methodology
	Log Abstraction
	DiffWithPass
	Frequency of test failures and faults
	TF-IDF and line-IDF
	Log Vectorization
	Cosine Similarity
	Exclusive K Nearest Neighbours (EKNN)

	Evaluation Setup
	Result 1. CAM: TF-IDF & KNN
	Result 2. SkewCAM: CAM with EKNN
	Result 3. LogLiner: Line-IDF & EKNN
	Result 4. LogFaultFlagger: PastFaults * Line-IDF & EKNN
	Discussion
	Performance and Log Storage
	Implementing the LogFaultFlagger tool at Ericsson

	Threats to Validity
	Related Work
	Fault Location
	Statistical Fault Prediction
	Log Analysis and Failure Clustering
	Categorizing Test Failures

	Concluding Remarks
	References

