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Researchers have shown that related functions can be mined from groupings of functions found in the version
history of a system. Our first contribution is to expand this approach to a community of applications and set of
similar applications. Android developers use a set of application programming interface (API) calls when cre-
ating apps. These API calls are used in similar ways across multiple applications. By clustering co-changing
API calls used by 230 Android apps across 12k versions, we are able to predict the API calls that individual
app developers will use with an average precision of 75% and recall of 22%. When we make predictions from
the same category of app, such as Finance, we attain precision and recall of 81% and 28%, respectively.

Our second contribution can be characterized as “programmers who discussed these functions were also
interested in these functions.” Informal discussions on Stack Overflow provide a rich source of information
about related API calls as developers provide solutions to common problems. By grouping API calls contained
in each positively voted answer posts, we are able to create rules that predict the calls that app developers
will use in their own apps with an average precision of 66% and recall of 13%.

For comparison purposes, we developed a baseline by clustering co-changing API calls for each individual
app and generated association rules from them. The baseline predicts API calls used by app developers with
a precision and recall of 36% and 23%, respectively.
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1. INTRODUCTION

Software developers use application programming interfaces (APIs) to access the func-
tionality of libraries and frameworks. By using an API, developers reduce the cost of
development and increase the quality of their application. Learning APIs can be diffi-
cult because developers often struggle to understand the structure of the API and the
usage patterns of API calls [Robillard and DeLine 2011]. Furthermore, APIs evolve
and developers must learn the new method calls to achieve a desired behavior.
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To help developers learn APIs, researchers have developed API usage patterns
[Michail 1999; Robillard et al. 2013]. These patterns can be used in a wide variety
of settings, from suggesting autocompletions in an IDE to generating new documenta-
tion for each API call. However, evaluations of these usage patterns can be difficult, as
there is no benchmark against which to compare. Many researchers have used manual
evaluations, and others have determined how often particular patterns are used in a
set of applications. The former approach suffers from the usual biases in manual eval-
uations and user studies, whereas the latter simply represents how often a pattern is
used. In both cases, it is difficult to compare among studies [Robillard et al. 2013]. To
overcome these evaluation difficulties, we create a benchmark of API call rules based
on the source code version history of 230 Android apps with 12k versions. We apply
association rule mining on sets of API calls that change together in the version history
of these apps to create our test set benchmark.

Our contribution is to use this test set to evaluate the rules generated from two
separate data sources, the second of which is novel. Research approach 1 (RA 1) uses
source code changes. The novel research approach 2 (RA 2) groups API calls that co-
occur in Stack Overflow posts. In total, we have seven subapproaches. In RA 1.1, we
follow Zimmerman et al. [2005] and create a baseline where we consider only the API
changes made to individual apps. In RA 1.2, we generate rules from a community of
apps. Mining rules from a community of software systems, such as Java applications,
is the most common approach in the literature. We suspect that the rules generated
from a large community may be too diverse, so in RA 1.3 we make a new contribution
by suggesting changes that come from a subset of similar apps, such as apps restricted
to the Finance category.

For RA 2, we assume that the API calls discussed together in a post will be helpful
in suggesting changes that developers may want to use in their apps. In RA 1.1, we
generate rules from all co-occurring API calls in positively voted answer posts. In RA
1.2, we consider only those API calls that are part of code snippets. Code snippets
contain setup code that often dilute the salience of the co-occurrences between API
calls, so in RA 1.3 we consider only those API calls that are part of a freeform text
discussion—that is, not part of a code snippet.

We find that the single app baseline predicts API call changes with an average
precision and recall of 36% and 23%, respectively. The best source history approach is
the similar apps, RA 1.3, with a precision and recall of 81% and 28%, respectively. For
the Stack Overflow—based approaches, RA 1.1, the full set of co-occurring API calls in
a post, has the highest precision and recall: 66% and 13%, respectively. We combine
the community of apps, RA 1.2, and Stack Overflow posts, RA 1.1 and achieve an
average precision and recall of 77% and 21%, respectively. We cannot use similar apps,
RA 1.3, in this combined approach, as not all categories have sufficient data to make
predictions and some apps would be excluded.

The API call rules that we generate are general and can be used in a wide range of
applications that have been researched over the past 17 years. A few examples include
identifying common API usage patterns from client applications [Michail 1999; Lamba
et al. 2015], determining deviations in these usage patterns to find bugs [Livshits and
Zimmermann 2005], mining programming rules and specifications [Liu et al. 2006;
Kagdi et al. 2007], suggesting code completions [Bruch et al. 2009], generating usage
examples and documenting APIs [Buse and Weimer 2012], identifying the degree of
redundancy in software systems [Gabel and Su 2010; Ray et al. 2015; Nguyen et al.
2013al], migrating a system to a new API [Dig et al. 2006; Uddin et al. 2011] or new
language [Nguyen et al. 2014], identifying how quickly client apps migrate to new APIs
[McDonnell et al. 2013; Lamba et al. 2015], and understanding how API changes affect
the success of apps [Linares-Vasquez et al. 2013; Guerrouyj et al. 2015].
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public void play(Context context) {
mediaPlayer = MediaPlayer.create(context, R.raw.one_small_step);
mediaPlayer.setOnCompletionListener(new MediaPlayer.OnCompletionListener() {

public void onCompletion(MediaPlayer mp) {
mp.stop();

3
mediaPlayer.start();

R T T S S

b

Fig. 1. Example of API calls that change together in a commit that “added audio playback” https:/
github.com/jameskbride/hello-moon/commit/7b24e599586cbbc9c32710defe6d60b5debOefef.

player.setDataSource(path);
player.prepare();
player.setOnCompletionListener(new OnCompletionListener() {

@0verride
public void onCompletion(MediaPlayer player) {
player.stop();

// play next audio file

I3 H
player.start();

Fig. 2. Example of API calls discussed together in the Stack Overflow answer to the question, “How to play
media files automatically one after another?” http:/stackoverflow.com/a/11291751/1055441.

The remainder of this article is structured as follows. In Section 2, we discuss our
research approaches in detail and provide motivating examples of related API calls
in the app version history and in Stack Overflow posts. In Section 3, we describe
our methodology and data. In Section 4, we evaluate how well each of our approaches
predict the changes that developers make to their apps. In Section 5, we discuss threats
to validity. In Section 6, we position this work in the literature. We conclude the article
in Section 7.

2. MOTIVATING EXAMPLES AND RESEARCH APPROACHES

Zimmermann et al. [2005] observed that related functions could be mined from the
version history. We create association mining rules from the API calls that co-occur in
source code changes to Android apps. These API call rules describe the changes that
developers commonly make to their apps. For example, in Figure 1, we can see that
MediaPlayer.start () and MediaPlayer.stop() were added in the same commit. If this
pattern occurs across a large number of apps, we would create a rule that relates these
two elements.

We observe on Stack Overflow posts that programmers who discussed an API call
were also interested in API calls contained in the same post. We create association
mining rules from API calls that co-occur in Stack Overflow discussion posts related to
Android. For example, in Figure 2, we see that MediaPlayer.start () is discussed in the
same post as MediaPlayer.setOnCompletionListener (). If this pattern regularly re-
peats in Stack Overflow posts, we would suggest that developers use setOnCompletion-
Listener () when we see that they have started a MediaPlayer. Although researchers
have used a developer’s context to suggest code snippets and posts that may be useful,

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 29, Publication date: January 2017.


http://stackoverflow.com/a/11291751/1055441

29:4 S. Azad et al.

we are the first to use co-occurring API calls in informal documentation to suggest
changes that developers should make to their apps.

We evaluate the quality of our rules by creating a test benchmark containing the
co-occurring API calls in the most recent 20% of changes in our corpus of Android apps.
We then use rules from previous source code change (RA 1) and Stack Overflow posts
(RA 2) to predict the changes developers actually made to their apps in the benchmark.
In total, we test rules mined from seven different combinations and subsets of our data.

RA 1: Version History. Using the version history of apps, we create a before and after
version of each change. We extract the API calls that are on lines that are added or
removed (a modification will have an add and remove line). We eliminate API calls that
are unchanged on a line. We create association rules based on the pairs of API calls
that we extract. We test the following three approaches.

RA 1.1: Individual app baseline. Like Zimmerman et al. [2005], we use the history of
changes to the system to create rules for API calls that change together. This technique
is our baseline, as all systems should have access to their own history. As Livshits
and Zimmermann [2005] found, we expect to have limited predictive power because
repeated calls to the same API methods should occur infrequently throughout the
change history of a single app. We attain an average precision and recall of 36% and
23%, respectively.

RA 1.2: Community of apps. The Android API is used in a similar manner across
multiple apps. We combine the rules used in individual apps to create rules from
a community of applications. In this way, we are able to make suggestions to app
developers on how to use API calls that they may have never used before. This research
approach is most similar to those of Nguyen et al. [2013a], who predicted changes to the
AST structure in a large set of Java applications. Our predictions should also contain
API migration and could be used to guide migrations to new versions of an API [Uddin
et al. 2011; Duala-Ekoko and Robillard 2011]. We attain an average precision and recall
of 75% and 22%, respectively.

RA 1.3: Similar apps. The Android API allows for a wide variety of applications that
serve many different purposes, from business to games. Instead of clustering rules from
the entire community of apps, we cluster rules from apps in similar categories. Since
similar apps will make similar calls, we expect this approach to improve the recall
over the community of apps approach. Although others have used similar apps to find
security violations [Gorla et al. 2014b], we are the first to use similar apps to predict
future app changes. The average precision and recall was 81% and 28%, respectively.

RA 2: Informal Documentation on StackQOuverflow. Discussion on Stack Overflow de-
scribes how to combine API calls to solve problems that developers commonly face. We
generate rules from the API calls present in positively voted answer posts. These rules
are then used to predict the changes to individual Android apps. We have three novel
subapproaches.

RA 2.1: Stack Overflow posts. We cluster the API calls that are contained in a single
post. To extract API calls from Stack Overflow posts, we use a tool of Rigby and Robillard
[2013] that can accurately identify qualified API method calls (e.g., Intent.addCategory)
from natural freeform text and code snippets that do not necessarily compile. We group
API calls in a post and generate association rules for API calls. We attain an average
precision and recall of 66% and 13%, respectively.

RA 2.2: Stack Overflow code snippets. Code snippets most often demonstrate the us-
age of an API [Ying and Robillard 2013, 2014]. There has been much work on extracting
code snippets to enhance traditional API documentation with up-to-date source code
examples [Subramanian et al. 2014]. Instead of helping in the search for code exam-
ples, we use association rules from code examples to guide developers in the changes
that app developers make to their apps. We attain an average precision and recall of
63% and 14%, respectively.
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RA 2.3: API calls in freeform text. Rigby and Robillard [2013] found that code snip-
pets contain setup code that is repeated across many posts. They found that code
contained in freeform text tended to have a higher salience to the problem at hand.
In contrast, code snippets tend to contain setup code that is generally necessary for
development but less important for a specific problem. For this approach, we create
rules only from API calls that are surrounded by natural language. For example, in
Figure 2, we can see that a code element surrounded by freeform text (e.g., “You can use
MediaPlayer.onCompletionListener () to listen to the event when a track ends . . .”) is
more important than contextual elements like MediaPlayer.stop(), which are gener-
ally useful. We attain an average precision and recall of 62% and 17%, respectively.

RA 3: Combining the best approaches. After evaluating the predictive power of each
individual approach, we combine the top rules from the version history of a community
of applications with the best Stack Overflow rules. We are unable to use the similar
apps approach in the combined model because some categories do not have enough
transactions to make predictions. Our goal is to determine how complementary the sets
of rules are. We combine the rules from the community of apps and all Stack Overflow
posts. The combined model has a precision and recall of 77% and 21%, respectively.

3. METHOD AND DATA

Our methodology involves the following. First, we extract the API calls from changes to
apps and positively voted Stack Overflow posts. For changes, we generate a before and
after state for each change and identify code elements that were added and removed.
Second, we create association mining rules from the frequency of co-occurrence of API
calls in changes and posts. Third, we set aside the most recent 20% of changes from our
app corpus as a test benchmark. Fourth, we divide the dataset according to our research
approaches and test how well each approach predicts the changes in our benchmark.

3.1. Stage 1: Data Preprocessing

Before extracting API call rules in app development history and Stack Overflow dis-
cussion, we need to ensure that the data is appropriate and that we have a reasonable
history to mine. In the following, we present the data collection and data preprocessing
steps that precede the identification of related API calls.

The first step involved downloading the change history from Git repositories. The Git
repository of each application was downloaded using a Web crawler that we designed to
parse the F-Droid Web pages and extract information about the Git repositories from
the F-Droid catalogue.! The parser provides information about the Git repositories of
each Android application and additional information, such as a link to the app on the
Android Play Store.

Table I summarizes the main characteristics of the studied applications, including
the app category (App Domains), the number of the randomly chosen applications
from each category (#Apps), the number of commits (#Versions), the number of source
code files that changed (#Changed Files), and the number of API call changes (#API
Call Changes) per each category. We chose a random sample of 230 apps, excluding
those that had few changes.? Unlike previous works that sampled the most recent
version from thousands of apps, we had to analyze each changed code element from
12k versions and 152k changed API elements, which limited the number of apps that
we could study.

In the second step, we mined the version history of each app to extract changes in
API calls. We parsed each Git repository and extracted the following: changed source
code files, the type of changes made in each commit (e.g., addition or removal of an

https:/f-droid.org/.
2The version history of the apps are available at http://users.encs.concordia.ca/~pcr/apps_prediction.
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Table |. Characteristics of the Studied Apps

App Domains App Characteristics

#Apps #Versions #Changed Files #API Call Changes
Arcade & Card 3 49 37 356
Books & Reference 7 498 495 4,048
Business 2 79 40 694
Communication 9 1,623 1,151 19,050
Education 7 426 203 6,060
Entertainment 8 705 457 6,110
Finance 5 640 658 9,558
Health & Fitness 3 73 35 736
Libraries & Demo 2 22 24 959
Lifestyle 3 61 48 421
Media & Video 6 790 694 7,806
Music & Audio 4 404 295 3,629
News & Magazines 2 166 100 2,188
Personalization 12 776 440 10,619
Photography 2 15 22 188
Productivity 14 419 502 6,024
Puzzles 6 95 84 624
Social 5 426 286 5,180
Tools 120 4,144 3,844 56,930
Transportation 6 109 107 984
Travel & Local 3 59 86 848
Total 230 12,172 10,180 152,624

internal or external API element), the developer who committed the change, and the
time of the change. The data was stored in a PostgreSQL database to facilitate further
linking and processing.

3.2. Stage 2: Extracting API Calls from Development History

The process of identifying fully qualified API calls is more difficult than that of identi-
fying code elements internal to a system. To identify changing internal code elements,
as Zimmerman et al. [2005] did, one simply looks for changes inside a class to, for ex-
ample, the body of a method. The fully qualified name is apparent. However, with API
method calls, one must resolve the type bindings to an external library. One approach
is to build every version of every app. To do this, one must build up a large repository
of outdated libraries and other components. Building these applications is difficult; for
example, Rahman et al. [2014] talk about a “hard-won” dataset on which they built a
total of 34 versions across five applications.

Since we must resolve the API calls in 12k versions of 230 apps, we use partial
programming analysis (PPA) developed by Dagenais and Hendren [2008]. PPA creates
an intermediate representation of the source code and returns the fully qualified names
of each element. In a partial program, the complete type information may not be
available, so a set of heuristics are used to extract fully qualified names, such as naming
conventions and multiple passes of the partial code to resolve polymorphic methods.
In some cases, ambiguity will remain, such as when the class that declares a method
name is known but the package name is unknown. In experiments performed by the
authors, the technique attained a precision of 91% [Dagenais and Hendren 2008].

For our purposes, PPA is not fast enough to process each file for each version of each
app, so we created a pipeline that allowed us to run PPA only on changed files and to
extract the fully qualified name of API calls that had changed. We used the following
steps:

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 29, Publication date: January 2017.



Generating API Call Rules from Version History and Stack Overflow Posts 29:7

—First, using git-log, we identified the files that had changed and the lines that had
changed.

—Second, for each change, we generated the state of the system before and after each
change using git-checkout.

—Third, we ran PPA on the before and after state of each file to identify all code
elements.

—Fourth, using the line numbers that had changed, we were able to identify all of the
removed code elements in the before state and all of the added ones in the after state.

If a code element occurred in both before and after states, and it was on a changed
line but remained unchanged itself, it was excluded from further analysis.

—Fifth, the fully qualified name was stored in the database, indexed to its change
commit. Although we have information about classes, APIs are used for their behavior
and a change in a fully qualified method call will naturally cover the API classes as
well.

—We calculated the co-occurrence frequency of API calls at the commit level. From
these frequencies, we are able to create association mining rules relating API calls.

3.2.1. API Calls by Application Category. Using all changes from the version history of
all apps will likely create a set of rules that are too general. As a result, we also
create association mining rules for each application category. Recently, researchers
have mined apps by their category, such as Business versus Education. The key idea
was to associate categories and API usage to detect security anomalies—for instance,
applications whose behavior would be unexpected given their categories [Gorla et al.
2014Db]. Inspired by this study, we cluster applications by their category because we
expect apps in the same category to use more similar API calls than those in different
categories.

We categorized the analyzed Android apps based on the categories used in the Google
Play Store.? On F-Droid and the Google Play Store, “appid” is the common identifier
used. Using this identifier and Marketplace API,* we were able to access the informa-
tion about the considered Android apps’ category. We identified 22 different categories
corresponding to the analyzed Android apps. We grouped the applications together
based on these categories. Each cluster consists of a different number of applications,
as they were randomly chosen from F-Droid (see Table I). We group historical changes
by community of apphcatlons belongmg to each category, then we generate recom-
mendations concerning co-occurring API calls using the development history of each
cluster of similar applications, and finally we compute precision and recall for our
recommendations for each individual app in our benchmark.

3.3. Stage 3: Identifying and Grouping API Calls on Stack Overflow

A great deal of knowledge about the behavior of an API is contained in the informal
discussions of developers as they help each other solve problems. We extract qualified
API calls (e.g., Class.method()) from Stack Overflow. Stack Overflow is a question
and answer forum for professional developers.® Developers ask and answer questions,
as well as vote on the quality of a post. Each post is related to a specific topic that
involves a set of related API calls. We group the API calls found in Stack Overflow
posts to create rules to predict the API calls that developers use in their apps. These
co-occurring API calls provide rules that solve specific, recurring problems that app

3https://play.google.com/store?hl=en.
4https://code.google.com/p/android-market-api/.
5http://stackoverflow.com/tour.
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developers face and complement the co-evolving API call groupings found in the
version history. For example, consider the code elements in Figure 2 that show an
answer post to the question, “How to play media files automatically one after another?”
We see that {MediaPlayer.setDataSource, MediaPlayer.prepare, MediaPlayer.
setOnCompletionListener, MediaPlayer.OnCompletionListener, MediaPlayer.stop,
MediaPlayer.start} co-occur. As we discuss in the next step, if they co-occur in a large
number of posts, they will become rules.

Extracting API calls from software artifacts, such as documentation and require-
ments, has received significant research attention. For example, information retrieval
techniques, such as vector space models and latent semantic index, have been tried
but have yielded low precision and recall (less than 65%) [Bacchelli et al. 2010]. In this
investigation, we extract API method calls from each Android tagged Stack Overflow
post. We use the automatic code element extractor (ACE) of Rigby and Robillard [2013].
ACE can extract code elements from documents that contain freeform text as well as
code snippets that may not be compilable. It can process millions of post with high pre-
cision and recall (above 0.90) [Rigby and Robillard 2013]. ACE uses an island parser
to identify code elements in documents. Unlike prior works, this approach does not
depend on an index of valid elements parsed from the source code of a particular sys-
tem [Antoniol et al. 2002; Marcus et al. 2005; Dagenais and Robillard 2012]. Instead,
it identifies code elements in Java constructs and creates an index of valid elements
based on the elements contained in the collection of documents. More recent works,
which do not need an index of valid terms, can only parse code snippets and miss code
elements that are in freeform text [Subramanian et al. 2014].

In this work, the API calls in a Stack Overflow post are considered to “co-occur.”
Since some posts are of low quality, we only consider posts that have received more
positive votes than negative votes—that is, they are positively voted. Further, we
exclude question posts because questioners do not know where to focus and so provide
as much information as possible in the hope that someone will spot their problem.
Question posts would introduce noise in our data and impact the accuracy of our
predictions. We also eliminate any API calls that are part of stack traces, as most of
the elements in a dump are not relevant to the post.

We processed the Stack Overflow posts tagged with “android” between August 2008
and October 2014. We filtered the posts based on our three Stack Overflow research
approaches. Since we are creating rules between API calls, we only consider posts with
at least two API calls. The first approach leverages the entire content of each positively
voted Stack Overflow answer: 113k answer posts. The second approach exploits API
calls in code snippets only: 84k posts. The third approach focuses on API calls that are
mentioned in natural language text exclusively: 29k posts.

3.4. Step 4: Association Rule Mining

We use association rule mining to find co-occurring API calls that we can suggest to
app developers. To generate rules, we need to understand how often items (API calls)
co-occur in transactions (version control commits or Stack Overflow posts). Ultimately,
we will generate rules of the form X = Y, where X is called the antecedent (if) and Y
the consequent (then).

For example, on Stack Overflow answer posts, we find that the API calls MediaPlayer.
start () and MediaPlayer.stop() have been discussed together in 724 posts, whereas
MediaPlayer.start() and MediaPlayer.setOnCompletionListener have been dis-
cussed together in 463 posts. One such post is shown in Figure 2. Both associations are
strong, with the association between start and stop being stronger. We would create
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two rules, with the following being an example of the latter association:
MediaPlayer.start = MediaPlayer.set OnCompletionListener.

This rule implies that when a developer changes the API call MediaPlayer.start (), he
or she should be aware of the call MediaPlayer.setOnCompletionListener(), as they
are often discussed together on Stack Overflow.

The rules that we generate are probabilistic in nature, so we quantify co-occurrence
using confidence and support count. Confidence is the number of transactions that X
and Y co-occur in divided by the total number of transactions in which X occurs.

frequency(XUY)

d X=Y)=
confidence(X = Y) FrequencyX)

We follow Zimmerman et al. [2005] in our use of support count instead of sup-
port. The support count is simply the number of transactions in which both X and Y
occur.

support_count(X = Y) = frequency(XUY)

3.4.1. Generating Rules Using Frequent Pairs. The apriori algorithm computes all rules
beforehand, and rules with support and confidence above a threshold are kept. Since
computing all possible rules can be time consuming, up to 2 to 3 days in our exper-
iments, following Zimmerman et al. [2005], we optimize the computation by making
the following modifications. We only consider single antecedents. In our example, we
can see that we have a single antecedent—that is, there is only one API call on the
left-hand side. Association rules with more than one item in their antecedents, such as
apiy, apis = apis, are not considered.

We also compute rules with a single item in their consequent. For a given item (e.g.,
apil), the rules have the form api; = apis.

3.5. Evaluation Setup

We divide our data into training and test data.® The training data is used to generate
rules relating API calls. These rules are then used to predict the API calls that co-evolve
in individual apps in the test dataset.

We use the same test dataset to evaluate the quality of the rules generated from
both the version history and the Stack Overflow datasets. The test set consists of the
most recent 20% of commits in the version history of the apps (2,435 transactions and
30,223 items). The version control training set consists of the remaining, older 80% of
the data. The Stack Overflow training set consists of all Stack Overflow posts.

We evaluate the quality of our predictions as follows. We divide each transaction
from our test dataset into two parts: (1) a query, g, and (2) an expected outcome, E,. If
a transaction consists of n items, then in the first pass we take the first item i; as the
query and the remaining items iz, i3, . . ., I,, as the expected outcome. In the second pass,
the query will be i and i1, i3, . .., i, will be expected outcome. We perform n passes.

Having generated all possible queries and expected outcomes from our test dataset,
we take each item in our test set as an antecedent in our training set. Using this
antecedent, we take the top 10 consequents based on the confidence of the derived
rules, C,. Our calculation of precision and recall is dependent on how many of these
consequents are in the expected outcome, E,, of our test set. The precision, P,, and

6We also conduct 10-fold cross validation. See Section 5.
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recall, R, for a given query will be

P, = |C, N E,|/|C,|
R, = |C,NE,|/|E,|.

To measure the performance across all queries in a transaction, we calculate the av-
erage precision and recall. To compare the predictive power of each research approach,
such as rules generated from version history versus Stack Overflow, we conduct pair-
wise comparisons of the precision and recall using the Wilcoxon rank sum test or
Mann-Whitney test. We compare the baseline approach and current best approach in-
stead of generating comparisons between every possible combination. In cases of more
than two comparisons, we use the Kruskal-Wallis test.

3.6. Performance: Time and Resources

We summarize our approach and discuss the necessary resources. All data processing
was performed on a standard desktop machine. Our approach can be broken into three
stages: a per-app stage, a Stack Overflow stage, and a rule generation stage. The first
stage is only run once per app and has the following steps:

(1) Clone the git repository. The performance of this step is dependent on Git and the
number and size of repositories.

(2) Parse each change. We walk the Git dag creating a before and after state. This
must be done once for each commit/change. The processing involved in this stage
is expensive, so we randomly sampled 230 apps and processed 12k commits. Using
a more involved approach, Rahman et al. [2014] were able to process only 34
versions across five applications. When new changes are made to an app, only the
new changes need to be parsed.

(8) Run PPA on each change. PPA creates a partial AST. We then determine which code
elements are on changed lines. This is the most expensive stage of our analysis,
and it is dependent on the size of the change. The largest changes ran for up to 1
minute. We extracted 152k API calls.

(4) Create transaction based on commits. Grouping the API calls by commit takes a
trivial amount of time.

The second stage involves processing Stack Overflow posts. We use Rigby and
Robillard’s ACE tool, which is substantially faster than previous work [Rigby and
Robillard 2013]. However, in running the tool on 500k Android posts on Stack Over-
flow, it took 1.5 weeks to finish. We are currently making simple adaptations to the tool
to allow it to progressively ingest posts.

The third stage involves generating the rules between API calls. Every time a new
app is added, a new change is made to an existing app, or a new post is made on Stack
Overflow, we must regenerate the rules. It took us a maximum of 6 hours to generate
all of the rules on our complete Stack Overflow and app history datasets. The new rules
could be generated nightly or when a large set of changes had occurred. Since we follow
Zimmermann et al. [2005] and generate rules in a pairwise manner, we would be able
to only update rules that contain changed API calls, reducing the set of rules that need
to be generated.

4. EMPIRICAL EVALUATION

We use rules generated from the version control history of apps and Android answer
posts to predict the changes in API calls that individual developers make to their apps.
The test set remains the same for all of our research approaches and is the most recent

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 29, Publication date: January 2017.



Generating API Call Rules from Version History and Stack Overflow Posts 29:11

20% of commits made to the apps under study. The test set contains 2,435 transactions
(commits) and 30,223 API calls (items).

4.1. RA 1: Version History

In this section, we use the changes that app developers have made in the past to predict
the changes that will be made in the future. We group API calls that change together
using association mining rules. We have three approaches. First, we create a baseline,
making predictions using single apps. Second, we combine the rules generated across
the entire community of apps. Third, we combine rules that come from apps in the
same category. The test set remains constant across all approaches. The training set
for the version history approaches consists of 9,266 transactions and 51,908 items.

4.1.1. RA 1.1: Individual App Baseline. Our baseline mirrors the work of Zimmerman et al.
[2005] by using past source code changes to predict the changes that an app developer
will make to the same app in the future. We had 27 transactions per app on average
for the training set and 8 transactions on average for the test set. Each transaction
consists of an average of six items.

Since we have the development history for 230 different individual apps, we had
to perform several experiments. To facilitate comparison across all applications, we
decided on a common value for all apps as in previous works [Zimmermann et al.
2005]. We choose thresholds that are not too low and not to high to ensure a trade-off
between the number of rules and their relevance. The support count threshold is 7 and
a confidence threshold is 50%.

Figure 3 shows the distribution of precision and recall for our version history ap-
proaches. Our single app version history baseline is able to predict API call changes
with an average precision of 36% and recall of 23%. The distribution is skewed toward
lower values. Although relatively low, these results are consistent with Zimmerman
et al. [2004], who reported an average precision and recall of 29% and 44%, respec-
tively. With the small size of apps, we might expect substantially lower results than
Zimmerman et al., who used large systems like Eclipse and JBoss that have a long
history. We suspect that one reason we achieved better precision (7 points higher) and
lower recall (21 points lower) is because we are predicting API calls and not changes to
internal methods. The possible set of rules is smaller with API calls, so our predictions
may be accurate despite a short version history.

4.1.2. RA 1.2: Community of Apps. Our baseline produced a reasonable precision and
recall despite a short version history. Since API calls are used in similar patterns
across multiple apps, we combine the rules generated from the version history of all
apps to predict the API calls that will be changed together by individual app developers.

As in our first approach, we experimentally determined the minimum support and
confidence thresholds suitable for our training set by means of several experiments
startingfrom low support and confidence thresholds up to high ones, then we chose the
final parameters that enable us to find a compromise between the number of generated
rules and their pertinence. The configuration chosen consists of a support count of 15
and a confidence of 75%.

The distributions in Figure 3 show that we can predict changes in individual apps
with an average precision of 75% and an average recall of 22%. Compared to our
baseline, there is no statistically significant difference in recall, whereas precision
increases by 39 points (p < 0.001).

Given the task of suggesting possibly relevant API calls to developers, we suggest a
related call that the developer actually used 75% of the time. The high precision clearly
illustrates that developers use API calls in very regular and consistent patterns.
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Fig. 3. Distribution of precision (left) and recall (right) for the version history research approaches: RA 1.1
is the baseline that predicts future changes based on the history of a single app, RA 1.2 uses the rules from
the entire community of apps to predict changes to individual apps, and RA 1.3 uses rules from apps in the
same category to predict changes to individual apps.

The low recall indicates that there are many different ways to combine API calls,
and although we accurately suggest related API calls, we miss many of the possible
combinations. Since we are only suggesting the top 10 related API calls, we often miss
calls that developers actually end up using. We suspect that the main problem relates
to the diversity of apps in our sample. For example, a weather app might use the GPS
location in a very different way than a traffic app.

4.1.3. RA 1.3: Similar Apps. Our goal is to improve recall while keeping precision high.
We cluster apps by categories to get rid of unrelated API changes in our rules. In
Table II, we show the 11 app clusters, from business to travel. We eliminated categories,
such as Lifestyle, that did not have 85 or more transactions in the test dataset. Table II
also shows the number of source code files changed, the number of transactions, and
the number of items per each category of app.

Since we have the version history for 11 different categories, we had to perform
several experiments with different minimum support and confidence thresholds for
each category. We selected a minimum support count and confidence thresholds of 15
and 60%, respectively.

Using the rules generated from apps in the same category to predict co-changing
API calls, we can predict changes in individual apps with an average precision of 81%
and an average recall of 28% (see the distributions in Figure 3). Compared to the rules
generated from the entire community of apps, we see an increase in average precision
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Table Il. Development History of Analyzed Projects

App Domains Training Data Test Data

Category #Txns #Items #Txns #Items
Books & Reference 295 1,047 101 263
Communication 968 5,430 327 1,289
Education 249 956 88 291
Entertainment 445 1,088 145 794
Finance 422 2,644 144 946
Media & Video 486 1874 167 761
Music & Audio 250 960 88 419
Personalization 457 2,732 159 657
Social 250 1,445 88 328
Tools 2,556 16,376 929 5,572
Transportation 103 408 41 177

Txns, transactions.

of 3 points, but we improve our average recall by 6 points. The difference for precision
is not statistically significant with p = 0.07, whereas the increase in recall is p = 0.04.

Our results confirm that similar apps use similar API calls. However, using similar
categories of apps reduces the sample from which we can draw and in some categories
makes prediction impractical. We suspect that the modest increase in recall is the
result of more specific sample of related apps, which reduces the overall number of
possible API call combinations. Since we are unable to make predictions for all apps,
we continue to use the community of apps as our comparison point for Stack Overflow.

4.2. RA 2: Informal APl Documentation on Stack Overflow

Informal API documentation contains rich information about API calls [Ying and
Robillard 2014; Subramanian et al. 2014; Rigby and Robillard 2013]. We use Stack
Overflow to predict the changes that developers will make to their apps. The test set
remains the same and contains the 2,435 transactions and 30,223 items from version
history. The training set is the API calls that are contained in the same Stack Overflow
post.

4.2.1. RA 2.1: Stack Overflow Posts. We first consider the entire content of positively
voted answers. Our training set consist of all API calls mentioned in both the code snip-
pets and freeform text of Stack Overflow posts. We have a total of 113,303 transactions
(posts) and 406,622 items (API calls) from our training set. We have experimentally
set the support count and confidence thresholds prior to 10% and 70%, respectively.

We find that we can predict changes in individual apps with an average precision of
66% and an average recall of 13% (see the distributions in Figure 4). Compared to our
baseline, we increase our precision by 31 points but decrease our recall by 10 points.
Both results are statistically significant with p <« 0.001. Compared to the version
history from a community of apps, RA 1.2, we see a decrease in both precision and
recall of 9 points (p < 0.01). Comparing all three approaches using a Kruskal-Wallis
test, the differences are statistically significant with p « 0.001.

In Figure 4, we see that the recall distribution is skewed toward low values. We
suggest two possible factors. First, we only include the top 10 results in our predication.
Second, the Stack Overflow dataset has eight times as many API calls as the version
history dataset. As a result, we suspect that the large dataset has too many possible
suggestions for each API call, which limits the recall of the Stack Overflow approach.
In contrast, the suggestions made from the Stack Overflow data are precise, with the
distribution heavily skewed toward high values of precision.
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Fig. 4. Distribution of precision (left) and recall (right) for the Stack Overflow research approaches: RA 2.1
includes all API calls in a post, RA 2.2 includes only API calls in code snippets, and RA 2.3 includes only API
calls surrounded by freeform text. In each case, we predict the changes that will be made to individual apps.

4.2.2. RA 2.2: Stack Overflow Code Snippets. Code snippets help developers learn and
relearn proper API usage patterns [Ying and Robillard 2014; Subramanian et al. 2014].
Researchers have shown that 65% of accepted answers on Stack Overflow contain code
examples [Subramanian and Holmes 2013], whereas unanswered questions often lack
code [Asaduzzaman et al. 2013]. Our goal is to understand whether code snippets
contain related API calls that individual developers ultimately use in their apps.

Mining only Stack Overflow code snippets, our training set contained 84,189 transac-
tions and 361,884 items. By limiting our set to code snippets, we reduce the number of
API calls by 45k. Our test set remains the same. We experimentally set our minimum
support count and a minimum confidence to 15 and 65%, respectively.

The distribution in Figure 4 show that by using code snippets, we can predict changes
in individual apps with an average precision and recall of 63% and 14%, respec-
tively. Compared to the previous approach that included API calls in code snippets
and freeform text, the differences are not statistically significant (p > 0.13).

4.2.3. RA 2.2: Methods in Freeform Text on Stack Overflow. Rigby and Robillard [2013] found
that the API calls present in the freeform text are more central (i.e., salient) to the
subject of a post than code snippets. Code snippets contain setup code that occurs
repeatedly across posts. We suspect that this setup code adds noise to predictions. We
investigate whether API calls contained in freeform text on Stack Overflow provide a
more accurate prediction of the API calls that developers use in their apps.
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Table Ill. Average Precision and Recall for each Research Approach

Research Approach Data Source Precision (%) Recall (%)
RA 1.1 Single app baseline 36 23
RA 1.2 Community of apps 75 22
RA 1.3 Similar apps 81 28
RA 2.1 Stack Overflow posts 66 13
RA 2.1 Stack Overflow code snippets 63 14
RA 2.1 Stack Overflow freeform text 62 17
RA 3 Combined: community and all posts 77 21

Our training set consists of all clusters of API calls present in natural language text
of Stack Overflow answers posts exclusively. It consists of a total of 29,114 transactions
and 47,021 items. By limiting our set to those contained in freeform text, we reduce the
number of items in our training set 8.6 times, from 406k to 47k. The test set remains
the same as in the previous approaches. We experimentally choose a support count of
15 and a minimum confidence of 70%.

Identifying API calls from freeform text, we can predict changes in individual apps
with an average precision of 62% and an average recall of 17% (see the distributions
in Figure 4). Compared to the snippets-only approach, the change in precision is not
statistically significant (p = 0.50), whereas there is an increase in recall of 3 points
(p = 0.02). In contrast to the approach that contains both code snippet and text,
we decrease the precision by 4 points (p = 0.03) but increase the recall by 4 points
(p = 0.08). The increase in recall is only a trend (i.e., p < 0.10). Comparing all three
approaches using a Kruskal-Wallis test, the differences are not statistically significant,
with p > 0.05 for both precision and recall.

The slight increase in recall likely arises from a more focused set of API calls—that
is, those described in freeform text. We suspect that the difference in precision results
from missing contextual API calls that are present in code snippets. These contextual
API calls are relevant to many tasks, and a narrow focus on freeform text misses some
related elements.

4.3. RA 3: Combing the Best Approaches

Table IIT shows the precision and recall for each approach. We create a model that
integrates the best models from version history and Stack Overflow posts. We combine
the version history from the community of all apps, RA 1.2, with the rules generated
from all API calls contained in Stack Overflow posts. We do not use the similar apps
approach, as we cannot make a prediction for all apps. In Figure 5, we see that the
combined approach has an average precision and recall of 77% and 21%, respectively.

We compare the combined approach with our baseline and its two component parts.
Comparing all four approaches using a Kruskal-Wallis test indicates that the difference
in precision and recall are statistically significant at p « 0.001. We also perform
a pairwise comparisons using Wilcoxon rank sum tests. Compared to the average
baseline predictions within a single app, the combined approach increases precision by
41 points (p « 0.001), whereas the difference in recall is not statistically significant.
Compared to the community of apps, RA 1.2, we see an increase of 2 points in average
precision. However, this increase is a non—statistically significant trend (p = 0.07).
The change in recall is not statistically significant (p = 0.85). Compared to the rules
generated from API calls on Stack Overflow, we see an increase in average precision
and recall of 9 and 8 points, respectively (p < 0.01).

The combined model indicates a slight increase in precision over the community
of apps model. The model is better than the basic Stack Overflow model. By adding
more focused rules to the Stack Overflow model, we see increases in predictive power.
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Fig. 5. Distribution of precision (left) and recall (right) for the combined approach. We combined the rules
from version history of a community of apps with those generated from the API calls present in Stack
Overflow posts.

However, the overwhelming number of API calls on Stack Overflow (406k calls) gener-
ates an overabundance of possible combinations. Using the context of the app developer
to limit the Stack Overflow rules is a promising area of future work that may improve
recall.

5. THREATS TO VALIDITY

In the sections where each approach was presented, we discussed the particular threats
to validity for that approach. In this section, we discuss general threats to the entire
study.

Although our study involves fewer apps than others studies [Vasquez et al. 2013;
Gorla et al. 2014a], we have analyzed multiple version of apps instead of a single
release. In total, we examined 152k commits across 230 apps. Since we have randomly
sampled across a wide range of apps from 22 different categories, we believe that our
results will likely generalize. It is unclear whether our results would generalize outside
of Android app development, and future work is necessary.

We have examined the predictive power of our approach based not only on the use of
development history but also informal API documentation. We chose Stack Overflow
because it contains discussions among professional developers. However, other sources
of information can be leveraged as well, including bug reports repositories, developers’
emails, code reviews, and instant message discussions.

To identify API calls in app version histories, we used partial program analysis
[Dagenais and Hendren 2008]. Although there are some unknown code elements, we
believe that the accuracy of 91% is reasonable for our approach. Likewise, we believe
that the tool of Rigby and Robillard [2013], which has an average precision and recall
at or above 90% when analyzing Android Stack Overflow posts, is reasonable for our
purposes.

We chose to evaluate the precision and recall based on the top 10 results returned
by our approach. The top 10 results may have reduced our recall values, so we also
evaluated the top 15 results. We found that compared to the top 10 results, the top 15
results decreased the precision between 4 and 6 percentage points. Except for salient
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Stack Overflow API calls, all decreases are statistically significant at p < 0.05. The
recall values increased by approximately 1 point. None of the increases in recall were
statistically significant for the version history approaches. All Stack Overflow ap-
proaches had statistically significant increases in recall at p < 0.05. However, the
increase is between 1.1 and 1.6 percentage points, which is negligible given the task.
Since the recall increases negligibly with more results, we conclude that the diversity
of each change is great; however, the good precision results indicate that many of the
changed elements are similar. In effect, developers use many of the same API calls but
also use a smaller specific set that likely makes their app different from that of com-
petitors. We can predict the ones that they use regularly but have difficulty predicting
the complete set. Future techniques based on natural language processing of commit
logs may help in specifying the API calls that differentiate the app from its competitors.

To understand how useful our patterns are as general rules for API usage, we also
conducted 10-fold cross validations and compared them to our time-ordered training
and test set evaluations. For each research approach, there was a reduction in precision
and recall. However, the difference in resulting precision and recall was not statistically
significant according to a Wilcoxon rank sum test, except in the precision of the similar
apps approach (average precision —3.7 points, p < .003) and recall of the salient Stack
Overflow API calls approach (recall —2.3 points, p < 0.36). Although rarely statistically
significant, part of this negative difference results from suggesting API calls from the
future folds that did not exist in the past folds. In the body of the article, we select an
older training set and a newer test set to avoid suggesting API calls that do not yet
exist.

In this work, we may suggest legacy or deprecated API calls. An interesting area
of future work could be to investigate weighting and other approaches to ensure that
suggestions accurately reflect the current state of app development. If a recency weight
is added, precision and recall should increase over the values that we report, as fewer
deprecated API calls will be suggested.

6. RELATED WORK

Source code has long been used to identify related changes and to provide a better un-
derstanding of systems and libraries. For example, textual similarity of program code
[Atkins 1998], commit messages [Chen et al. 2001], and API usage patterns [Michail
1999] have been exploited to guide developers during their engineering activities. Build-
ing on this work, Zimmerman et al. [2004, 2005] used association rule mining on CVS
data to recommend source code that is potentially relevant to a given change task. Like
Zimmerman et al. [2005], we apply data mining techniques and use association rule
mining. In our approach, we predict changes that developers make to API method calls
instead of predicting change associations between internal files or calls.

Several works have examined the redundancy of code used in a community of appli-
cations [Gabel and Su 2010], as well as in the changes made to those applications. For
example, Ray et al. [2015] examine these changes at the line level, looking for changed
lines that are clones, and Lamba et al. [2015] determine the degree of redundancy in
Android apps. In contrast, we extract the API calls to suggest future changes. Nguyen
et al. [2013a] also use version history to make predictions but make them at the AST
level. AST-level predictions include other constructs, such as “for” loops, making it
difficult to achieve a high degree of precision. Furthermore, we leverage informal API
documentation (i.e., Stack Overflow) to find related API calls. We also propose a predic-
tive model using both development history and Stack Overflow posts to predict changes
in APIs calls.

Advanced autocompletion techniques have leveraged the history of applications and
the repetitive nature of programming to suggest code elements to developers. Robbes
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and Lanza [2008] filter the suggestions made by code completion algorithms based
on, for example, where the developer had been working in the past and the changes
that he or she had made. Bruch et al. [2009] suggest appropriate method calls for a
variable based on an existing code base that makes similar calls to a library. Duala-
Ekoko and Robillard [2011] use structural relationships between API elements, such
as the method responsible for creating a class, to suggest related elements to devel-
opers. Works by Nguyen et al. [2013b] use statistical language models to accurately
autocomplete code. Since these models are built on a corpora of applications, they are
able to make suggestions that autocomplete multiple lines of code. The language mod-
els suggest simple sequences, which can lead to incorrect completions. Recent work by
Nguyen and Nguyen [2015] uses graphs to ensure that the suggestions are syntacti-
cally valid. These works clearly show how related method calls can be suggested to the
developer as autocompletions. A simple tool would be able to use our rules to suggest
changes not only from a sample of related applications but also from Stack Overflow.

Focusing on API evolution, many researchers [Dig et al. 2006; Uddin et al. 2011] have
identified the changes that must be made to client programs when the API evolves.
Their technique identifies temporal API usage patterns in client applications to under-
stand when usage of API calls change. We are interested in all related API calls, not
just changes related to the evolution of an API.

Several works suggest code snippets that are related to each other or to a developer’s
current context [Ying and Robillard 2013; Subramanian et al. 2014]. For example,
Strathcona uses the developer’s context to find related code [Holmes and Murphy
2005]. MAPO clusters similar code across a set of 20 open source applications to suggest
related code snippets [Zhong et al. 2009]. Ponzanelli et al. [2014] are able to suggest
code snippets to a developer given the context of the code elements that are open
in the Eclipse IDE. During maintenance and development tasks, they showed that
the suggested code snippets helped developers to complete experimentally assigned
tasks. Ponzanelli et al. [2013] have developed an Eclipse plugin namely, Seahawk, that
assist programmers by suggesting StackOverflow posts relevant to the context of the
developer’s IDE. Instead of returning existing code snippets, Buse and Weimer [2012]
automatically generate code snippets from a large corpus of applications that use an
API. In a user study, the generated code snippets were ranked equal to manually
created snippets 82% of the time. In contrast to these works, we suggest related API
elements instead of suggesting entire posts or snippets of code. Our suggestions crosscut
multiple posts instead of suggesting individual posts and compare Stack Overflow to
version history.

Examining the stability of an API, Linares-Vasquez et al. [2013] studied the impact
of fault- and change-prone API calls on user ratings of apps. They found that apps with
lower ratings used API calls that were buggy and change prone. The authors mined
the version history of the Android API and related it to single releases of apps. In
contrast, we mined the version history of apps that use the API. As a result, whereas
they mined many more apps, we mined many more versions of apps. Their conclusion is
that app developers should avoid unstable API calls, whereas we suggest API calls that
commonly occur together in a large community of apps. In previous work, we examined
the binaries of Play Store apps to determine if success and churn were related [Guerrouj
et al. 2015]. We found that individual apps that changed frequently had lower ratings.
We decompiled binary apps at releases instead of using the source version history.
This methodology was not appropriate for this study, as release information is not fine
grained enough to provide association rules between co-changing API calls.

In another work, Linares-Vasquez [2014] examined whether changes to the Android
API would lead to increased discussion of changed API calls on Stack Overflow. They
found that developers react to changes in the Android API as measured by changes
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to their apps and increased Stack Overflow discussions. We found a similar result
[Guerrouj et al. 2015]. Neither study used Stack Overflow posts to suggest groupings
of API calls as we do in this study.

7. CONCLUSION

In this article, we mined source code change history and Stack Overflow posts to help
developers identify relevant API method calls when making changes. Using 230 apps
and 12k revisions to those apps, we have shown that our techniques are able to accu-
rately provide change suggestions of API calls that developers actually make to their
apps with a high precision and recall. Making predictions using a single apps base-
line, we found a precision and recall of 36% and 23%, respectively. Using a community
of apps, we attained a precision of 75% and a reasonable recall of 22%. Additionally,
we combined the predictive models from development history and Stack Overflow and
showed that the combined model has similar performance to our version history ap-
proach. We also provided evidence that source code changes history across multiple
apps in the same category, such as Finance or Games, improves the precision and re-
call to 81% and 28%, respectively. However, some categories did not contain enough
apps to make reasonable predictions.

In terms of informal API documentation on Stack Overflow, we showed that developer
posts reflect code change activities. This finding corroborates recent works [Linares-
Vasquez et al. 2014; Panichella et al. 2014; Guerrouj et al. 2015]. We demonstrated
that these relationships can be used to predict API call changes to individual apps
with an average precision and recall of 66% and 13%, respectively. We believe that our
approach can be used to augment existing works on the prediction of changes between
fine-grained source code entities, as well as syntactic and dynamic analysis-based
techniques.

As far as we know, we are the first to use co-occurrences of API elements on Stack
Overflow to suggest API change patterns to developers. Whereas others have mined
code snippets and suggested relevant posts to a developers context [Ponzanelli et al.
2014], we grouped co-occurring API elements on Stack Overflow and used these co-
occurrences to predict changes that developers are likely to make to their apps. Our
rules are general and can be used to suggest code completions and help in creating
documentation.
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