
Mitigating Turnover with Code Review Recommendation:
Balancing Expertise, Workload, and Knowledge Distribution

Ehsan Mirsaeedi
Department of Computer Science and

Software Engineering

Concordia University, Montréal, Québec, Canada

s_irsaee@encs.concordia.ca

Peter C. Rigby
Department of Computer Science and

Software Engineering

Concordia University, Montréal, Québec, Canada

peter.rigby@concordia.ca

ABSTRACT

Developer turnover is inevitable on software projects and leads to

knowledge loss, a reduction in productivity, and an increase in de-

fects. Mitigation strategies to deal with turnover tend to disrupt and

increase workloads for developers. In this work, we suggest that

through code review recommendation we can distribute knowledge

andmitigate turnover with minimal impact on the development pro-

cess. We evaluate review recommenders in the context of ensuring

expertise during review, Expertise, reducing the review workload

of the core team, CoreWorkload, and reducing the Files at Risk to

turnover, FaR. We find that prior work that assigns reviewers based

on file ownership concentrates knowledge on a small group of core

developers increasing risk of knowledge loss from turnover by up

to 65%. We propose learning and retention aware review recom-

menders that when combined are effective at reducing the risk of

turnover by -29% but they unacceptably reduce the overall expertise

during reviews by -26%. We develop the Sofia recommender that

suggests experts when none of the files under review are hoarded

by developers, but distributes knowledge when files are at risk. In

this way, we are able to simultaneously increase expertise during

review with a ΔExpertise of 6%, with a negligible impact on work-
load of ΔCoreWorkload of 0.09%, and reduce the files at risk by

ΔFaR -28%. Sofia is integrated into GitHub pull requests allowing
developers to select an appropriate expert or “learner" based on the

context of the review. We release the Sofia bot as well as the code

and data for replication purposes.

KEYWORDS

Turnover, Knowledge Distribution, Code Review, Recommenders,

Tool Support

ACM Reference Format:

Ehsan Mirsaeedi and Peter C. Rigby. 2020. Mitigating Turnover with Code

Review Recommendation: Balancing Expertise, Workload, and Knowledge

Distribution. In 42nd International Conference on Software Engineering (ICSE

’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3377811.3380335

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380335

1 INTRODUCTION

Turnover on software projects is frequent and inevitable and leads

to the loss of knowledge when developers leave a project [3, 45].

Turnover incurs substantial economic cost in recruiting and training

new employees [32, 36], it reduces the productivity of development

teams [20, 32], it leads to the loss of critical tacit knowledge [19,

31, 32], and has been shown to increase the number of defects in a

product and reduce overall product quality [12, 31, 32].

Recentworks have tried tomitigate the adverse impact of turnover

through increasing knowledge retention by predicting leavers [3, 9,

24], planning for succession [31, 35, 45, 49], documenting knowl-

edge, and persisting knowledge on StackOverflow and other inter-

nal QA forums [35, 40]. However, these mitigation practices often

require organizational changes and additional developer effort es-

pecially by those who are expert enough to answer questions and

write documentation [40].

In this work, we show that code review canmitigate turnover risk

because it naturally distributes knowledge by exposing developers

to new code during reviews. Prior work interviewed developers

and showed that code review is an opportunity for learning and

it plays a vital role in distributing knowledge [1, 6, 17, 42, 47, 50].

Furthermore, studies have quantified the knowledge gained during

code review [41, 47] and shown that developers review code in

modules they have not modified [50]. In contrast to other turnover

mitigation strategies, code review is a common and well-established

practice in teams that does not require teams and individuals to

alter their current workflow.

In this work, we enhance code review’s inherent knowledge

sharing potential by developing review recommenders to distribute

knowledge and use simulations to show that they mitigate turnover

risk. In contrast, existing review recommenders [2, 18, 21, 39, 52, 54–

56] are solely focused on finding expert reviewers and disregard the

role of code review in distributing knowledge among developers.

These recommenders result in expertise concentration because the

evaluation benchmark is how many of the actual developers who

performed the review were recommended. Interviewed developers

state that these recommenders suggest obvious candidates and do

not provide additional value [23].

To evaluate recommenders from other perspectives, we introduce

three outcome measures that interviews with developers indicated

as important aspects of code review [1, 17]: Expertise, CoreWorkload,

and FaR. The first outcome ensures that expertise remains high for

finding defects during review. The second, ensures that the core

developers are not unreasonably overworked due to always being

the top recommendation. The third outcome measures the number

of files that are at risk to turnover, FaR, to ensure that knowledge

1183

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

is adequately distributed during review. We run simulations on

the historical reviews of five large projects to understand how

recommenders affect each outcome. For completeness, we also

calculate Mean Reciprocal Rank, MRR, to understand how well

each recommender predicts the developers who actually performed

the review.

Research Questions

RQ1, Review and Turnover: What is the reduction in files at

risk to turnover when both authors and reviewers are con-

sidered knowledgeable?

Recent studies have quantified knowledge loss from turnover on

the basis of the commits that each developer has authored [34, 45].

However, the knowledge transfer that occurs during code review is

widely documented with prior work showing that review promotes

team awareness, transparency, and shared code ownership [1, 42,

47, 50]. We modify the previous turnover measure to consider both

authors of code as well as reviewers to be knowledgeable and recal-

culate the number of files that are at risk, FaR. With only authors

being considered knowledgeable on average 79% of the total files

are at risk to turnover. When we consider both authors and review-

ers to be knowledgeable FaR drops to 32%. Code review naturally

distributes knowledge.

RQ2, Ownership: Does recommending reviewers based on

code ownership reduce thenumber of files at risk to turnover?

Studies show that teams tend to assign reviews to the owners

of files under review [17, 47] and experts who have modified or

reviewed the files in the past [2, 23]. We implement simple owner-

ship recommenders that suggest reviewers based on the files that

developers have modified or reviewed in the past.

We show that assigning reviewers based on prior commits, Au-

thorshipRec, or prior reviews, RevOwnRec, increases expertise by

11.29% and 15.17%, respectively, while increases turnover risk, FaR,

by 25.25% and 65.19%. We conclude that concentrating expertise

on the top developers make projects susceptible to knowledge loss

from turnover.

RQ3, cHRev: Does a state-of-the-art recommender reduce

the number of files at risk to turnover?

We review the literature on review recommenders and find that

most mine historical review information. Unfortunately, we did

not find working implementations or replication packages for any

of the existing recommenders. For comparison purposes, we re-

implement cHRev which has been shown to outperform other rec-

ommenders [56]. When re-evaluate cHRev on our outcome mea-

sures, we find that like the ownership recommenders, cHRev in-

creases the level of expertise by 11.11%, and has the added benefit

of reducing CoreWorkload by -3.49%. Unfortunately, cHRev concen-

trates knowledge and increases the risk of knowledge loss through

turnover by 4.15%.

RQ4, Learning and Retention: Can we reduce the number

of files at risk to turnover by developing learning and reten-

tion aware review recommenders?

We propose two knowledge aware proxies for estimating knowl-

edge distribution and retention. LearnRec ensures that a developer

who has not reviewed or modified all of the files currently un-

der review will be proposed. RetentionRec recommender ensures

that non-transient developer who have commitment to the project

are recommended. Assigning learners through LearnRec substan-

tially reduces Expertise, -35.13%, but counter-intuitively it makes

the project drastically more susceptible to knowledge loss from

turnover as less committed developers are recommended, ΔFaR of
63.04%. Suggesting committed developers through RetentionRec is

the most successful strategy in ensuring experts, 16.59%, during

review, but has the greatest increase in CoreWorkload, 29.42%.

RQ5, Sofia: Can we combine recommenders to balance Ex-

pertise, CoreWorkload, and FaR? Each of the previous recom-

menders has a focus and cannot simultaneously balance the out-

comes. Our final recommender, Sofia, assigns either experts or

learners based on the files under review. It uses cHRev when the

files under review are not at risk and uses TurnoverRec when few

developers know about the files under review. This multi focus

strategy improves all outcomes simultaneously. Sofia increases the

level of expertise during review by 6.27%, while having a minor

impact of 0.09% on CoreWorkload and reduces turnover risk with a

ΔFaR of -28.27%.
We integrated Sofia to make recommendations for GitHub pull

requests and to recommend both expert and “learning" developers.

The Sofia source code [30] is publicly available along with the data

in a replication package [29]

This paper is organized as follows. In Section 2, we provide

the study background as well as defining our measures, review

recommender, scoring functions, and simulation methodology. In

Section 3, we describe the projects under study. In Section 4, we

present results for each of our research questions. In Section 5, we

describe the Sofia bot which integrates into GitHub pull request.

In Section 6, we discuss threats to validity. In Sections 7 and 8, we

discuss our findings in the context of the existing literature and

conclude the paper.

2 BACKGROUND AND DEFINITIONS

In this section we introduce the background on ownership, review

recommenders, and knowledge loss and show the manner in which

each has been quantified in the past. We will subsequently use these

measures as the basis onwhich to expand reviewer recommendation

in a scoring function that will also be knowledge aware.

2.1 The Ownership Recommenders

The influence of code ownership on code quality has been exten-

sively investigated in the literature[5, 12, 38, 50]. Ownership is a

human factor that helps with finding knowledgeable developers

that can be accountable for a particular part of code or task [33].

Developer Recommenders use ownership to automatically assign

tasks to experts [22]. Researchers have used a wide range of granu-

larity, from lines [13, 14, 38] to modules [5], to estimate ownership

of developers. Studies on code review find that code owners are

usually selected to review changes [1, 17, 47]. In this work we de-

velop two simple scoring functions for review recommendation

based on ownership.

AuthorshipRec. Bird et al. [5] defines the code ownership for a

developer in a module as the ratio of commits the developer has

made relative to the total commits made to that component. Our

AuthorshipRec scores a developer, D, as a candidate reviewer based

1184

on the number of commits he or she has made to the files under

review, R, divided by the total number of commits made to these
files.

AuthorshipRec(D,R) =
CommitsForFilesUnderReview(D,R)∑Devs

d
CommitsForFilesUnderReview(d,R)

(1)

RevOwnRec. Thongtanunam et al. [50] devise a review aware

ownership metric based on the files that a developer has reviewed.

Intuitively, reviewers who have reviewed the changed files or mod-

ules in the past, will be good candidate reviewers. To recommend

reviewers, we score the number of times a candidate has reviewed

the files in the past divided by the total number of times the files

have been reviewed.

RevOwnRec(D,R) =
ReviewsOfFilesUnderReview(D,R)∑Devs

d
ReviewsOfFilesUnderReview(d,R)

(2)

2.2 The cHRev Recommender

There is a large literature on review recommendation [2, 18, 39,

52, 54–56]. We note that we did not find a replication package or

recommender implementation for any of these works [25]. We only

re-implement cHRev [56] because it includes a wide range of factors

in its recommendation and has a higher accuracy than the other

review recommenders such as RevFinder [52].

cHRev scores candidate reviewers by the expertise, frequency,

and recency of their past reviews. First, cHRev takes the number of

comments made by a candidate on a file as a proxy for expertise.

Second, cHRev considers the number of work days a developer

has worked on a file as a proxy for measuring effort. Third, cHRev

weights recent reviews more highly.

cHRev defines the xFactor (D, F) as the measure of the expertise
for a developer D on a file F . Cf ,Wf , and Tf respectively show the

number of review comments contributed by D for F , the number of
work days D has dedicated on contributing comments on F , and the
last day that D worked on F . To provide a denominator, Cf ′ ,Wf ′ ,

andTf ′ indicate the total number of comments made on F , the total
number of work days spent on commenting on F , and the time of
the most recent comment on F , respectively.

xFactor (D, F) =
Cf

Cf ′
+

Wf

Wf ′
+

1

|Tf −Tf ′ | + 1
(3)

To compute the score of a candidate reviewer for a given code

review, they sum up the xFactor (D, F) that the candidate, D, has
on the files in the change, F .

2.3 The Turnover Mitigating Recommenders

The focus of existing recommenders on experts disregards the other

benefits of code review such as knowledge sharing. Rigby and

Bird [42] report that code review increases the number of files de-

velopers see by between 100% and 150%. In this work, we speculate

that code review can be effective in mitigating the turnover-induced

knowledge loss. Based upon this idea, we design reviewer recom-

menders that either distribute or retain knowledge.

2.3.1 Distributing Knowledge. We then define a candidate’s knowl-

edge of review request as the number of files under review that a

candidate has modified or reviewed in the past divided by the total

number of files under review.

ReviewerKnows(D,R) =
NumCommitOrReviewedFiles(D,R)

NumFilesUnderReview(R)
(4)

Equation 4, assigns developers with knowledge of the code under

review and ensures expert opinions but concentrates the knowledge

of these files exacerbating the risk from turnover.

LearnRec. To distribute knowledge among the developers, we in-

verse the ReviewerKnows(D,R) function to understand how many

new files a developer will gain knowledge of if he or she is assigned

the review. We limit the recommender to only display candidates

that know about at least one file under review. We then score the

remaining reviewers using the LearnRec recommender to maximize

learning through the scoring function:

LearnRec(D,R) = 1 − Knowledge(D,R) (5)

2.3.2 Developer Retention. Developers who have made substantial

recent contributions to a project have demonstrated a high degree

of commitment to the project[9, 48]. In contrast, assigning a review

to a developer who is transient and will likely leave the project is

antithetical to the goal of retaining project knowledge. We define

commitment and contribution consistency measures to recommend

reviewers with a high potential of remaining on the project, i.e. high

retention potential. In contrast to the previous measures which are

at the pull request or review level, the retention is done at a project-

wide level.

ContributionRatio.We measure the contribution of potential

of a developer, D, by the number of reviews and commits he or she
has made in the last year divided by all the commits and reviews

on the project.

ContributionRatio365(D) =
TotalCommitReview365(D)∑Devs

d
TotalCommitReview365(d)

(6)

ConsistencyRatio. It is common for developers to make sub-

stantial contributions to a feature and leave the project after the

feature is complete. To avoid assigning reviews to transient devel-

opers, we define the ConsistencyRatio365(D) as the proportion of
months a developer has been active in the last year.

ConsistencyRatio365(D) =
ActiveMonths365(D)

12
(7)

RetentionRec.We develop RetentionRec that suggests reviewers

who who are unlikely to leave the project. The scoring function for

a candidate review, D is

RetentionRec(D) = ConsistencyRatio365(D)∗ContributionRatio365(D)
(8)

2.3.3 Distribution and Retention Combined. TurnoverRec. To en-

sure that knowledge is distributed among developers who are likely

1185

to remain on the project, we define the TurnoverRec recommender

scoring function for a developer and review as

TurnoverRec(D,R) = LearnRec(D,R) ∗ RetentionRec(D) (9)

Sofia: TurnoverRec and cHRev Combined When the files

under review have many developers who know about them, it

is best to suggest an expert. In contrast, when the number of

knowledgeable developers is low, knowledge should be distributed

among the development team. Our final recommender, Sofia, com-

bines the cHRev, which is designed to find recent experts and

TurnoverRec, which is defined to distribute knowledge among de-

velopers who have high retention potential. Given the function

Knowledдeable(f) that returns the set of developers who have

modified or reviewed file f , Sofia(D,R) selects either a cHRev(D,R)
score or a TurnoverRec(D,R) score as defined in the cases below:

{
cHRev(D,R), if |Knowledдeable(f)| ≤ d , any f | f ∈ R

TurnoverRec(D,R), otherwise

(10)

We consider files that have no knowledgeable developers or that

are hoarded by a single developer to be at risk. As result, we consider

a review that has a file with 0, 1, or 2 knowledgeable developers to

have a potential for knowledge loss from turnover and so distribute

knowledge and set d = 2.

2.4 Simulation and Evaluation

To evaluate reviewer recommenders, prior works made recommen-

dations for each exiting review and compared their result against

the actual reviewers who performed the review [2, 18, 39, 52, 54–56].

To compare with the actual reviewers, we use the Mean Reciprocal

Rank (MRR) and evaluate each recommender. MRR is the average

of the inverse rank of the highest ranked correct recommendation.

For example, if a correct recommendation is on average the third

recommendation, the score would be 1/3.

A criticism of prior works can be found in Kovalenco et al.’s [23]

interviews with developers who state that the recommenders rarely

provide additional value because they suggest obvious expert can-

didate reviewers. This problem is inherent in the outcome measure,

which assumes that the actual reviewers were the best, i.e. “correct"

reviewers. Kovalenco et al. [23] suggests that we need to account

for other perspectives and outcomes beyond simply attempting to

predict the actual reviewers.

To evaluate the impact of reviewer recommendation on diverse

outcomes, we perform simulations. Simulation requires us to re-

place the actual reviewer with a recommended reviewer and to

evaluate the outcomes over a period of time. The simulation in-

volves sequentially making recommendations for each review on a

project. To train each recommender, we use the entire history prior

to the review. The recommenders consider the files under review

and according to the formulas defined in Sections 2.1, 2.2, and 2.3,

they randomly replace one of the actual reviewers with the top

recommended reviewer. For example, if DevA actually reviewed

the files, but is replaced with top recommended DevB, then the

knowledge from the review will be attributed to DevB, not DevA,

for future recommendation and for outcome measurement. We only

randomly replace one developer to avoid disrupting the peer review

process and because Kovalenco et al. [23] showed that developers

usually already know at least one expert review candidate.

To evaluate how each recommender changes the project, we

measure three outcomes: the degree of reviewer Expertise, reviewer

CoreWorkload, and the number of files at risk to turnover, FaR.

These measures incorporate the reasons interviewed developers

conduct review [1, 17]. We measure the change in the outcomes

over the standard quarterly period [34, 45]. Each measure is calcu-

lated as a percentage change relative to the actual reviewers who

performed the review. For example, if a recommender replaces an

expert reviewer with a non-expert “learner,” we would expect the

measures to report a percentage decrease in expertise and a per-

centage increase in the knowledge distribution of the development

team. We define each outcome measure below.

Expertise. Having high expertise ensures having high quality

code review [1, 7, 11]. We measure the Expertise for a review as the

proportion of files under review that the selected reviewers have

modified or reviewed in the past, i.e. the union of the files that the

reviewers know about. We sum the expertise across the reviews

per quarter, Q .

Expertise(Q) =

Reviews(Q)∑
R

FilesReviewersKnow(R)

FilesUnderReview(R)
(11)

CoreWorkload. To ensure high retention potential of reviewed

files, a naive recommender could suggest only core developers who

are both experts and are committed to the project. Such a recom-

mender would lead to a drastic increase in the core developer work-

load. To measure the workload, we find the 10 reviewers who have

performed the most reviews in a quarter, Top10Reviewers(Q), and
sum the total number of reviews that this top 10 group performed:

CoreWorkload(Q) =

Top10Reviewers(Q)∑
D

NumReviews(D,Q) (12)

FaR. We need to quantify the project’s exposure to turnover

from knowledge loss. Building on Rigby et al.’s [45] definition of

knowledge loss we define the quarterly Files at Risk, FaR, as the

number of files that are known by zero or one active developers.

Given the function ActiveDevs(Q, f) that returns the set of devel-
opers who have modified or reviewed the file, f , and have not left
the project at the end of the quarter, Q , we define FaR(Q):

FaR(Q) = { f | f ∈ Files , |ActiveDevs(Q, f)| ≤ 1} (13)

The raw outcome measures do not facilitate easy interpretation

or comparison.We report the percentage change for a recommender

relative to the actual reviewers.

Since percentage change is a trivial formula, we illustrate it only

for ΔCoreWorkload:

ΔCoreWorkload(Q) = (
SimulatedCoreWorkload(Q)

ActualCoreWorkload(Q)
−1)∗100 (14)

The simulation results for an ideal reviewer recommender in-

creases Expertise during review with a positive percentage change

in ΔExpertise, reduces CoreWorkload with a negative percentage

1186

Table 1: Size of projects under study. We explicitly select for

large, long-lived projects.

Name Total Files Reviewed PRs Years Developers

CoreFX 16,015 13,499 5 985

CoreCLR 15,199 10,250 4 698

Roslyn 12,313 8,646 5 469

Rust 12,472 17,499 9 2,720

Kubernetes 12,792 32,400 5 2,617

change in ΔCoreWorkload, and reduces the number of files at risk,

FaR, with a negative percentage change in ΔFaR.

3 PROJECT SELECTION AND DATA

We explicitly select well-established large projects with many com-

pleted code reviews. On smaller projects, reviewer recommendation

is less meaningful as the potential set of reviews is small and the

developers are often aware of the entire team. To select projects,

we first query the GitHub torrent dataset to find projects with more

than 10K pull requests [15, 29]. We then apply the following manual

selection criteria:

(1) We need existing reviews, so 25% or more of the commits

must be reviewed.

(2) We need to simulate across time, so the project must be 4 or

more years old.

(3) We need diverse knowledge and modules, so we ensure there

are at least 10K files.

Five projects met our selection criteria. Of these projects, CoreFX,

CoreCLR, and Roslyn are led by industry but are available under

an open source license and are developed in the open on GitHub.

Rust and Kubernetes are community driven OSS projects. Table 1,

provides the summary statistics including the number of files, pull

requests, and commits. Our replication package contains a link to

the project data [29].

3.1 Gathering Data

We gather authorship commit data from git and review data from

GitHub. We clone the repositories to extract all commits and cor-

responding changes. On GitHub, reviews are conducted in pull-

requests that allow the authors and reviewers to discuss each

change [16]. In this study, we consider an individual to be a re-

viewer of a pull-request if he or she writes a review comment on a

file, asks for further changes from the author, or approves/rejects the

pull request. To gather and clean the required data, we developed a

post-processing pipeline which we make publicly available [29].

Unifying Developer Names. When a developer makes com-

mits using his or her GitHub username we can link this with the

email address they use in the git commit. In some cases, the author

commits without using a GitHub username and we use a name

unifying approach that employs edit distances to match the git

email names with GitHub usernames. This approach is similar to

Bird’s et al.’s [4] and Canfora et al.’s [8].

Leavers. Robillard et al. [46] shows that using the last commit as

an indicator for departure of developers draws some risks. Based on

this finding, at the end of each quarter, we consider the knowledge

of a developer to be inaccessible if he or she has no contribution

in the subsequent four quarters. We exclude the last quarter of

projects from analysis to ensure that we do not mistakenly label

a developer as a leaver if they have gone on vacation for a month

more.

Excludingmega commits. Rigby et al. [45] argue that commits

with hundreds of file changes are too large to be fully comprehended

by the author. In manual analysis of mega commits and review

requests, we find that they tend to be superficial changes including

renaming a folder, renaming a function throughout the source code,

changing commented trademarks of files, or importing a large

chunk of code from a different source control system to git. We do

not associate any knowledge to the author or reviewer of changes

with 100 or more files.

In this work, we limit our study of knowledge to code files,

including .cs, .java, and .scala. Our replication package contains the

full list of file types [29]. We also exclude changes made by bots,

review comments that are made after the code has been merged,

unmerged pull-requests, and files that were committed without

review.

4 RESULTS

In this Section, we discuss the results for our research questions

relating to (1) an empirical study of knowledge distribution during

review, (2) recommendations based on ownership, (3) recommenda-

tions based on the state-of-the-art, cHRev, (4) learning and retention

aware recommenders, and (5) Sofia which combines the best rec-

ommenders. We make three notes: First, we note that RQ1 does not

involve simulation and is an empirical result based on the actual

reviews and commits. Second, we note that the MRR outcomes

does not involve simulation and instead reports how accurately the

recommender predicts the actual reviewers. Third, simulations are

run for each recommender and we note the changes in ΔExpertise,
ΔCoreWorkload, and ΔFaR as a percentage difference relative to

the actual values for each project. Table 3 shows the average for

each outcome across all projects.

4.1 RQ1: Review and Turnover

What is the reduction in files at risk to turnover when both authors and

reviewers are considered knowledgeable? Recent studies have quanti-

fied knowledge loss from turnover on the basis of the commits that

each developer has made [34, 45]. The assumption in these works,

is that knowledge is only attained through writing code. However,

the knowledge transfer that occurs during code review is widely

documented with prior work showing that review promotes team

awareness, transparency, and shared code ownership [1, 42, 47, 50].

Rigby and Bird [42] quantified the additional knowledge attained

during review and reported that code review exposes developers to

between 100% and 150% more files than they edit. Thongtanunam

et al. [50] added that developers who have not made any changes to

a module contributed by reviewing 21% to 39% of the code changes

in the module. In this section, we consider both authors of code as

well as reviewers to be knowledgeable and calculate the number of

files that are at risk when turnover occurs.

To assess the extent that the project is at risk to knowledge loss

from turnover, we measure FaR, see Equation 13, which measures

the number of files that have zero or one active developers at the end

1187

Table 2: The proportion of total files that are at risk to

turnover.When only authors are considered knowledgeable

the proportion of files at risk is drastically higher thanwhen

both authors and reviewers are considered knowledgeable.

FaR Authors Authors + Reviewers

CoreFX 89.46% 24.74%

CoreCLR 86.65% 45.56%

Roslyn 68.00% 22.14%

Rust 78.10% 44.51%

Kubernetes 76.78% 26.04%

Average 79.79% 32.59%

of each quarter. To mirror prior works, we calculate the FaRauthor
which only considers authors to be knowledgeable [34, 45]. We

then calculate FaR, which considers both authors and reviewers as

knowledgeable.

Table 2 reports the proportion of files at risk relative to the total

files on the project. The median raw value per quarter of FaRauthor
is 7,648, 3,704, 5,602, 2,932, and 5,448 files for CoreFX, CoreCLR,

Roslyn, Rust, and Kubernetes, respectively. As a percentage of the

codebase, between 68% and 89% of the files are at risk of aban-

donment. In contrast, when both the author and the reviewer are

considered knowledgeable, the median raw value per quarter of

FaR is 1,988, 2,000, 1,918, 1,958, 1,877, respectively. As a percentage

of the codebase, between 22% and 45% of the files are at risk of aban-

donment. As a percentage increase in files at risk for FaR relative to

FaRauthor we see that 74.00%, 46.00%, 65.76%, 33.21%, and 65.54%

fewer files are at risk of abandonment for CoreFX, CoreCLR, Roslyn,

Rust, and Kubernetes, respectively. We conclude that considering

reviewers to be knowledgeable of the files they review drastically

reduces FaR and gives a clearer picture of the risk a project is at

to turnover than prior works that only considered authors to be

knowledgeable [34, 45].

When only authors are considered knowledgeable an aver-

age of 79.79% of files are at risk to turnover. When review-

ers are also considered knowledgeable the FaR average is

32.59%. There is substantial knowledge distribution during

code review.

4.2 RQ2 Ownership

Does recommending reviewers based on code ownership re-

duce the number of files at risk to turnover?

Studies show that teams tend to assign reviews to the owners

of files under review [17, 47] and experts who have modified or

reviewed the files in the past [2, 23]. In this research question, we

run simulations to show how recommending reviewers based on

ownership affects project outcome measures.

AuthorshipRec. Prior works have adapted developer task rec-

ommenders [22, 26, 33] that use historical authorship data to rec-

ommend reviewers [18, 56]. We partially reproduce these author-

ship recommendations by using the scoring function defined in

Equation 1. We use the simulation method described in Section 2.4

and evaluate the impact of AuthorshipRec on MRR, ΔExpertise,

ΔCoreWorkload, and ΔFaR. The average values are shown in Ta-
ble 3.

AuthorshipRec is successful in predicting the reviewers who

actually performed the review with an MRR of 0.59, 0.54, 0.48,

0.44, and 0.41 for CoreFX, CoreCLR, Roslyn, Rust, and Kubernetes,

respectively. The average across all projects is 0.49. This implies

that on average the actual reviewer is ranked 2.04.

From the simulations, we see that assigning reviewers based on

their commit ownership, i.e. authorship, increases the Expertise in

reviews by 7.26%, 5.97%, 19.57%, 10.89%, and 12.77%, respectively,

with an average of 11.29% across the projects. The CoreWorkload

increases for Rust by 7.50%, while it is reduced by -11.30%, -4.74%,

-6.91%, and -2.95% for the other projects, with an average of -3.68%.

Although Expertise is high for each review, FaR has risen across

all projects by 28.05%, 12.00%, 36.23%, 33.51%, and 14.48%, with an

average of 25.25%.

Developers who have authored the files under review are clearly

experts. However, suggesting past authors as reviewers concen-

trates the knowledge of these files and puts the project at greater

risk to turnover as non-authors are not suggested as reviewers.

RevOwnRec. The majority of review recommenders have used

historical review data, i.e. who has reviewed which files or modules

in the past, to recommend reviewers [2, 21, 52, 54, 55]. We partially

reproduce these review ownership results by using the scoring

function defined in Equation 2. We use the simulation methodology

and outcome measures as described above.

RevOwnRec is slightly less successful at predicting the reviewers

who actually performed the review with an MRR of 0.53, 0.50, 0.42,

0.46, and 0.37 for CoreFX, CoreCLR, Roslyn, Rust, and Kubernetes,

respectively. The average across all projects is 0.45. which means

the actual reviewer rank is averaged to 2.22.

From the simulations, we see that assigning reviewers based on

the files they have reviewed in the past increases review Expertise

by 12.99%, 10.14%, 22.12%, 13.33%, and 17.31% respectively, with an

average of 15.17% across projects. These individuals tend to be top

reviewers and we see a corresponding increase in CoreWorkload

of 11.81%, 21.62%, 10.97%, 16.14%, and 40.93%, with an average

of 20.29%. Despite the high utilization of expert reviewers, this

recommender has the largest increase in files at risk with ΔFaR
values of 9.29%, 51.24%, 159.42%, 105.98%, and 0.04%, with an average

of 65.19%.

Recommending reviewers based on the files they have

reviewed in the past ensures expertise during review (av-

erage increase of 15.17%), but increases the workload of

the top reviewers by on average 20.29% and differ from the

set of actual reviewers with an average MRR of 0.45. Con-

centrating expertise on the top developers substantially

increases the risk of knowledge loss when turnover occurs

on average by 65.19%.

1188

4.3 RQ3 cHRev Recommender

Does a state-of-the-art recommender reduce the number of

files at risk to turnover?

cHRev builds upon prior work that leverages information in past

reviews [22], but also accounts for the number of days a candidate

reviewer has worked on a file, and the recency of this work (See

Section 2.2 for further details). cHRev has been show to outperform

the other review-based recommenders, including RevFinder [50].

In this research question, we re-implement this state-of-the-art

recommender and re-evaluate it. We use the simulation method

described in Section 2.4 and evaluate the impact of cHRev on MRR,

ΔExpertise, ΔCoreWorkload, and ΔFaR.
In the original cHRev paper, the authors report an average MRR

of .67 across four projects [56]. On our projects, cHRev has an MRR

of 0.64, 0.59, 0.49, 0.50, and 0.42, for CoreFX, CoreCLR, Roslyn, Rust,

and Kubernetes, respectively. The average is 0.52. This implies that

on average the actual reviewer is ranked 1.92. Although the MRR

is lower in our reproduction than in the original study, we note

that for MRR cHRev outperforms all of the other recommenders

we consider.

From the simulations, we see that like the ownership recom-

menders, cHRev increases the Expertise in reviews by 9.84%, 7.27%,

16.45%, 8.22%, and 13.81%, respectively, with an average of 11.11%

across projects. However, unlike RevOwnRec, it reduces the load

on top reviewers. The corresponding values for ΔCoreWorkload

are -5.93%, -2.35%, -0.51%, -2.19%, and -6.47% with an average of

-3.49%. cHRev concentrates knowledge and increases the project’s

risk to turnover with a FaR increase of 6.46%, 13.85%, 4.43%, 10.28%

in CoreFX, CoreCLR, Roslyn, and Rust, respectively and for Kuber-

netes the ΔFaR is reduced at -14.24%. The average of ΔFaR across
all projects is 4.15%.

cHRev remains accurate in suggesting actual reviewers

with an MRR of 0.52. It increases the degree of Expertise

during review by 11.11%, while reducing the CoreWork-

load on the top reviewers by -3.49%. However, the risk of

turnover increases with an average ΔFaR of 4.15%.

4.4 RQ4: Learning and Retention

Can we reduce the number of files at risk to turnover by de-

veloping learning and retention aware review recommenders?

The previous research questions have demonstrated that ex-

isting review recommenders concentrate knowledge on experts

increasing the risk of knowledge loss from turnover. Furthermore,

in two large industrial settings, Kovalenco et al. [23] interviewed

developers and found that suggesting prior review experts tends to

recommend reviewers that are obvious to the author of the change.

They state that making obvious recommendations leads to a lack

of use of recommenders. They envision a new research path for

next generation of recommenders that go beyond suggesting ex-

perts. In this research question, we investigate how we can mitigate

turnover-induced loss and disseminate knowledge using learning

and retention measures.

Table 3: The average of outcome measures across the

projects. MRR is shown for replication purposes. Individual

project outcomes are discussed in the paper text. The ideal

recommender increases expertise (positive ΔExpertise), re-
duces workload (negative ΔCoreWorkload), and reduces

files at risk to turnover (negative ΔFaR).

Recommender Average Across Projects

MRR ΔExpertise ΔCoreWorkload ΔFaR

AuthorshipRec 0.49 11.29% -3.68% 25.25%

RevOwnRec 0.45 15.17% 20.29% 65.19%

cHRev 0.52 11.11% -3.49% 4.15%

LearnRec 0.12 -35.13 -39.51% 63.04%

RetentionRec 0.39 16.59% 29.42% -15.91%

TurnoverRec 0.19 -26.55% 1.07% -29.54%

Sofia 0.43 6.27% 0.09% -28.27%

LearnRec.Without review recommenders, development teams

naturally distribute knowledge during review by assigning review-

ers who would benefit by learning about the files under review [1,

6, 47]. Building on this idea, in Section 2.3.1, we defined a scoring

function that determines how many files a candidate reviewer will

learn about. We ensure that the candidate knows at least one of the

files that is under review. In this way, we spread knowledge, but

ensure that the reviewer has some relevant knowledge. We use the

simulation method described in Section 2.4 and evaluate the impact

of LearnRec on MRR, ΔExpertise, ΔCoreWorkload, and ΔFaR with
the average outcomes shown in Table 3.

LearnRec does a poor job of predicting the reviewers who ac-

tually performed the review with an MRR of 0.18, 0.14, 0.12, 0.11,

and 0.09 for CoreFX, CoreCLR, Roslyn, Rust, and Kubernetes, re-

spectively. The average across all projects is 0.12. This implies that

on average the actual reviewer is ranked 8.33. However, the goal

of this recommender was to ensure that developers learn and this

shows that it suggests unexpected reviewers.

From the simulations, we see a substantial decrease in Exper-

tise: -34.91%, -32.76%, -24.35%, -50.34%, and -33.33%, respectively,

with an average of -35.13% across all projects. The CoreWorkload is

drastically reduced as fewer expert reviewers are assigned reviews:

-38.07%, -38.53%, -35.68%, -49.86%, and -35.45%, with an average of

-39.51%. The goal of this measure is to distribute knowledge and

reduce turnover. Counter-intuitively we see an increase in the files

at risk with ΔFaR values of 16.26%, 22.31%, 119.32%, 108.72%, 48.61%
with an average of 63.04%. By selecting non-experts, LearnRec rec-

ommends transient developers who have less commitment to the

project.

The recommendations substantially differ from actual re-

viewers, MRR 0.12. LearnRec substantially reduces Ex-

pertise, -35.13%, but suggests learners reducing the Core-

Workload by -39.51%. Counter-intuitively it makes the

project drastically more susceptible to knowledge loss from

turnover because it assigns reviews to learners who are

less committed to the project, ΔFaR of 63.04%.

1189

RetentionRec. Assigning reviews to transient developers may

distribute knowledge, but does not reduce turnover. In Section 2.3.2,

we define a measure that captures how frequently developers con-

tribute to the project and the number of months in the last year

that they are active. We ensure that the candidate knows at least

one of the files that is under review. Our goal is to assign reviews to

committed developers. We use the same simulation methodology

and outcome measures.

RetentionRec does similarly to RevOwnRec at predicting the re-

viewers who actually performed the review with an MRR of 0.57,

0.44, 0.31, 0.42, and 0.25 for CoreFX, CoreCLR, Roslyn, Rust, and

Kubernetes, respectively. The average across all projects is 0.39.

This implies that on average the actual reviewer is ranked 2.56.

From the simulations, we see an increase in Expertise of 13.84%,

10.94%, 24.80%, 24.13%, and 19.24%, respectively, with an average of

16.59%. These percentages are highest for any recommender out-

performing ownership recommenders at ensuring expertise during

review. We see a corresponding increase in CoreWorkload of 23.03%,

35.34%, 20.73%, 20.18%, and 47.82% with an average of 29.42%. How-

ever, unlike the ownership and cHRev recommenders, we see a

reduction in the files at risk with ΔFaR values of -28.45%, -4.60%,

-22.73%, -7.33%, and -16.47% with an average of -15.91%. Clearly Re-

tentionRec selects committed developers who are unlikely to leave

the project.

RetentionRec is the most successful in ensuring experts,

16.59%, during review, while reducing the risk of knowl-

edge loss from turnover, -15.91%. However, by focusing

on the most committed developers it also has the greatest

increase in CoreWorkload, 29.42%. The MRR of 0.39 indi-

cates that the actual reviewers are more diverse than the

recommendations.

TurnoverRec.We showed that distributing knowledge through

LearnRec does not alleviate knowledge loss and RetentionRec in-

creases the CoreWorkload. We combine these approaches to distrib-

ute knowledge but to distribute it among individuals who have a

higher retention potential. Through Equation 9, we defined Turnover-

Rec that multiplies the learning measure by the retention measure.

Again we ensure that each candidate knows about at least one file.

We use the same simulation methodology and outcomes.

TurnoverRec does a poor job of predicting the reviewers who

actually performed the review with an MRR of 0.29, 0.20, 0.18,

0.19, and 0.12 for CoreFX, CoreCLR, Roslyn, Rust, and Kubernetes,

respectively. The average across all projects is 0.19. This implies

that on average the actual reviewer is ranked 5.26.

From the simulations, we see that similar to LearnRec recom-

mender, the Expertise has decreased by -27.41%, -24.91%, -14.05%,

-34.22%, and -25.93%, respectively, with an average of -26.55%. How-

ever, in terms of CoreWorkload there is only a slight increase of

5.98%, 5.52%, and 0.50% in CoreFX, CoreCLR, and Kubernetes and a

reduction in Roslyn and Rust by -0.12% and -6.52% with an aver-

age of 1.07%. The files at risk are reduced with a ΔFaR of -34.95%,
-14.20%, -41.70%, -24.32%, and -32.53% with an average of -29.54%.

TurnoverRec combines learning and retention recom-

menders and has the greatest reduction in turnover risk,

ΔFaR-29.54. However, there is a substantial cost in the

reduction of Expertise, -26.55%, and a minor increase in

CoreWorkload, 1.07. The low MRR value of 0.19 indicates

that developers naturally focus on reviewers with greater

expertise than TurnoverRec.

4.5 RQ5 Sofia

Can we combine recommenders to balance Expertise, Core-

Workload, and FaR?

Not all reviews contain files that are at risk of abandonment. As

a result, we do not need to distribute knowledge on these files be-

cause there is already a sufficient number of developers to mitigate

knowledge loss from developer turnover. In Equation 10, we define

Sofia that distributes knowledge during review using TurnoverRec

when there are files at risk of abandonment. In contrast, when all

the files have active developers, Sofia uses the cHRev scoring func-

tion to suggest recent experts. Of the 13,690, 10,256, 10,388, 17,810,

and 32,260 reviewed pull request on CoreFX, CoreCLR, Roslyn,

Rust, and Kubernetes around 1/4, 25.18%, 26.13%, 29.82%, 29.41%,

and 17.17%, contain files at risk. The remaining pull requests use

cHRev recommendations to ensure concentrated expertise. We use

the simulation method described in Section 2.4 and evaluate the

impact of Sofia on MRR, ΔExpertise, ΔCoreWorkload, and ΔFaR
with average outcomes shown in Table 3.

Sofia does a good job of predicting the reviewers who actually

performed the review with an MRR of 0.54, 0.48, 0.39, 0.39, and 0.36

for CoreFX, CoreCLR, Roslyn, Rust, and Kubernetes, respectively.

The average across all projects is 0.43. This implies that on average

the actual reviewer is ranked 2.32.

From the simulations, we see that by only distributing knowl-

edge when files are at risk and otherwise suggesting experts, Sofia

inherits the best characteristics of TurnoverRec and cHRev. The

Expertise goes up by 4.69%, 3.32%, 8.04%, 5.82%, and 9.58%, respec-

tively, with an average of 6.27%. In terms of CoreWorkload, we see a

reduction of -0.27% and -5.89% in CoreFX and CoreCLR, an increase

in Roslyn of 5.09% and a slight increase of 0.43% and 1.12% for Rust

and Kubernetes. The average of ΔCoreWorkload is minor at 0.09%.

Sofia distributes knowledge to developers who have a high reten-

tion potential and reduces the risk of turnover as measured by a

decrease in ΔFaR of -34.46%, 12.42%, -41.56%, -19.92%, and -33.02%,
with an average of -28.27%.

The Sofia recommender distributes knowledge when there

are files under review that are at risk of abandonment

and suggests experts when all files already have multiple

knowledgeable developers. This strategy allows us to in-

crease the level of Expertise during review, 6.27%, while

having a minor impact on CoreWorkload, 0.09%, and sub-

stantially reducing the number of files at risk by -28.27%.

Sofia also does a reasonable job of predicting the actual

reviewers with an MRR of 0.43.

1190

Figure 1: An example of Sofia recommending both learners and experts for the CoreFX project.

5 THE SOFIA BOT ON GITHUB

Code review is known to have multiple purpose and outcomes from

finding defects to distributing knowledge [1, 6, 17, 42, 47]. Our tool

design allows developers to make an informed selection balancing

the need for experts and learners. We created a GitHub applica-

tion [30] that will recommend reviewers based on the combination

of cHRev with TurnoverRec as the Sofia bot. Feedback from develop-

ers showed that the rationale behind a review recommendation is

required [23]. For the Sofia bot we display simplified measures to

complement a developer’s intuition and domain expertise on who

should review the pull request.

Implementation. The Sofia repository with the source code

and the straightforward installation instructions are publicly avail-

able [28]. Once installed Sofia processes the entire history of the

project to be able to recommend reviewers. Sofia uses GitHub web-

hooks to scan submitted commits and reviewed pull requests to

keep recommendations up-to-date. Sofia can operate in two modes:

fully automated or list candidates. In the fully automated mode, for

each pull request, Sofia assigns the top scoring candidate to perform

the review.

In Figure 1 Sofia displays a list of candidates when the pull

request is created or when the Sofia suggest command is issued
(Box A in figure). The Sofia bot displays the ranked list of potential

reviewers (Box B). In Box C in the figure, the author can select the

person with the highest expertise. Or if learning is more important

they can select the developer who would learn about the most files

(Box D). The author can also issue the Sofia suggest learners
or Sofia suggest experts if he or she is only interested in a

particular type of candidate.

To help with tool adoption, the displayed measures are designed

to be quick and easy to interpret by pull request authors and are

major simplifications of the scoring functions defined in Section 2.3.

The ownership dimension maps to the “Files Authored" and the

“Files Reviewed" fields which are simplified to show the proportion

of files under review that the candidate has authored or reviewed

in the past, respectively. Learning maps to the “New Files" field

which is simplified to the number of files that the candidate would

1191

learn about, i.e. they have not modified or reviewed. Retention

potential maps to the “Active Months" field which is simplified to

the proportion of months that the developer has been active in the

previous year.

The goal of our tool is to compliment a developer’s intuition. For

example, if a developer feels that high expertise is required, he or

she might choose the top candidate in Figure 1 Box C, “stephen-

toub,” who has in the past modified 3/4 of the files under review,

has reviewed all of the files under review, and has been active in 5

months in the last year. Sofia will warn developers that in a review

there is at least one file at risk (top of Box B). The developer may

then select the best “learner” review candidate from Box D, “dan-

mosemsft.” Although he has never modified the files under review,

he has reviewed 2 of 4 and has also been been active in 5 of the

last 12 months. Finally, “hughbe” has both expertise and would

also learn about new files. He has authored 2 of 4 of the files un-

der review, reviewed 1 of the files, and would learn about 2 new

files. He has also been active 5 of the last 12 months. Sofia makes

recommendations, but provides a simple rationale for each review

candidate allowing the developer to select the best reviewer given

their intuition and the review context.

6 THREATS TO VALIDITY

Generalizability. We selected large and successful open source

software projects that were led by either industry or a community.

On smaller projects, there is no need for reviewer recommendation

because the list of candidates is small and obvious to all devel-

opers. Future work is necessary to validate our results in other

development contexts.

Construct Validity. Following prior works on review recom-

mendation [52, 56], ownership [13, 17, 42], and turnover [34, 45],

we use the source code file as the unit of knowledge. Knowledge

is contained in other documents and at other unit levels. We leave

these investigations to future work. We have also provided for-

mulas for each of our measures and scoring functions to facilitate

replication.

The knowledge acquired by a reviewer will be different from the

knowledge of the author. The author will usually know more of

the details, while an expert reviewer may know more about other

modules and dependencies. In this work, we consider both authors

and reviewers to be knowledgeable and able to work on the files

when turnover occurs. Future work is required to understand the

different types of knowledge that authors and reviewers have.

Randomly replacement of a reviewer. In our simulation, we

randomly select one of the reviewers in each review to be replaced

with the top recommended reviewer for each recommender (see

Section 2.4). Table 1 showed that we examine over 80k reviews

across 5 projects, making it unlikely that this random selection will

lead to systematic bias. As a further check, over a period of four

months, we re-ran our top two techniques, cHRev and Sofia, a mini-

mum of 215 times for each project. For cHRev, we see a change of

-0.04, -0.75, -0.52, and -0.86 percentage points for MRR, ΔExpertise,
ΔCoreWorkload, and ΔFaR, respectively. The corresponding values
for Sofia, are 0.00, -0.10, 2.24, and 1.21 percentage points, respec-

tively. The results remain consistent with Sofia increasing Expertise

with a minor increase in CoreWorkload, while drastically decreasing

FaR.

CoreWorkload ThresholdWe define CoreWorkload to measure

the reviews performed by the top 10 reviewers on a project (see

Equation 12). While future work could use proportion based core

teams, we used this value because it simplified our functions and

represented a reasonably consistent percentage of reviews across

the studied projects: 58%, 53%, 61%, 52%, and 37% for CoreFX, Core-

CLR, Roslyn, Rust, and Kubernetes, respectively.

Replication and Reproducability. Existing recommenders in-

cluding ReviewBot [2], RevFinder [50], and cHRev [56] do not pro-

vide a replication package or source code for their recommenders.

As a result, we re-implemented cHRev for comparison because it

outperform other state-of-the-art recommenders. We also imple-

mented simple authorship and ownership recommenders. Com-

paring each recommender with existing baseline recommenders

reduces the threat of internal validity. We make all of our code, data,

and GitHub Sofia bot available for future researchers as well as for

use on software projects [29].

7 DISCUSSION AND LITERATURE

We position our findings in the research literature. We discuss how

we advance our understanding of code review practice, mitigation

of turnover risk through FaR, and evaluate reviewer recommender

systems on diverse outcome measures.

7.1 Understanding Code Review Practice

Fagan [11] introduced software inspections in 1976 with a detailed

experiment that conclusively showed that inspection found defects

earlier in the design process and that unreviewed design artifacts

lead to defects that slipped through to latter stages increased overall

effort. In the subsequent 40 years, code review has been extensively

studied. Early works focused on examining the process [10, 11].

However, Porter et al. [37] demonstrated that process was much

less of a factor than ensuring expertise during review. Current

code review practice favors a lightweight process that focuses on

expert discussion of changes to the system [1, 6, 7, 42, 44] that still

improves software quality [27, 43]. We show that RetentionRec has

the highest ΔExpertise among all expert recommenders with an
average of 16.59%. RevOwnRec and AuthorshipRec that focus on

ownership have an average of 15.17% and 11.29%, respectively. We

also found that focusing on learners will reduce Expertise by up to

-26.55%.

Recent works that interview reviewers, find that experts tend to

be overloaded with their review workloads [17, 47] and that it is

often difficult to find an available expert reviewer [17, 44, 52]. More-

over, it has shown that high overall workload could lead to poor

review participation[51] and requesting feedback from experts can

lead to delays from lack of availability and also fewer opportunities

for knowledge dissemination [17]. We show that the relationship

between Expertise and CoreWorkload is not straightforward. For

instance, cHRev and AuthorshipRec improve the Expertise while at

the same time reduce the CoreWorkload by -3.49% and -3.68% on

average, respectively. On the other hand, TurnoverRec drastically

reduces Expertise by -26.55% while increases the CoreWorkload by

1192

1.07% and Sofia improves the Expertise with a negligible change of

0.09% in CoreWorkload.

7.2 Turnover-Induced Knowledge Loss and
Mitigation

Turnover deprives the project of the leaver’s experience and knowl-

edge [19, 53] and has been shown to increase the number of de-

fects [32]. Previous research has quantified the knowledge loss

from turnover and shown that projects with very high turnover

are susceptible to as much as five times the expected loss [34, 45].

However, these works considered authorship as the only way of

gaining knowledge about files.

In contrast with prior work, we include the knowledge gained

from conducting reviews into the turnover risk calculations be-

cause interviews with developers show that code review is an

opportunity for learning and it plays a vital role in distributing

knowledge[1, 6, 17, 42, 47]. Two separate studies quantified the

knowledge gained during code review and showed that at both

Google [47] and Microsoft [42] code review doubles the number of

files that developers know. Furthermore, Thongtanunam et al. [50]

showed that reviewers of modules are often not authors of the

module [50]. In Section 4.1, our empirical results show that review

naturally reduces turnover risk. We show that when only authors

are considered knowledgeable an average of 79% of the total files

are at risk. When both authors and reviewers are considered knowl-

edgeable the average FaR is 32%. This reduction in far shows that

substantial knowledge is attained during code review.

In this work, we design recommenders that explicitly distribute

knowledge by suggesting reviewers who would learn about the

files under review. We show that by distributing knowledge among

developers who have a higher retention potential, there is a FaR

reduction of -29.54% and -28.27% for TurnoverRec and Sofia, which

outperforms cHRev which increases FaR by 4.15%. The advantage of

using code review in mitigating knowledge loss is that it adds little

additional effort because code review is already a common practice

on software teams. In contrast, prior works on turnover mitiga-

tion suggest increasing documentation with blogs, formalizing the

process of documenting bugs in issue trackers, and participating

in StackOverflow and internal QA forums [35, 40]. Each strategy

requires additional developer effort especially for developers who

are expert enough to answer questions and write documentation.

7.3 Recommenders

Identifying the right reviewers for a given change is a challenging

and critical step in the code review process [1, 2, 11, 17, 52, 56].

Inappropriate selection of reviewers can slow down the review

process [52] or lower the quality of inspection [1, 7]. The research

on reviewer recommenders focus on the problem of automatically

assigning review requests to the expert developers who are most

likely to provide better feedback [2, 18, 21, 52, 54–56].

Advanced recommenders have been proposed which are built

upon machine learning [21], text mining [54], and social relation

graphs [55]. However, these papers do not provide public imple-

mentation of their recommenders. Re-implementing and testing

these recommenders against our outcome measures is beyond the

scope we set for this paper. We hope future work will examine these

recommenders, and we release all our code and data to facilitate

replication and advancement of review recommenders [29].

The existing recommenders have been evaluated using accuracy

metrics such as Top-K and MRR that measure how accurately the

recommendationsmatch the actual developers that were involved in

a review. This evaluation is based upon the assumption that actual

reviewers were among the best candidates to review a change[23].

However, it is reported that the focus on accuracy rarely provides

additional value for developers because the recommendations are

obvious[23]. Furthermore, in teams with strong code ownership,

finding relevant experts is not problematic [47]. For replication com-

pleteness we calculated MRR. Our results confirm Kovalenco et al.’s

findings that a broader perspective is needed when evaluating rec-

ommenders. We showed that recommenders with similar MRR

values may have entirely different impact on Expertise, CoreWork-

load, and FaR. For instance, RevOwnRec and RetentionRec have a

difference of 0.06 in MRR while the difference between their ΔFaR
is 81.10%. LearnRec and TurnoverRec have a difference of 0.07 in

MRR while the difference between their ΔCoreWorkload and ΔFaR
is 40.58% and 92.58%.

8 CONCLUDING REMARKS

In this study, we provide a novel evaluation framework for reviewer

recommenders based their impact on Expertise, CoreWorkload, and

Files at Risk to turnover (FaR). We show that selecting reviewers

solely based on ownership, expertise, or learning proxy measures

does not balance all three outcomes and leads to a knowledge

concentration, low knowledge retention, or low expertise.

The outcome of this work is Sofia that combines the state-of-the-

art expert recommender, cHRev, with the learning and retention

recommender, TurnoverRec. This bi-functional recommender adapts

itself to the context of the review. It distributes knowledge when

there are files under review that are at risk to turnover, but other-

wise suggests experts. Through simulation we show that Sofia is

the only recommender that balances the three outcomes simulta-

neously. This strategy allows us to increase the level of Expertise

during review by 6.27%, while having a minor impact on workload,

ΔCoreWorkload 0.09%, and reducing the number of files at risk with

a ΔFaR of -28.27%.
We release Sofia bot as an open source software that fully inte-

grates with GitHub pull requests and provides reviewer recommen-

dations. The recommendations complement a developer’s intuition

and experience by providing simple rationale for each review candi-

date, such as showing how active a candidate has been, how many

files he or she would learn about if they performed the review,

and how many of the files under review they have modified or re-

viewed in the past. To the best of our knowledge, existing reviewer

recommenders including Microsoft’s CodeFlow [42] and Google’s

Gerrit [47] do not explicitly recommend reviewers based on dis-

tributing knowledge to reduce turnover. Future work is necessary

to fully evaluate Sofia and to understand the costs and benefits of

recommending “learner” reviewers in practice.

REFERENCES
[1] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-

lenges of modern code review. In Proceedings of the 2013 international conference
on software engineering. IEEE Press, 712–721.

1193

[2] Vipin Balachandran. 2013. Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation. In
Proceedings of the 2013 International Conference on Software Engineering. IEEE
Press, 931–940.

[3] Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, and Shanping Li. 2017. Who
will leave the company?: a large-scale industry study of developer turnover by
mining monthly work report. In 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR). IEEE, 170–181.

[4] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swami-
nathan. 2006. Mining email social networks. In Proceedings of the 2006 interna-
tional workshop on Mining software repositories. ACM, 137–143.

[5] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. 2011. Don’t touch my code!: examining the effects of
ownership on software quality. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of software engineering.
ACM, 4–14.

[6] Amiangshu Bosu, Jeffrey C Carver, Christian Bird, Jonathan Orbeck, and Christo-
pher Chockley. 2016. Process aspects and social dynamics of contemporary
code review: Insights from open source development and industrial practice at
microsoft. IEEE Transactions on Software Engineering 43, 1 (2016), 56–75.

[7] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics of
useful code reviews: An empirical study at microsoft. In 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, 146–156.

[8] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano
Panichella. 2012. Who is going to mentor newcomers in open source projects?. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering. ACM, 44.

[9] Eleni Constantinou and Tom Mens. 2017. An empirical comparison of developer
retention in the RubyGems and npm software ecosystems. Innovations in Systems
and Software Engineering 13, 2-3 (2017), 101–115.

[10] Michael Fagan. 2002. Design and code inspections to reduce errors in program
development. In Software pioneers. Springer, 575–607.

[11] M. E. Fagan. 1976. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal 15, 3 (1976), 182–211.

[12] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C Murphy, and Jean-Rémy
Falleri. 2015. Impact of developer turnover on quality in open-source software. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 829–841.

[13] Thomas Fritz, Gail C Murphy, and Emily Hill. 2007. Does a programmer’s activity
indicate knowledge of code?. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ACM, 341–350.

[14] Tudor Girba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. 2005.
How developers drive software evolution. In Eighth International Workshop on
Principles of Software Evolution (IWPSE’05). IEEE, 113–122.

[15] Georgios Gousios. 2013. The GHTorent dataset and tool suite. In Proceedings of
the 10th working conference on mining software repositories. IEEE Press, 233–236.

[16] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 345–355.

[17] Michaela Greiler, Christian Bird, Margaret-Anne Storey, Laura MacLeod, and
Jacek Czerwonka. 2016. Code Reviewing in the Trenches: Understanding Chal-
lenges, Best Practices and Tool Needs. (2016).

[18] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and Volker Gruhn.
2016. Automatically recommending code reviewers based on their expertise:
An empirical comparison. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 99–110.

[19] Mark A Huselid. 1995. The impact of human resource management practices
on turnover, productivity, and corporate financial performance. Academy of
management journal 38, 3 (1995), 635–672.

[20] Daniel Izquierdo-Cortazar, Gregorio Robles, Felipe Ortega, and Jesus M Gonzalez-
Barahona. 2009. Using software archaeology to measure knowledge loss in
software projects due to developer turnover. In 2009 42nd Hawaii International
Conference on System Sciences. IEEE, 1–10.

[21] Gaeul Jeong, Sunghun Kim, Thomas Zimmermann, and Kwangkeun Yi. 2009. Im-
proving code review by predicting reviewers and acceptance of patches. Research
on software analysis for error-free computing center Tech-Memo (ROSAEC MEMO
2009-006) (2009), 1–18.

[22] Huzefa Kagdi, Maen Hammad, and Jonathan I Maletic. 2008. Who can help me
with this source code change?. In 2008 IEEE International Conference on Software
Maintenance. IEEE, 157–166.

[23] Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Al-
berto Bacchelli. 2018. Does reviewer recommendation help developers? IEEE
Transactions on Software Engineering (2018).

[24] Bin Lin, Gregorio Robles, and Alexander Serebrenik. 2017. Developer turnover in
global, industrial open source projects: Insights from applying survival analysis.
In 2017 IEEE 12th International Conference on Global Software Engineering (ICGSE).
IEEE, 66–75.

[25] Jakub Lipcak and Bruno Rossi. 2018. A Large-Scale Study on Source Code
Reviewer Recommendation. In 2018 44th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA). IEEE, 378–387.

[26] David W McDonald and Mark S Ackerman. 2000. Expertise recommender: a
flexible recommendation system and architecture. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work. ACM, 231–240.

[27] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2016. An
Empirical Study of the Impact of Modern Code Review Practices on Software
Quality. Empirical Software Engineering 21, 5 (2016), 2146–2189.

[28] Ehsan Mirsaeedi and Peter C. Rigby. 2020. GitHub App: Sofia Bot. https://github.
com/apps/sofiarec. (2020).

[29] Ehsan Mirsaeedi and Peter C. Rigby. 2020. Replication Package and RelationalGit.
https://github.com/cesel/relationalgit. (2020).

[30] Ehsan Mirsaeedi and Peter C. Rigby. 2020. Sofia Bot Source code. https://github.
com/cesel/Sofia. (2020).

[31] Audris Mockus. 2009. Succession: Measuring transfer of code and developer
productivity. In Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 67–77.

[32] Audris Mockus. 2010. Organizational volatility and its effects on software de-
fects. In Proceedings of the eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering. ACM, 117–126.

[33] Audris Mockus and James D Herbsleb. 2002. Expertise browser: a quantitative ap-
proach to identifying expertise. In Proceedings of the 24th International Conference
on Software Engineering. ICSE 2002. IEEE, 503–512.

[34] Mathieu Nassif and Martin P Robillard. 2017. Revisiting turnover-induced knowl-
edge loss in software projects. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 261–272.

[35] Loo Geok Pee, Atreyi Kankanhalli, Gek Woo Tan, and GZ Tham. 2014. Mitigating
the impact of member turnover in information systems development projects.
IEEE Transactions on Engineering Management 61, 4 (2014), 702–716.

[36] Nancy Pekala. 2001. Holding on to top talent. Journal of Property management
66, 5 (2001), 22–22.

[37] Adam Porter, Harvey Siy, Audris Mockus, and Lawrence Votta. 1998. Under-
standing the sources of variation in software inspections. ACM Transactions on
Software Engineering and Methodology (TOSEM) 7, 1 (1998), 41–79.

[38] Foyzur Rahman and Premkumar Devanbu. 2011. Ownership, experience and
defects: a fine-grained study of authorship. In Proceedings of the 33rd International
Conference on Software Engineering. ACM, 491–500.

[39] Mohammad Masudur Rahman, Chanchal K Roy, and Jason A Collins. 2016. Cor-
rect: code reviewer recommendation in github based on cross-project and tech-
nology experience. In 2016 IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C). IEEE, 222–231.

[40] Mehvish Rashid, Paul M Clarke, and Rory V OâĂŹConnor. 2017. Exploring
knowledge loss in open source software (OSS) projects. In International conference
on software process improvement and capability determination. Springer, 481–495.

[41] Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and
Daniel German. 2012. Contemporary peer review in action: Lessons from open
source development. IEEE software 29, 6 (2012), 56–61.

[42] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer
review practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. ACM, 202–212.

[43] Peter C Rigby, Daniel M German, Laura Cowen, and Margaret-Anne Storey. 2014.
Peer review on open-source software projects: Parameters, statistical models,
and theory. ACM Transactions on Software Engineering and Methodology (TOSEM)
23, 4 (2014), 35.

[44] Peter C Rigby and Margaret-Anne Storey. 2011. Understanding broadcast based
peer review on open source software projects. In 2011 33rd International Confer-
ence on Software Engineering (ICSE). IEEE, 541–550.

[45] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus. 2016. Quantifying and
Mitigating Turnover-Induced Knowledge Loss: Case Studies of Chrome and a
Project at Avaya. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE). 1006–1016. https://doi.org/10.1145/2884781.2884851

[46] Martin P Robillard, Mathieu Nassif, and Shane McIntosh. 2018. Threats of Ag-
gregating Software Repository Data. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 508–518.

[47] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern code review: a case study at google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice. ACM, 181–190.

[48] Pratyush N Sharma, John Hulland, and Sherae Daniel. 2012. Examining turnover
in open source software projects using logistic hierarchical linear modeling
approach. In IFIP International Conference on Open Source Systems. Springer,
331–337.

[49] Meaghan Stovel and Nick Bontis. 2002. Voluntary turnover: knowledge
management–friend or foe? Journal of intellectual Capital 3, 3 (2002), 303–322.

[50] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Hajimu Iida.
2016. Revisiting code ownership and its relationship with software quality in the
scope of modern code review. In Proceedings of the 38th international conference

1194

on software engineering. ACM, 1039–1050.
[51] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu Iida.

2017. Review Participation in Modern Code Review: An Empirical Study of the
Android, Qt, and OpenStack Projects. Empirical Software Engineering 22, 2 (2017),
768–817.

[52] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. 2015. Who should
review my code? a file location-based code-reviewer recommendation approach
for modern code review. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, 141–150.

[53] Zeynep Ton and Robert S Huckman. 2008. Managing the impact of employee
turnover on performance: The role of process conformance. Organization Science

19, 1 (2008), 56–68.
[54] Xin Xia, David Lo, Xinyu Wang, and Xiaohu Yang. 2015. Who should review

this change?: Putting text and file location analyses together for more accurate
recommendations. In 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 261–270.

[55] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommenda-
tion for pull-requests in GitHub: What can we learn from code review and bug
assignment? Information and Software Technology 74 (2016), 204–218.

[56] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2016. Automati-
cally Recommending Peer Reviewers in Modern Code Review. IEEE Trans. Softw.
Eng. 42, 6 (June 2016), 530–543. https://doi.org/10.1109/TSE.2015.2500238

1195

