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ABSTRACT
Software testing is one of the costliest stages in the software de-
velopment life cycle. One approach to reducing the test execution
cost is to group changes and test them as a batch (i.e. batch testing).
However, when tests fail in a batch, commits in the batch need
to be re-tested to identify the cause of the failure, i.e. the culprit
commit. The re-testing is typically done through bisection (i.e. a
binary search through the commits in a batch). Intuitively, the ef-
fectiveness of batch testing highly depends on the size of the batch.
Larger batches require fewer initial test runs, but have a higher
chance of a test failure that can lead to expensive test re-runs to
find the culprit. We are unaware of research that investigates and
simulates the impact of batch sizes on the cost of testing in industry.

In this work, we first conduct empirical studies on the effec-
tiveness of batch testing in three large-scale industrial software
systems at Ericsson. Using 9 months of testing data, we simulate
batch sizes from 1 to 20 and find the most cost-effective BatchSize
for each project. Our results show that batch testing saves 72% of
test executions compared to testing each commit individually. In
a second simulation, we incorporate flaky tests that pass and fail
on the same commit as they are a significant source of additional
test executions on large projects. We model the degree of flakiness
for each project and find that test flakiness reduces the cost sav-
ings to 42%. In a third simulation, we guide bisection to reduce the
likelihood of batch-testing failures. We model the riskiness of each
commit in a batch using a bug model and a test execution history
model. The risky commits are tested individually, while the less
risky commits are tested in a single larger batch. Culprit predictions
with our approach reduce test executions up to 9% compared to
Ericsson’s current bisection approach.

The results have been adopted by developers at Ericsson and a
tool to guide bisection is in the process of being added to Ericsson’s
continuous integration pipeline.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Software testing is one of the costliest stages of the software de-
velopment process. Prior research estimates that testing consumes
between 30% to 50% of the time in software development life cy-
cle [36]. To isolate test failures, some companies have adopted the
DevOps strategy of testing each individual commit. While effective
at isolation there are substantial computation requirements. To
limit the resource requirements, some software companies, includ-
ing Ericsson, have adopted batching to reduce the cost of testing.
Batch testing groups commits and allows all of them to be tested
at once. When the batch passes, all of the commits can proceed
in the continuous integration pipeline at once and save resources.
Although batch testing can reduce test executions, it introduces a
new challenge. When a batch fails, the culprit commit causing the
batch failure needs to be identified. One of the common approaches
used for finding a culprit in a group of failing commits is bisection.

In the first part of our work, we study the impact of batch testing
on reducing the test executions in environments with various test
failure rates. In practice, test failure rates in test environments tend
to be very low. For example, on Chrome only 12.5% of tests fail [51].
Batch testing offers the highest savings in test environments with
low failure rates. In the second part we examine flaky tests, which
can pass and fail on the same commit. Google reports that 1 in 7
tests are flaky and that 84% newly failing tests are actually flaky
failures [27]. Flaky tests are exacerbated by batching, as the batch
size grows the probability that one or more commits will have
a flaky test failure also grows. In the last part of our work, we
propose more efficient approaches for finding the culprits when
a batch failure happens. We propose risk-based approaches for
calculating risk values for commits of a batch. Then we propose a
TestTopK approach for testing the riskier commits individually and
the rest of the less risky commits together in a separate batch. We
study how this approach can reduce the test executions compared
to the bisection approach used in Ericsson. We propose two risk
calculation approaches. The first approach is based on well-studied
bug model literature [17]. Our second approach is based on using
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test execution history and the file changes of the commits. More
specifically, we answer the following three research questions.

RQ1:What is themost cost-effectiveBatchSize for thenum-
ber of culprits discovered during testing?

Batching commits allows a set of commits to be tested as a single
unit. However, if a batch fails, a bisection process must be used
to isolate the commit responsible for the failure, i.e. the culprit. A
bisection involves a binary search, leading to an addition of 2 ∗
loд2(n) executions to isolate a single culprit. Using three projects at
Ericsson, we calculate the CulpritRate for each project and simulate
varying BatchSizes to determine the most cost-effective BatchSize
for each project.

We find that the higher the CulpritRate the smaller the most cost-
effective BatchSize. For example, Project A has a CulpritRate 2.4
times higher than Project C and with a BatchSize of 4, the savings
are 46%. In contrast, Project C can have a BatchSize up to 9 and saves
72% of test executions when compared with testing all commits. The
CulpritRate can be trivially calculated from historical test results to
determine the most cost-effective BatchSize for any project.

RQ2:What is themost cost-effectiveBatchSizewhen some
bisections are done as a result of flaky failures?

Test flakiness is an inevitable part of any test environment. A
flaky test failure is defined as a test that passes and fails on the
same commit. We study the impact of test flakiness in finding the
most cost-effective BatchSize. When commits are tested individually,
a flaky failure does not affect other commits and the number of
executions remains constant. In contrast, the larger the BatchSize
the higher the probability that at least one of the commits in the
batch will be flaky. Any flaky batch failure incurs the penalty of an
unnecessary bisection.

We find that the higher the FlakeRate the smaller the BatchSize
and smaller the savings in executions. For example, Project B has
a FlakeRate 1.37 times higher than Project C and a BatchSize of 4
saves 14% of the executions compared to 41%, respectively. With
flaky failures, Project C’s most cost-effective BatchSize and savings
are reduced from a BatchSize of 9 and execution savings of 72% to
4 and 41%, respectively.

RQ3: Can risk models predict the culprit commit and re-
duce the number of executions to find the culprits on failing
batches?

Batch testing is effective in reducing the test executions, how-
ever, it introduces a new challenge. When a batch fails, the root
cause of the failure, i.e. culprit, needs to be found among the failed
commits. We use commit risk models to predict the culprit commit
when a batch fails. We use two types of models, BugModels, and
TestExecutionHistory models.

BugModels have been effective at identifying the commits that are
most likely to lead to future bugs, i.e. bug introducing changes. [11,
17, 26, 28, 42, 43]. We use these techniques to identify which of the
commits is the most likely culprit. We then test the riskiest commits
individually and batch the remaining commits.

Our second approach is based on using test execution history.
Test executions history has been largely studied for performing
test selection and prioritization [4, 6, 9, 18, 51]. In contrast, we use
test execution history to predict a culprit commit given a batch test
failure. Particularly we use the relationship between file changes
and test failures extracted from the test execution history.

We find that both culprit risk prediction models are effective,
but TestExecutionHistory outperforms the BugModel. TestExecution-
History is able to predict the culprits using the Top2 predictions
with a SufficientAndCorrectAt2 of 63% and 66% for projects B and
C with BatchSizes = 4. We note that if the prediction is wrong,
we will simply run more test executions to find the correct culprit.
Compared to Bisection, TestExecutionHistory saves 9.0% and 7.6%
executions, respectively

The results we present here have convinced Ericsson developers
to implement our culprit risk predictions in the CulPred tool that
will make their continuous integration pipeline more efficient.

This paper is structured as follows. In Section 2, we discuss the
batching and bisection process used at Ericsson. In Section 3, we
explain how we guide the bisection process to reduce the number
of test executions to find culprits with risk models. In Section 4, we
introduce our simulations methodology and data used in the study.
In Section 5, we present results for each of our research questions.
In Section 6, we describe the threats to validity and howwemitigate
them. In Section 7, we discuss related work. In Section 8, we present
our contributions and conclude the work.

2 BACKGROUND ON BATCHING AND
BISECTION

To reduce test execution costs, instead of testing each new commit
submitted by developers individually, commits can be collected in
groups called batches and tested together. Ericsson uses this tech-
nique to reduce test executions as part of its Continuous Integration
processes.

In this context, every batch is a group of one or more commits
that require specific tests. As developers submit new changes, com-
mits enter the test queue. The batching process consists of periodi-
cally collecting commits from the top of the queue and running the
required tests. As tests are combined into a single build and tested
together, batching can reduce test executions. However, when a
test fails on a batch, we need additional test runs to isolate the
commit(s) that is causing the failure, i.e. the culprit commit. One
approach to isolating the culprit commit is to run bisection, which
is a binary search on the commits contained in a batch.

The bisection process used at Ericsson involves splitting the
commits of the batch in half as illustrated in Figure 1. This produces
two new batches that are each half the size of the original batch.
If the tests pass on a batch, we know the culprit is not among
these commits. If a batch fails, we continue the bisection process.
The stopping condition is when the remaining batches contain a
single commit and the tests on that commit fail. A single commit
with a failing test is the isolated culprit. The culprit will be subject
to further investigations by testers or developers. There can be
multiple culprits and the search continues with each split until all
the culprits are found.

For example, in Figure 1, the process starts with Batch #1. This
batch fails because it includes one culprit commit: Commit #102. The
commits in Batch #1 are split into Batch #2 and Batch #3. Batch #2
passes because it includes no culprits. Therefore, all of its commits
get delivered. Batch #3 however, fails because it includes the culprit
commit. Batch #3 is split into Batch #4 and #5. Batch #5 passes.
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Batch # 4 however fails and because it consists of one commit it is
the culprit.

Mathematically, we know that a binary search always requires
loд2(n) executions. However, as can be seen in the example, the
tests must be run on both sides of the split binary tree. As a result,
we must run 2 ∗ loд2(n) executions. Since we must determine if
the starting batch passes, we need an additional execution. With n
commits, the number of executions required to find a single culprit
is

2 ∗ loд2(n) + 1 (1)

3 GUIDING BISECTION BASED ON CULPRIT
RISK MODELS

Commits are batched and tested in the order in which they arrive
(FIFO queue). However, some commits contain more risky changes
than others [17]. Our goal is to model the risk and group changes
such that risky commits are tested individually, while less risky
commits are grouped into batches that are more likely to pass
without requiring bisection. In this section, we describe how we
guide bisection by risk, in the subsequent sections we show how
we calculate the risk using two models: TestExecutionHistory and
BugModel.

The bisection process is inefficient because when any batch
fails, there are at least 2 ∗ loд(n) additional executions, where n
is the number of commits in the failing batch. We introduce the
TestTopK approach to isolate the top N riskiest commits and test
them individually while batching the remaining commits into a
single large batch.

Figure 2 provides an illustration of top1. The process starts with
Batch #1, which fails because it includes a culprit. After the failure,
we calculate risk values for the commits and test the topn indi-
vidually. For top1, we individually test the riskiest commit. The
remaining commits are tested as a single batch of size three. To
find the culprit and deliver the commits, we need three executions
instead of the five used for normal bisection (see Figure 1).

BugModels have been used to suggest risky files and changes [17]
that are more likely to contain future bugs. However, it has been
difficult for developers to act upon these predictions as they do not
indicate specific problems in the source code. TestExecutionHistory
has been used to determine which tests should be run for a set of
files as well as to prioritize tests in a queue [6], but has not been
used to create batches of commits. In this work, we modify these
approaches to assign risk to each of the changes under test and to
determine which commit is most likely to be the true test failure,
i.e. culprit. We guide the bisection processes by testing high risk
commits individually.

3.1 BugModel
BugModels have a long history in the software engineering liter-
ature. Research has predicted which files and modules are most
likely to contain defects, i.e. which are riskiest [2, 7, 8, 10, 11, 13,
20, 25, 26, 28–32, 38, 39, 42, 43, 45, 53].

In contrast, Kamei et al. [17] quantified the risk of a commit
instead of an individual file or module. In this way, the authors were
able to alert developers to the changes that may need additional

review. However, the measures are difficult to act upon because
they simply indicate that a change is “large” or that a developer
has less experience, instead of indicating specific problems in the
source code. Since our goal is to simply identify the riskiest commit
and the action is to simply run a test, BugModels provide adequate
information.

Instead of training on the likelihood that a change will introduce
a bug, we are interested in how likely a commit is to fail tests, i.e.
is a culprit indicating a system fault. We train a logistic regression
model to distinguish the commits that are most likely culprits, so
our unit is the commit. We use the simplest measures proposed by
Kamei et al. [17], and leave more advanced BugModels to future
work. As each commit may have multiple file changes, if a measure
is related to specific files, the average of the measure over all of
the file changes of the commit is considered. The measures are
explained below:

(1) Number of line changes: Total number of lines deleted
and inserted in the commit.

(2) Number of file changes: Total number of file changes in
the commit.

(3) Number of modified subsystems: Kamei et al. [17] define
a subsystem as the root directory of a file path in a project
tree. For this metric, we simply count the number of file
changes that have different root directories.

(4) Commit message: A boolean value based on availability of
“bug”, “fix”, or “defect” in the commit message [17].

(5) Developers: Number of developers that were involved in
change history of the changed files of the commit, averaged
over the files.

(6) Experience: Experience of the author of the commit on each
of the changed files of the commit, averaged over the files.

(7) Change time interval: Time interval between the current
change and the previous change of each of the changed files
of the commit, averaged over the files.

3.2 TestExecutionHistory
Prior work has shown that tests that have failed in the past are
likely to continue failing [4, 9, 18, 51]. Preliminary work at Ericsson
has shown a relationship between failing tests and the files in the
change under test [6]. While these works use test history to select
and prioritize the tests that should be run for a change, we are the
first to use this relationship to determine which change in a failing
batch is the likely culprit. For each historical culprit, we record
the tests that fail and the files that were changed, so that we can
calculate how likely a test is to fail for a given file. The following
process is used to calculate a culprit score for each commit in a
batch.

1. Given the frequency of historical file and test failures, we
calculate the probability that the culprit is related to a file and test:

Prob(filen, testx ) =
#filen_fails_testx
#total_fails_testx

(2)

2. We normalize this probability, by the number of lines changed
in the file over the total lines changed in the commit:
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Figure 1: Bisection. When a batch of commits fails, a bisection is performed to find the culprit commit. Since an execution is
required for each binary split, there are 2 ∗ loд2(n) + 1 executions required to find a culprit. To bisect 4 commits, we must run
5 executions. However, if the batch passes, we would need 1 execution to test the 4 commits.

Figure 2: TestTopK. The riskiest N commits are tested individually, with the remaining commits combined in a single batch.
In this case, top1 reduces the number of required executions to three compared to the five in Figure 1.

Probnorm (filen, testx ) =

#line_changes_in_filen
#line_changes_in_commit
∗ Prob(filen, testx )

(3)

3. We sum across all files in the commit to calculate the culprit
score for the commit:

culprit_score(commit) =
∑

n=files,x=tests

Probnorm (filen, testx )

(4)
Figure 3 shows an example. Let us assume Batch #20 is a new

failure and we want to calculate culprit risk scores for its commits,
Commit #100 and #101. Commit #101 has two file changes, File A
and File B. To calculate the culprit probability for File B and Test
1, we see that in the past Test 1 has failed 8 times and 2 of those
times File B was under change: Prob(f ileB , test1) = 2/8. As there
are 30 lines changed in Commit #101 and File B has 10 line changes,
Probnorm (f ileB , test1) is calculated as 2/8 * 10/30. We similarly
calculate Probnorm (f ileA, test1) and sum the two values to get the
final risk score for Commit #101.

4 SIMULATION METHODOLOGY AND DATA
We evaluate three projects at Ericsson which we name A, B, and C
over the period of January to September 2018. The test practices
and bisection techniques have been described in Section 2. Project
A is the smallest with 1.3K commits. Project B is larger with 3.5K
commits. Project C is the largest with 9.5K commits.

The goal of this work is to find the most cost-effective BatchSize
given the CulpritRate and the FlakeRate. To perform a simulation,
we need to know the CulpritRate and the FlakeRate. When a test
fails on a commit and an issue with the software is discovered,
we consider this commit to be the “root cause” or “culprit” for the
test failure. During batching, commits are grouped together and
bisection must be used to identify which commit is the cause or
culprit of the failing batch. We define the CulpritRate to be the
number of culprit commits divided by the total number of commits
for the project.

CulpritRate =
#CulpritCommits

#TotalCommits
(5)

The respective CulpritRate for projects A, B, and C is 6.8%, 8.6%,
and 2.8% . Project C has the fewest culprits. Project A and B have
2.4 and 3.1 times as many culprits as Project C.

We must quantify the FlakeRate for our simulations because
flaky test failures require additional bisections and executions. A
flaky test failure is defined as a test that passes and fails on the
same commit. We define a FlakyBatch as a batch that initially fails,
but does not lead to an individual failing commit, i.e. no culprits are
identified. We define the FlakeRate as the number of flaky batches
divided by the total number of batches.

FlakeRate =
#FlakyBatches
#TotalBatches

(6)

The respective FlakeRates for Projects A, B, and C are 23.6%,
23.1%, and 16.9%. Projects A and B have a similar FlakeRate, with
Project A being slightly higher. Projects A and B both have 1.4 times
more flaky failures than Project C.
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Figure 3: Calculating the commit culprit score based on file and test failure frequency.

4.1 The Impact of BatchSize on FlakeRate
We calculated the overall FlakeRate for all BatchSizes. However,
the larger the BatchSize the higher the probability that at least
one of the commits in the batch will be flaky. We do not know
the FlakeRate for individual commits or tests. Instead, we know
the size of the batch and whether or not it was a FlakyBatch. Any
flaky batch failure incurs the penalty of unnecessary bisection and
executions that must be accounted for in a simulation. We create a
logistic regression model to determine the probability that a batch
of size n will result in a flaky failure.

In Figure 4, we plot the logistic regression line indicating the
probability of failure for batch sizes 1 to 20. Ericsson requested
that we do not show the actual FlakeRate for batches, so the y-axis
is unlabeled. However, it is clear that as the BatchSize grows, the
probability that a batch is flaky increases dramatically.

Using this model, we correct the number of executions to include
flaky failures. In Equation 7, we multiply the number of batches by
the FlakeRate to give us the expected number of flaky batches. Each
flaky batch requires an additional bisection, the cost in executions
is defined in Equation 1.

#FlakyExecutions = #Batches ∗ FlakeRate ∗ 2 ∗ log2(n) (7)

We then add these additional FlakyExecutions to the executions
required to find all the true culprits:

Total#Executions = #CulrpitExecutions + #FlakyExecutions (8)

For example, for Project C, a BatchSize of 8 is about two times
more likely to have a flaky failure than BatchSize of 4. We add these
extra flaky executions for BatchSize 8.

4.2 Simulation Methodology
Ericsson testers evaluate batch test failures on a daily basis. We run
daily simulations using a simple incremental framework that has
been commonly used in the research literature [5, 14, 15, 47].

Figure 4: Probability of a flaky failure for each BatchSize.
The probability is estimatedwith a logistic regressionmodel
for each project. We anonymized the y-axis at Ericsson’s re-
quest.

Our simulation period runs for 9 months and covers 14k commits
which lead to hundreds of culprits. We use the first 3 months as
an initial training period. After this period, we test the approaches
on the commits that are available for the test each day, t = 90 to
t = 270. To predict whether a failure on day D = t will lead to a
culprit, we train on the historical data from D = 0 to D = t − 1 and
test on D = t . We repeat this training and testing cycle for each
day until we reach D = 270.

We also run a simulation, using a sliding training window of
three months. In this case, to predict whether a batch failure on
day D = t will lead to a culprit, we train on the historical data from

283



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Armin Najafi, Peter C. Rigby, and Weiyi Shang

D = t − 90 to D = t − 1 and test on D = t . We repeat this training
and testing cycle for each day until we reach D = 270.

While we simulate batching on Ericsson data, our method and
measures are not tied in any way to Ericsson data. To run this
simulation on other projects, one simply needs the test outcomes
for each change. The test outcome will allow one to calculate the
CulpritRate and FlakeRate.

5 RESULTS
In this section, we present the results by answering three research
questions.

5.1 RQ1: What is the most cost-effective
BatchSize for the number of culprits
discovered during testing?

Batching commits for testing is more efficient with a low test fail-
ure rate, i.e. CulpritRate. The higher the CulpritRate the larger the
number of bisections resulting in more executions. In the extreme
case, where there are no test failures, all commits could be placed
in a single massive batch requiring a single passing execution and
saving n-1 executions, where n is the total number of commits.

In practice, the CulpritRate tends to be very low. For example,
on Chrome 12.5% of tests fail [51]. Since the vast majority of tests
do not fail, testing all commits individually wastes resources. Theo-
retically, the lower the CulpritRate, the higher the BatchSize. We
calculated the CulpritRate for each project and found 6.8%, 8.6%,
and 2.8% culprits for A, B, and C, respectively. With these variable
CulpritRates, we simulate the savings relative to testing all commits
individually, TestAllCommits, for BatchSizes 1 through 20.

Figure 5 shows the simulation results. The savings are substan-
tial even for the smallest BatchSize = 2 commits. The figure shows
that this batch size requires 34%, 34%, and 44% fewer executions
for projects A, B, and C, respectively. We see that the savings are
logarithmic, with the majority of the savings occurring with Batch-
Sizes up to 4. For Project C with the lowest CulpritRate, we note
that the savings plateau with BatchSizes greater than 9 providing
little additional savings. The maximum saving is 50%, 47%, and 74%
for the projects respectively.

These savings and BatchSizes validate our conjecture. Project A
and B have high CulpritRates and see similar cost-effective Batch-
Sizes and savings in executions. Project A and B have more than
two times as many culprits as Project C. Project C has the highest
BatchSize and the greatest savings.

The higher the CulpritRate the smaller the most cost-
effective BatchSize. For example, Project A has a Culpri-
tRate 2.4 times higher than Project C and with a BatchSize
of 4, the savings are 46%. In contrast, Project C can have a
BatchSize up to 9 and saves 72% of test executions when
compared with testing all commits.

Figure 5: Improvement in test executions for different
BatchSizes. In an ideal environment, we see a logarithmic
increase with most of the savings in executions being real-
ized before batches of size four.

5.2 RQ2: What is the most cost-effective
BatchSize when some bisections are done as
a result of flaky failures?

A flaky test failure is defined as a test that passes and fails on the
same commit. We define a FlakyBatch as a batch that initially fails,
but does not lead to an individual failing commit, i.e. no culprits
are identified.

Flaky tests are a significant problem, with Google reporting that
1 in 7 tests are flaky and that 84% newly failing tests are actually
flaky failures [27]. When commits are tested individually, a flaky
failure does not affect other commits and the number of executions
remains constant. In contrast, the larger the BatchSize the higher
the probability that at least one of the commits in the batch will be
flaky. Any flaky batch failure incurs the penalty of an unnecessary
bisection. As the BatchSize grows the probability of a flaky failure
increases according to the models in Figure 4. The FlakeRate will
limit the most cost-effective BatchSize.

In Section 4.1, we modeled the FlakeRate for batches of size 1 to
20 for each project. In this section, we adjust the simulation for the
varying FlakeRate of our studied Ericsson projects. We found that
the respective FlakeRates for Projects A, B, and C are 23.6%, 23.1%,
and 16.9%.

Figure 6 shows the simulation results after correction for the
FlakeRate of the projects for different batch sizes. At BatchSize = 2
we see a reduction in executions of 7%, 9%, and 30% respectively
for projects A, B, and C. We see that the savings in executions are
logarithmic up to BatchSize 2, 4, and 4, respectively. After BatchSize
= 4 we see a decrease in the savings with an increase in the number
of executions as flaky failures become more frequent in larger batch
sizes.
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Figure 6: Improvements in test executions considering the
FlakeRates. The FlakeRate controls the BatchSize and the
project with the highest flake rate does not see any advan-
tage above BatchSize = 2. Project C still attains high execu-
tion savings, at 41% with a BatchSize of 4.

The maximum saving is 7%, 14%, and 41% for projects A, B, and
C at BatchSize = 4 for projects B and C and at BatchSize = 2 for
project A. These savings and FlakeRates validate our conjecture.
Acknowledging flaky failures reduces the most cost-effective Batch-
Size. Project A has the highest FlakeRate and the smallest most
cost-effective BatchSize of 2 and lowest savings of 7%. Project B
has slightly lower FlakeRate and has more commits than Project A,
its most cost-effective BatchSize is 4 with savings of 14%. Project
C has 37% fewer flakes than the other projects and has a most
cost-effective BatchSize of 4 with savings of 41%.

Without considering the FlakeRate, Project C had a BatchSize
of 9 and a savings of 72%. However, in Figure 6, we can see by a
BatchSize of 4, Project C already saves 64%. Creating larger batches
of commits leads to a higher probability that any one of themwill be
a flaky failure requiring additional wasted executions. The trade-off
between savings and additional executions is most cost-effective
at a BatchSize of 4 for Project C. Clearly the FlakeRate must be
taken into account when performing simulations to find the most
cost-effective BatchSize for a software project.

The higher the FlakeRate the smaller the BatchSize and
smaller the savings in executions. For example, Project
B has a FlakeRate 1.37 times higher than Project C and
a BatchSize of 4 saves 14% of the executions compared
to 41%, respectively. With flaky failures, Project C’s most
cost-effective BatchSize and savings are reduced from a
BatchSize of 9 and execution savings of 72% to 4 and 41%,
respectively.

5.3 RQ3: Can risk models predict the culprit
commit and reduce the number of
executions to find the culprits on failing
batches?

In this section we use BugModels and TestExecutionHistory models
to predict which commit in a batch is the true culprit. Our goal is to
reduce the number of executions to find the culprit by testing high-
risk commits in isolation. We isolate the top K riskiest commits and
test these individually while combining the remaining less risky
commits in a single large batch. In the background on bisection
in Section 2, we use Figure 2 to illustrate how the riskiest commit,
Top1, is tested in isolation, while the remaining 3 commits are tested
in a batch. However, if the risk prediction is incorrect, we would
need a maximum of 7 executions to find the culprit. In contrast,
Figure 1 shows a bisection of a failing batch will always require
5 executions to find a single culprit. An accurate risk model will
reduce the number of executions, while an inaccurate model can
even increase the number of executions to find culprits.

We evaluate the BugModels and TestExecutionHistory models on
two evaluation measures: SufficientAndCorrectAtK, and PercentEx-
ecutionDifferenceWithBisection.

SufficientAndCorrectAtK determines how many of the total cul-
prits in each batch are correctly predicted in the TopK suggested
commits of the algorithm.

SufficientAndCorrectAtK =
NumCorrectCulpritPredictionsAtK

TotalCulprits
(9)

For example, a batch with two culprits using K = 1 has a maxi-
mum SufficientAndCorrectAt1 of 1/2 or 50%, as no single prediction
can find two culprits. In contrast, the maximum SufficientAndCor-
rectAt2 is 2/2 or 100%.

Our ultimate goal is to reduce the number of total executions.
We calculate the difference in the number of executions for the risk
models relative to the current process at Ericsson.

PercentExecutionDifferenceWithBisection =

1 −
NumExecutionsBisection

NumExecRisk
(10)

A negative percent difference indicates a saving in executions
when comparedwith Bisection, while a positive percentage indicates
that the risk-based approach does not outperform Bisection and
requires more executions.

5.3.1 BatchSize for Culprit Prediction. In the previous section, we
found that Project A has anmost cost-effective BatchSize of 2, which
means that when there is a test failure, there will always be two
executions regardless of commit risk, i.e. both commits need to
be tested individually. We exclude Project A from this analysis.
In contrast, we found that the optimal BatchSize for bisection for
Projects B and C is four commits. We use BatchSize = 4 to evaluate
our risk-based algorithms. We also experimented with BatchSize =
1 . . . 16 and found that size 4 produced the best result.

We evaluate Top1 and Top2 only because with a BatchSize = 4,
TestTop3, TestTop4, and TestAll are equivalent requiring all com-
mits to be tested individually. For example, if we test the Top 3
ranked commits in isolation the remaining batch has only one
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commit, so all commits are tested effectively in isolation, which is
equivalent to TestAll.

5.3.2 Results for Culprit Risk Prediction. The results of our anal-
ysis are shown in Table 1. For TestTop1, the top-ranked commit
will be tested in isolation, while the remaining three commits will
be tested as a batch. If the prediction is incorrect, we re-run the
process on the next highly ranked commit. The BugModel with
TestTop1 has SufficientAndCorrectAt1 of 22% and 34% for Projects
B and C respectively. However, it requires 5.0% and 2.6% more total
executions than Bisection, for Projects B and C. TestExecutionHistory
with TestTop1 has a SufficientAndCorrectAt1 of 33% and 46%, for
Projects B and C respectively.

For Project B TestExecutionHistory with TestTop1 requires 0.7%
more executions. However, for Project C we see fewer total execu-
tions are needed, -5.3%, when compared to Bisection.

When there is more than one culprit, a model that only predicts
one culprit, i.e. TestTop1, will not be able to find all culprits and will
require additional executions. Project B has batches with two or
more culprits 25% of the time and clearly requires at least TestTop2.
In contrast, Project C has two or more culprits only 6% of the time.
The BugModel’s predictions are not accurate enough at TestTop1
and require more executions than Bisection due to these inaccurate
predictions. In contrast, TestExecutionHistory’s Top1 prediction is
accurate enough to reduce the number of execution, -5.0%, for
Project C.

For TestTop2, the commits ranked 1 and 2 by the commit risk
model are tested individually, while the other commits are tested in
a single batch. The BugModel with TestTop2 has a SufficientAndCor-
rectAt2 of 59% for both Project B and C. The corresponding values
for TestExecutionHistory are 63% and 66%. TestExecutionHistory with
Top2 is the most effective technique improving on the BugModel
by 4 and 7 percentage points for the projects respectively. Both
commit risk models are more effective than Bisection for Project B
and C with -7.4% and -4.3% executions for BugModel and -9.0% and
-7.6% executions for TestExecutionHistory, respectively. The model
accuracy at Top2 are sufficient to reduce the number of executions
when compared with Bisection. We combined the BugModel and
the TestExecutionHistory model, but noted a reduction in accuracy
and savings.

Both culprit risk prediction models are effective, but Tes-
tExecutionHistory outperforms the BugModel. TestExecu-
tionHistory is able to predict the culprits using the Top2
predictions with a SufficientAndCorrectAt2 of 63% and
66% for projects B and C with BatchSizes = 4. Compared
to Bisection this results in 9.0% and 7.6% fewer executions,
respectively.

6 THREATS TO VALIDITY
In this section, we discuss the threats to the validity of our findings.

6.1 External Validity
Our study only considers three projects in the software develop-
ment environment of Ericsson. Although we believe that these

projects can be good representatives of generic projects in industry,
our results may not generalize to other projects. They also have
varying size, Project A is the smallest, and variations in CulpritRate
and FlakeRate, Project A has twice as many culprits as C and Project
B has 1/3 more flaky failures. A recent report from Facebook [12]
shows that in practice, testing approaches should start with the
assumption that all tests are flaky. Since our methodology and sim-
ulation only requires the test outcomes on commits and can easily
be applied to other projects to determine the most cost-effective
BatchSize for a project, replicating our study on other system may
help further understand the generalizability of our findings.

6.2 Construct Validity
Our simulations include simplifications of some of the Ericsson
processes and may not exactly match the reality of the development
environment of Ericsson. In order to verify our results, we suggest
practitioners implement our approaches in production workflows
and evaluate the results in real environments after determining the
most cost-effective BatchSize.

As explained in Section 4.2, we have experimented two train-
ing models: a sliding window training model and also using all
previous data. Our results show that the savings using a sliding
window trainingmodel is slightly lower than using all previous data.
Particularly, for our best approaches, i.e. TestTop2 BugModel and
TestExecutionHistory, savings are -8.2% and -5.2% instead of -9.0%
and -7.4% respectively for Project B and -7.0% and -3.6% instead of
-7.6% and -4.3% respectively for Project C. Hence, the diagrams and
distributions explained in this paper are based on using all previous
data at each iteration day. This parameter can be easily changed
based on the results attained for other projects.

Moreover, our experiments show that some of our extracted
features for creating bug models lead to deterioration of the results.
Notably, features regarding average developer experience, number
of file changes and average time interval among file changes have
been excluded because of the reduced the quality of the culprit risk
predictions.

6.3 Internal Validity
Finally, we assume that a FlakyBatch will result in the same number
of executions as is required to find a single culprit, i.e. 2 ∗ loд2(n).
However, given that the test is flaky, all tests may pass on the first
split in the bisection. In the case of batches of size 8, finding a
single culprit requires 6 executions. However, if all commits pass
after the first split, there are only 2 additional executions required.
Our approach is conservative when treating bisections adding the
number of executions required to find a culprit even if one does
not exist, i.e. a flaky batch.

7 RELATEDWORK
In this section, we discuss the prior research that is related to this
paper.

7.1 Batch Testing and Bisection
There are two reasons why commits are grouped: test efficiency and
integration. When resources are scarce, e.g., expensive specialized
test hardware, individual commits must be grouped together as
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Table 1: We are able to reduce the number of executions relative to normal bisection by 9% and 7.6% for Projects B and C.
Note: since there can be multiple culprits in a batch, TestTop1 is often not sufficient to find all the culprits. Note: Project A is
excluded because its most cost-effective BatchSize is 2, so Top1 = Top2 = TestAll. Note: we only display Top1 and Top2 because
with a BatchSize of 4, Top3 = Top4 = TestAll.

TopK = 1 TopK = 2
Project B Sufficient and Correct Difference in Executions Sufficient and Correct Difference in Executions
BugModel 22% 5.0% 59% -7.4%
TestFile 33% 0.7% 63% -9.0%

Project C Sufficient and Correct Difference in Executions Sufficient and Correct Difference in Executions
BugModel 34% 2.6% 59% -4.3%
TestFile 46% -5.3% 66% -7.6%

there are not enough resources to test each commit individually.
While unit tests can determine that each individual commit is work-
ing, we must test to ensure that when the changes are combined,
i.e. integrated, there are no new faults. Regardless of the reason for
a batch, once it fails the commit or commits that are causing the
problem must be identified and fixed, i.e. the root cause or culprit
must be found [40].

One of the common approaches used for finding a culprit in a
group of failing commits is bisection. When commits are ordered,
GitBisection [1] can use an ordered binary search to identify the
culprit in log(n) time. At Google integration tests can run on the
order of hours and can cover thousands of commits, making GitBi-
section too computationally expensive. Instead, Google developers
use the static build dependencies to determine which tests must be
run when a file is changed. When a group of changes fails during
integration testing, Google developers can immediately eliminate
all changes that do not individually relate to the failing test. Since
there can be thousands of changes in an integration test, Google
also scores the remaining commits on the basis of the number of
files in a change (more files, more likely to be the culprit) and the
distance to the root of the build test dependency DAG (closer to
the root, safer as more developers have assessed it by now) [52].

At Ericsson each commit under test should be independent of
the other commits. As a result, GitBisection is not possible because
the commits are combined into an unordered group of changes. A
bisection on an unordered set of commits is more expensive than
an ordered GitBisection requiring 2 ∗ loд2(n) + 1 executions (see
Section 2). Furthermore, at Ericsson, it is complicated to extract the
static build dependency graph of which tests will be run. In our
work, we evaluate the optimal batch size given the CulpritRate and
the FlakeRate. We then guide bisection by using historical models,
instead of statistical dependencies.

7.2 Test Selection
The goal of test selection is to choose the most appropriate tests
to be run for a given change. In our work, we use these ideas to
determine which change is the most likely culprit given the tests
that have failed.

Early work on test selection used static analysis and code cover-
age [16, 21–24, 33–35, 37, 41, 44, 46]. The Google culprit finder [52]
uses similar information in the form of build test file dependencies
to select the most likely culprit.

In contrast, our work builds on the history of test failures. To
prioritize tests, previous works have used the recency of the test
failures to determine which test is most likely to fail [18]. Building
on these ideas, researchers have developed sliding windowed pre-
dictions [9], used association rule mining [4], and test co-failure
distributions [51]. These only consider the tests and do not consider
the unit under test. In contrast, a preliminary work at Ericsson de-
termined which tests to run on the basis of which tests have failed
with commits containing similar files [6]. We reverse this idea and
instead of predicting which tests to run given the files in a change,
we determine which is the most likely culprit given the failing test
and the files under change.

7.3 Bug models
Recent works have extensively studied bug predictions and bug
models. The focus of earlier work has been on predicting defective
software modules or evaluating the impact of different software
metrics related to that [2, 7, 8, 10, 11, 13, 20, 25, 26, 28–32, 38, 39,
42, 43, 45, 53].

However, other studies focus on predicting defects on the change
level. Predicting bugs on the change level makes it easier for de-
veloper address the issues and act on the predictions. For example,
Kim et al. [19] propose an approach for classifying the developer
changes as buggy or clean. They extract features like the lines mod-
ified in each change, author and time of the change, and complexity
metrics from software revision history. They train a Support Vector
Machine classifier to predict the changes as buggy or clean. This
approach also examines the risk associated with each submitted
change without connecting them to a concrete fault localization
context of a test failure. Our approach, on the other hand, does so
using an empirical approach that points to the culprit change that
is involved in a test failure.

Kamei et al. [17] propose a risk analysis approach in change level.
They construct a logistic regression model for analyzing changes
using different factors under six high-level categories of diffusion,
size, purpose, history, and developer experience to calculate the risk
values. The number of modified subsystems, lines of code added,
the average time interval between the last and the current change,
and recent developer experience are among the utilized metrics.
We adopt this study as one of our risk prediction approaches.

Yang et al. [49] propose a deep learning based technique for
predicting the faulty changes. They use an advanced deep learning
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algorithm named Deep Belief Network for extracting a set features
for measuring the changes. Then they train a logistic regression
classifier for predicting the risk values of the changes. Similar to
[17], this approach also just predicts the risks associated with dif-
ferent changes but does not associate them with any concrete test
failure. Our approach, however, starts from a concrete test failure
and attempts to locate the change associated with that test failure.
Yang et al. [48] propose another similar study for predicting defec-
tive changes using a two-layer ensemble learning approach. Young
et al. [50] propose a replication of this study.

What all these studies have in common is predicting the buggy
commits as early as possible, i.e. a process called just-in-time defect
prediction. A problem with these bug models is that there is no
concrete evidence that a suggested change is actually problematic
and needs to be investigated as soon as possible. Our study, how-
ever, focuses on predicting culprit commits. A culprit commit is one
of the multiple changes that have actually failed a test and needs
to be found and addressed right away. Recent study by Anantha-
narayanan et al. [3] aims to build prediction models for prevent a
commit from breaking the build of software. Such prediction mod-
els may be adopted in our approach to further improve the our
prediction of culprit commits.

8 CONCLUSION
The resources required for testing large-scale modern software
systems has grown dramatically. Each change must be tested and
integrated. To save resources, commits are grouped into batches for
testing. This paper is the first work to study the most cost-effective
BatchSize based on the number of true test failures, CulpritRate.
Flaky tests are a known problem on all large systems, we factor
FlakeRate into our simulations. The FlakeRate is more damaging
with large batch sizes as the number of commits in a batch grows so
does the probability of the batch failing due to a flaky test. We also
use risk prediction models to more quickly isolate commits that
are the likely culprits using BugModels and TestExecutionHistory
models.

We provide a fundamental insight into the cost of batching and
an actionable use for commit risk prediction models. We make three
major contributions:

(1) We find the higher the CulpritRate the smaller the most cost-
effective BatchSize. We see a logarithmic increase with most
of the savings in executions being realized before batches
of size four. Our results show that Project C, with the low-
est CulpritRate, can optimally use BatchSize = 9 and have
savings above 72% of executions over testing all commits
individually.

(2) We model the FlakeRate. With moderate levels of flakiness,
the savings seen above a BatchSize = 4 do not outweigh
the additional executions required to identify a flaky failure.
The FlakeRate controls the BatchSize and the project with
the highest flake rate does not see any advantage above
BatchSize = 2. Project C still attains high executions savings,
at 41% with a BatchSize of 4.

(3) Using risk predictions from BugModels and TestExecutionHis-
tory models, we are able to rank the commits by how likely

they are to contain the culprit. We find that the TestExecution-
History model achieves an average SufficientAndCorrectAt2
of 64.5% and outperforms the BugModel. By using these risk
predictions compared to Bisectionwe need 7.6% to 9.0% fewer
executions.

Our work opens a new area of research into culprit finding and
prediction. While we have examined preliminary BugModels and
modified the work on test selection to identify potential culprits
in the TestExecutionHistory model, we feel that there is much fur-
ther work to be accomplished. The results we present here have
convinced Ericsson developers to implement our culprit risk predic-
tions in the CulPred tool that will make their continuous integration
pipeline more efficient.
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