
Improving Test Effectiveness Using Test Executions
History: An Industrial Experience Report

Armin Najafi†, Weiyi Shang†, Peter C. Rigby‡
Department of Computer Science and Software Engineering

Concordia University, Montreal, Quebec, Canada
{a ajaf, shang}@encs.concordia.ca†, peter.rigby@concordia.ca‡

Abstract—The cost of software testing has become a burden
for software companies in the era of rapid release and continuous
integration. Our industrial collaborator Ericsson also faces the
challenges of expensive testing processes which are typically part
of a complex and specialized testing environment. In order to
assist Ericsson with improving the test effectiveness of one of
its large subsystems, we adopt test selection and prioritization
approaches based on test execution history from prior research.
By adopting and simulating those approaches on six months of
testing data from our subject system, we confirm the existence of
valuable information in the test execution history. In particular,
the association between test failures provide the most value to
the test selection and prioritization processes. More importantly,
during this exercise, we encountered various challenges that
are unseen or undiscussed in prior research. We document the
challenges, our solutions and the lessons learned as an experience
report. Our experiences can be valuable for other software
testing practitioners and researchers who would like to adopt
existing test effectiveness improvement approaches into their
work environment.

Index Terms—Test effectiveness, Test prioritization, Test selec-
tion, Industrial experience report

I. INTRODUCTION

Testing is an important, yet time consuming and costly
process, especially for large software systems. Prior research
estimates that testing consumes between 30% to 50% of the
time in software development life-cycle [1]. For example,
an industrial case study shows that it takes over two days
to complete testing on a medium size video conferencing
system [2].

The cost of testing has become a burden for software com-
panies during rapid release [3], where continuous integration
techniques are widely adopted in practice to receive feedback
from testing as soon as changes are made to the source
code [4]. With thousands of commits made to the source code
every day, it is challenging to keep up with the speed of
development. Google’s version control repository receives over
16,000 commits every day [5], which results into a median of
27 test requests per minute [6]. Our industrial collaborator
Ericsson has faced the same challenges for testing its large-
scale software systems. Moreover, the changes in their testing
processes may be even greater due to the complex testing
infrastructures that are purposely designed for each software
subsystem.

Test selection and test prioritization are proposed by prior
research to improve the effectiveness of test executions [7], [8],

[9], [10], [6]. With test selection, tests are either executed or
skipped on the fly. With test prioritization, tests are reordered
such that more test failures can be captured earlier using lim-
ited testing resources. Therefore, we leverage the wisdom from
prior research to assist Ericsson with improving the testing
process of one its large-scale software systems. However, since
prior research is typically evaluated on a particular industrial
subject system (e.g., from Microsoft or Google), it is unclear
to what extent the existing approaches can improve the test
effectiveness in our subject system and whether there are
challenges that are unseen by prior research.

In this paper, we share our industrial experience for adopting
test selection and prioritization approaches to improve the
test effectiveness of one of the large software systems in
Ericsson. In particular, the adopted approaches are based
on historical test failure frequency, test failure association,
and the costs associated to the testing process. In order
to evaluate the usefulness of these adopted approaches, we
simulate applying these approaches on six months of testing
data from a large-scale system in Ericsson. Our results show
the importance of test execution history in enabling the test
selection and prioritization approaches to assist with software
testing in practice. Particularly, our results confirm the value
of discovering associations among test failures as shown by
recent research [6]. We encountered many engineering and
design challenges for adopting and applying the approaches
to the testing processes of Ericsson. In the end, we conquered
the challenges and documented the challenges, our solutions
and the lessons learned as an experience report. We believe
that our experience in adopting existing test selection and
prioritization approaches can help software practitioners and
researchers who want to adopt software testing approaches into
their work environment.

The major contributions of this paper are:
• We adopt and evaluate test selection and prioritization

approaches with the goal of improving test effectiveness
in a large industrial system with a complex testing
infrastructure.

• We demonstrate the value of test execution history for
improving test effectiveness in a large-scale industrial
system in practice.

• We provide an industrial experience report that docu-
ments the challenges that are encountered and our lessons
learned during the adoption process of the test selection



and prioritization approaches.
The remainder of this paper is organized as follows. Sec-

tion II describes the background of the subject system and its
testing process. Section III discusses the approaches that are
adopted by our study to improve the test effectiveness of our
subject system. Section IV presents the results of evaluating
the adopted approaches. Section V discusses the challenges
that we have encountered and the lessons learned during the
experiments. Section VI discusses the threats to validity of
our findings. Section VII presents other related research in the
literature. Finally, Section VIII concludes the paper.

II. BACKGROUND AND SUBJECT SYSTEM

In this section, we explain the background required for this
paper, i.e., the subject system that we studied in Ericsson.
Figure 1 presents an overview of the testing process of our
studied subject system.

A. Subject system

The subject system in this study is a large-scale software
system from Ericsson. The software system has a large user
base across the world and is currently being developed on
a daily basis for new features and performing maintenance
activities. The teams that develop this system consist of a large
number of developers and testers across the globe. The system
is developed using a modern typical programming language
that is hosted in a typical version control repository. To ease
the discussion about the subject system, we refer to it as ELS
(Ericsson’s Large-scale System) in the rest of this paper. Due
to the criticality of the system, our study is conducted by
simulation that is based on the test results from the past six
months of the day of the study.

B. Testing process

The testing process in ELS is conducted on a special testing
infrastructure which cannot be replicated easily. Therefore, in
general, the changes to the source code of ELS have to wait in
a queue in order to get tested in such a complex environment.
In particular, the testing process consists of four steps. 1)
Collecting commits. The commits that are made in the version
control repository are collected and put in a queue to be tested
as soon as the testing environment is available. 2) Testing the
commits. Once the testing environment is free, commits from
the queue are consolidated as a batch and are moved into
the testing environment. There exists a large number of pre-
designed tests which will be executed on the new commits. If
all of the tests pass, the commits will be merged into the main
trunk of the version control repository. If any of the tests fail,
the commits will be sent back for a bi-section process [11].
3) Bi-section. The bi-section process splits the commits of a
failed batch in half by their time stamps. The first half of the
commits are sent directly to the queue, with other commits
that are already waiting in the queue to be tested. The second
half of the commits will be waiting for the queue to be empty
to enter the queue. 4) Manual check of the test results. Due to
the complex testing infrastructure, not all test failures are due

to software bugs. Therefore, once the test failures are located
in one single commit (after multiple iterations of bi-section
process), a system expert will manually check the failures.
A test failure will be labeled as a false-positive if it is not
caused by a software bug, but rather by an infrastructure issue
in the testing environment. Or it can be labeled as a true-
positive if the test failure is identified to be an actual bug in
the main software system. Please note that the testing process
that we described above does not include all details about
the software quality assurance process in Ericsson. There may
exist other approaches, infrastructures and test stages available
in the testing flow. However, for the scope of this study, we
only focus on the above-described testing process.

III. ADOPTED APPROACHES

Software testing and regression testing improvement have
been largely studied in the software engineering literature.
Kazmi et al. [12] and Suleiman et al. [13] provide extensive
reviews on the recent studies in the literature for test selection
and prioritization. In this section, we present the approaches
that we have adopted in order to improve the test effectiveness
of ELS in Ericsson. In particular, we adopted approaches that
perform test selection and test prioritization.

A. Test Selection

We adopt test selection approaches that are based on prior
test failure frequency, association, and the costs of the testing
process. Test selection approaches are applied before the start
of each batch, for which all of the test execution results before
the day of testing are used as learning data for our analysis. We
do not learn from the test execution data from the same day of
the test executions, as test failure results need to be manually
labeled as true-positives or false-positives by the testers by the
end of each day. Therefore, we only obtain the latest labels at
the end of each day.
Based on Failure Frequency

Intuitively, tests that previously failed frequently are more
likely to fail again later [7], [6]. Therefore, the frequency of
past test failures can be used as an indicator for suggesting
test selection opportunities.

Microsoft’s FreqSelect Anderson et al. [7] propose an
approach that calculates the frequency of test failures using
the test executions history. Afterward, the tests that failed more
frequently in the past are recommended to be selected again
later.

FreqSelect Our adopted approach is closely related to the
test selection approaches proposed by Anderson et al. [7],
where only the tests that have prior failures are selected. In
addition, to consider the cases where test failures can be false-
positives in our testing process, we only consider the tests that
have prior true-positive test failures as opposed to considering
all of the test failures.
Based on Failure Association

As prior study shows, there exists a large number of co-
failures in test executions [6]. Hence, associations can be
effectively leveraged for improving test effectiveness [6].
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Fig. 1: An overview of the testing process of ELS.

Microsoft’s AssocSelect Anderson et al. [7] perform asso-
ciation analysis on the test failures. In particular, failures in
certain subsets of tests are used to determine other subsets
that are likely to fail. With the identified association rules,
Anderson et al.’s approach selects the tests that are more likely
to fail again.

AssocFreqSelect We adopted Microsoft’s AssocSelect with
the goal of minimizing the redundancy among tests by only
selecting the cheapest test to run if multiple tests are associated
with each other. In particular, we leverage test failures in each
batch (see Section II) to perform association rules mining
using the Apriori algorithm [14]. We obtain a list of association
rules pointing to the test cases that tend to co-fail with each
other. Some rules may have low confidence and should not
be used to perform selection. Therefore, we only consider the
association rules that have over 0.8 confidence.

Afterward, we use these rules to dynamically select the test
cases that are most effective and at the same time have the least
amount of redundancy among each other. We first rank the test
cases based on their probability of finding true-positive test
failures as extracted from the test executions history (c.f. the
FreqSelect approach). Then we iterate through the list from the
top one by one and check if there exists any association rule
between the current test and any of the previously analyzed
ones. If there exists such a rule, we only keep the test that has
a shorter average execution time in the list. In this way, we
remove the redundancy among the tests while shortening the
tests’ duration time and maintaining the effectiveness of the
tests in finding true-positive failures.

The goal of our approach (AssocFreqSelect) is different
from that of Anderson et al. (Microsoft’s AssocSelect). Mi-

crosoft’s AssocSelect aims to select the tests that are more
likely to fail using failure associations. However, AssocFreqS-
elect aims the opposite, i.e., associated test failures may be
redundant and they should not be executed. AssocFreqSelect
removes tests based on the existence of association to avoid
redundancy among the test failures.
Based on Cost

Test execution comes with a cost, especially for the complex
testing infrastructure that is used by ELS. With such high
testing costs, tests can be skipped if skipping them is more
cost-effective than executing them [8].

Microsoft’s Theo Herzig et al. [8] propose a tool named
THEO that stands for Test Effectiveness Optimization using
Historic data. THEO is designed based on a cost model that
dynamically skips tests when the expected cost of running
one exceeds the expected cost of skipping it. In particular,
Microsoft’s Theo calculates two values for every test execution,
cost of execution and cost of skip, and decides which action
is more economical. Similarly, in our TheoSelect approach we
select test cases based on an online cost analysis for every
test case execution. Two costs are calculated for every test
case execution: cost of execution and cost of skip, calculated
as follows:

costexec = costmachine + (PFP ∗ costinspect)
costskip = PTP ∗ costescaped ∗ timedelay ∗#engineers

(1)

In the equation, costmachine is an estimate of the costs
associated with running a test in the test environment for a
certain amount of time. costinspect is an estimate for the time



delay and the costs associated with the engineers that will per-
form the inspections after a test failure. This parameter mainly
affects the costs associated with running a test case when a
false-positive needs to be inspected. costescaped represents the
average cost of an escaped defect. #engineers is the number
of engineers that will get involved when a new slip-through
is introduced into the tests’ flow. timedelay is the amount of
time delay that a new slip-through will impose on the tests’
flow. Moreover, PFP and PTP are the probabilities for finding
a true-positive or a false-positive for every test case. These
probabilities are extracted from the test executions history.
Consequently, after evaluating the equations, if the cost of
running a certain test case is shown to be higher than skipping
it, the test case execution will be skipped or vice versa.

TheoSelect: We adopted the approach proposed by Herzig
et al. [8]. We call this approach Microsoft’s Theo and is iden-
tical to our TheoSelect with different parameters. Microsoft’s
Theo is a generic test selection tool that selects test cases
based on cost analysis of each execution on the fly. We cannot
unveil the exact values that we have chosen for the parameters
due to confidentiality reasons. However, as the ratio of the
parameters matter in our use case, we set costmachine to 1
unit, costescaped to 13.1 unit and costinspection to 30 units as
the ones used by Herzig et al. [8].

B. Test Prioritization

Kim’s Prio: Kim et al. [10] propose a test prioritization
technique based on test execution history. The prioritization
technique gives priority scores to each test for their execution.
They propose three approaches for calculating the scores. First,
the tests that have not been executed recently are given a higher
score. Second, the tests that have revealed more faults recently
will receive a higher score. Finally, a higher score is given to
the tests that cover functions which are infrequently covered
in the past testing sessions.

Google’s Prio: Elbaum et al. [9] propose another test
prioritization technique. Their technique selects the tests based
on the relationship between code and test. Only the impacted
tests by the code changes are selected for run. Moreover, the
technique aims to find the failures earlier in the flow. This
approach assigns priorities to tests based on the probability of
test failures extracted from the test execution history.

Prio: Our prioritization technique is similar to Kim’s Prio
and Google’s Prio. In our approach, we give a higher priority
to tests that have found more failures and have a shorter
average execution time. We rank the test cases based on the
ranking values calculated as follows:

priority value =
#total failures

total executions duration
(2)

where the #total failures is the true-positive failures
detected by the tests and the total executions duration is
all the time that is spent on executing the tests. The total
duration of test execution has been incorporated into the
equation in order to normalize the effectiveness of the test

cases. In this way, we give a higher priority to tests that find
more failures with shorter execution time, i.e., less effort.

Comparing Kim’s Prio and Google’s Prio, our approach
relies only on the test executions history, such as the number of
true-positive failures and test executions’ duration to calculate
the priority values. We do not use test coverage information
since all too often, it is not available in the test process of ELS
in Ericsson. Similar to test selection approaches, we learn on
all of the test execution results until one day before of every
test.

IV. RESULTS OF THE ADOPTED APPROACHES

In this section, we present the simulation results of our
adopted approaches (see Section III) on the six months test
results from ELS. We present the results for both of the test
selection and test prioritization approaches.

A. Test Selection

We use three metrics to evaluate the adopted approaches for
test selection.
Total test execution time reduction. Our first metric demon-
strates how much test execution time is reduced by performing
each of our test selection techniques. In particular, we first
calculate the total time that is needed to execute all of the
tests. Then using each test reduction technique, we calculate
the required time to only execute the tests that are selected
(i.e., not removed) by each technique. Finally, we calculate
the reduction percentage based on the total time needed for
running all of the tests and running only the selected tests by
each selection approach.
Number of slip-through test failures. Our second metric,
reveals the percentage of the true-positive test failures that may
have been missed due to a test not being selected. The value
zero for this metric means that our test selection approach
does not remove any test that would have been a true-positive
test failure. Intuitively the lower the value of this metric, the
better the approach is. This metric is particularly important
since the slip-through true-positive test failures may have a
direct impact on the end users.
Total cost reduction. This metric is a measure for showing the
impact of the test reductions and their side effects in terms of
a concrete cost value. For this metric we calculate the costs of
running each test case or encountering a missed true-positive
using the parameters given in Section III. In particular, cost
of running each batch can be calculated as follows:

costbatch =
∑

test cases

test caseexecution time ∗ costmachine

+#FP ∗ costinspection
+#slip throughs∗ costescaped ∗ timedelay ∗#engineers

(3)

where the total cost is the sum of the costs of the test
infrastructure during the test execution, the effort by the
practitioners to inspect any false-positive test failures and the
cost of the slip-through test failures if an important test is not



TABLE I: Overall comparison of the three adopted test selec-
tion approaches.

Reduction in
execution time Slip-throughs Reduction in cost

FreqSelect 0.01% 10.22% -0.73%
AssocFreqSelect 13.91% 11.36% 13.08%

TheoSelect 41.78% 34.65% 39.23%

selected. Afterward, we calculate the total cost by assuming
that all of the tests are selected, i.e., there exist no slip-through
test failures. Finally, the total cost reduction is calculated based
on the cost of using each test selection approach and the total
cost of selecting all tests as follows.

reduction percentage in cost =

100 ∗ (1− simulated total cost

total cost
) (4)

Table I shows the results of our evaluations for each of
our approaches. The results show that by only considering
the frequency of past test failures, reducing the test execution
time is not trivial. In fact, by only saving 0.01% of the test
execution time, the approach let 10.22% of the true positive
test failures untested. Such missed true-positive failures result
in an increase in cost. On the other hand, the AssocFreqSelect
approach shows significant improvement over the FreqSelect
approach. The AssocFreqSelect approach is able to maintain
a similar slip-through rate but reducing both the time of test
executions (13.91% reduction) and the costs (13.08% reduc-
tion). Our results confirm the findings from recent research by
Zhu et al. [6] where the association between the test failures
are found to be effective for re-ordering the tests.�
�

�
�

Association between tests is a valuable source of infor-
mation for improving test effectiveness.

The cost analysis approach, i.e. TheoSelect, is designed to
optimize the cost of testing, where the results demonstrate
much higher (almost three times) cost reduction in testing
compared to AssocFreqSelect. On the other hand, the slip-
through test failures are also almost three times of that
compared to AssocFreqSelect. Therefore, the practitioners can
choose to lower the total costs and prefer to tolerate the fact
that some failures may be missed by the testing process. This
can be especially tolerable if it can be proved that there are
other mechanisms in the flow that can catch these missed
failures (c.f., Section V). Otherwise, having too many slip-
throughs, despite reducing the costs can have a significant
impact on the end users.�
�

�
�

Even by taking advantage of a cost-based test selection
approach, practitioners may still face the trade-off be-
tween the slip-through test failures and the cost of testing.

B. Test Prioritization

There are generally two criteria for evaluating test prior-
itization; Reaching the first test failure, or reaching all test
failures as early as possible [6]. In order to evaluate the
adopted approach, we consider both of the two metrics for
our evaluations.
Reduced execution time until the first failure. Our first
prioritization specific metric simply accounts for how fast a
given order of running tests can find the first test failure.
For each batch, we first reorder all of the tests using our
test prioritization approach. Based on the prioritized order, we
calculate the total execution time until we encounter the first
test failure. We compare the test execution time to the actual
test execution time that was spent to reach the first test failure
in the test execution history from ELS. In order to minimize
the bias of the original order in the test execution history of
ELS, we also compare the test execution time with prioritizing
the tests in random order. We repeat the random prioritization
1,000 times for each batch and calculate the average execution
time needed to reach the first test failure.
Area under the curve of the cumulative lift chart of the test
failures. The second metric compares the order given by our
adopted approach with the optimal order. The optimal order
gives priority to the tests that would fail in each batch and
have shorter execution time. In particular, we use cumulative
lift charts [15]. Figure 2 shows an example of the cumulative
lift chart of the test failures of a batch, where the y-axis
shows the number of test failures and the x-axis shows the
percentage of the spent test execution time so far. For each
batch, we generate such chart for both the optimal order and
the order given by our adopted approach. The effectiveness
of the prioritization technique is evaluated by the size of the
area under the curve in each chart. Hence, for each batch,
we calculate the size of the area under the curve for the
optimal order and the given order by our adopted approach.
We calculate the percentage (Popt) of the area under the curve
of the optimal order, that is covered by the order from our
adopted approach. Therefore, Popt has a range from 0 to 1.
The closer Popt is to 1, the better our prioritization algorithm
is, i.e., closer it is to the optimal prioritization of the tests.

Our test prioritization approach can be used after the test
selection approaches or as a standalone approach (as practi-
tioners may not want to skip any tests). Figure 3 shows the
evaluation of our approaches for reaching the first failure, i.e.,
the reduced execution time until the first failure happens. The
results show that our Prio approach can effectively reduce
the test executions without having any impact on the product
quality. Using our prioritization algorithm after our selection
techniques leads to further reductions in total test executions.
However, this comes with the cost of introducing missed true
positives into the product line and a worse test ordering.
Figure 3 (a) compares our prioritization techniques with the
current default order obtained from the execution history of
our subject system in Ericsson. This figure shows that all
of our approaches demonstrate significant improvement over
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Fig. 3: Bean plots of test execution time reduction by compar-
ing our prioritization with the original order and the random
order

the default order in required test execution time for reaching
the first failure. Particularly, our best approach, standalone
Prio reduces the time for finding the first failure, with a
median of 60.05%. Figure 3 (b) shows similar evaluations
for comparing the results of our approaches to the results
obtained from averaging 1,000 iterations of random order.
Although prior studies show that prioritizing tests in random
order can be surprisingly effective [6], [10], our standalone
Prio approach, demonstrates significant improvement over the
averaged random order, with a median of 38.01%.

Figure 4 presents the results of our evaluations using the
metric related to the area under the curve of the commutative
lift chart of the test failures (Popt). The median value of
Popt for each batch is almost 100% for all of our adopted
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Fig. 4: Distribution of the Popt values of our prioritization
results.

approaches. Such results show that for almost half of the
batches, the order provided by our approaches are either
exactly or very close to the optimal order. The results show
that similar Popt performance is demonstrated when our Prio
approach is used standalone or combined with FreqSelect or
AssocFreqSelect. On the other hand, although combining Prio
with TheoSelect shows a better prioritization, it is considered
to be due to the removal of too many tests by TheoSelect,
leading to a rather easier ordering for each batch.�

�

�

�
Test prioritization by simply considering the past effec-
tiveness of the tests can significantly help with reducing
the time to reach the first failure as well as providing a
close-to-optimal order for running the tests.

V. CHALLENGES AND LESSONS LEARNED

In this section, we discuss the challenges that we faced dur-
ing the implementation of our test selection and prioritization
techniques in the industry and the lessons that we learned
from our experiences. The challenges and lessons can shed
more light on the path for other researchers and practitioners
who would like to incorporate test selection and prioritization
techniques in their software testing processes.

Challenge 1: Being reluctant to skipping unnecessary tests

Description: We started off our research by suggesting tests to
be completely skipped or even removed from the tests’ flow.
However, our experience shows that the test managers and
developers are reluctant to removing tests from the tests’ flow
in practice because they are afraid of leaving some product
features untested. However, such a conservative approach is
exactly one of the reasons for the ever growing costs of
software testing in the industry.

Our experience with test managers and developers in Eric-
sson revealed that industry experts are reluctant to removing
tests from the tests’ flow unless they find it absolutely neces-
sary. There is always a rather conservative approach for test
executions by having a preference for increasing the level of
quality assurance of the software with the price of spending
more time and resources. As a result, even though our initial
analysis revealed that some tests can be removed due to their
low effectiveness, the preference of the test managers was to
keep them anyway. Therefore, we put more emphasis on our
test prioritization technique as in prioritization, no tests will be
removed and only the order of running them will be changed.



Solution: We leveraged two approaches to address this chal-
lenge. First of all, we focus our techniques on test prioritization
rather than test removal, i.e., instead of removing the tests, we
adopt techniques that assign a low priority to running them.
Therefore, the practitioners can still execute those tests if it is
really necessary and the required extra resources are available.
Second, instead of only providing historical evidence, we
aimed to provide an explanation on why those tests can be
removed. For example, we can explain that Test A can be
removed since the exercised APIs are obsolete, as opposed to
only show that Test A has never detected a bug in the system.
Lessons learned: Due to the important role of testing in
practice, developers and testers are often very wary of any
changes in their testing processes. Therefore, they would prefer
a solution that is less invasive and is less likely to do any harm
in their processes.�
�

�
�

Lesson 1: To help with the engagement of our research,
we find that a less intrusive approach is much easier to
be accepted.

After having discussions with the practitioners, we find that
some of the tests are implemented with a special purpose. For
example, a test may be particularly designed to capture a very
rare but critical issue. In such cases, testers would certainly
not skip those tests since no other tests aim to detect the bugs
for those scenarios.�

�

�

�

Lesson 2: Tests that are shown to be ineffective may be
particularly designed for a special purpose as opposed
to being obsolete. Test selection and prioritization tech-
niques should have considered the special characteristics
of those tests.

Challenge 2: Coping with false-positive test failures

Description: Failures in test results may not always be asso-
ciated with software issues. In the testing processes of our
industrial partner, we often observe test failures that are false-
positives. For example, due to the complicated hardware and
test infrastructure involved in testing the code in Ericsson, the
test failures may just be associated to a hardware failure or
a noise in the system as opposed to an actual problem in the
main product code. Such false-positives introduce challenges
to our test selection and prioritization techniques. While learn-
ing the history of test executions, we need to take the false-
positives into consideration. In addition, our approach should
prioritize the tests that give fewer false-positive failures.
Solution: In order to address the false-positives in the test
results, we first incorporate analysis of the test logs in order
to assist with determining whether a test failure is due to the
test infrastructure or a real product issue. After we identify
the false-positives in our test results, we change the existing
test selection and prioritization approaches to consider the ex-
istence of false-positives. The original Microsoft’s FreqSelect
and Microsoft’s AssocSelect consider all test failures. However,
our adopted approaches FreqSelect and AssocFreqSelect only

consider the test execution history with true-positive test fail-
ures. Hence our approaches favor selection and prioritization
of the tests that provide a higher number of true-positive test
failures.
Lessons learned: We observe a prevalence of false-positive test
failures in our experiments. Particularly, in certain software
systems, the field environment can be noisy and complicated.
Therefore, the testing infrastructure and the environment may
contribute to a significant amount of test failures as false-
positives.�
�

�
�

Lesson 3: Proactively addressing the false-positives in the
test results can help practitioners in accepting our sug-
gestions for test selection and prioritization techniques.

Challenge 3:Trade-off between slip-through test failures and
the tests’ costs

Description: Reducing the cost of the tests can lead to an
increase of the chance of having slip-throughs, i.e. having bugs
in the final software system. The general goal for test selection
and prioritization is to minimize both the costs of tests and also
the number of slip-throughs. However, since there is a trade-
off between the two, it is challenging to decide how much
slip-throughs are accepted when aiming to reduce the costs of
tests.
Solution: Although we provide different approaches for test
selection and prioritization, there is no gold standard to help us
decide what is a good trade-off between the slip-throughs’ rate
and the costs. First, we tried to leverage the approach proposed
by Herzig et al. [8] in order to generalize both the slip-throughs
and the test costs into one consolidated cost metric. Moreover,
we conducted meetings with practitioners to seek policies that
may especially have been put in place for making decisions
about the slip-through trade-offs.
Lessons learned: We were surprised to find that practitioners
not always have a strong negative opinion towards having slip-
throughs, with the argument that some bugs will be certainly
caught in the following test stages and it may be more
economical to let certain bugs slip through certain test stages,
and be caught later on in another stage.�

�

�

�

Lesson 4: Slip-through test failures are not always a
negative phenomenon. Practitioners may prefer to lower
the costs of the tests at certain stages and use other
testing strategies to catch the slip-through failures in
other stages of the tests’ flow.

Challenge 4: Coping with test dependencies

Description: Tests are observed to be frequently co-failing
during our experiments. Our approach AssocFreqSelect aims to
identify the tests that often co-fail in order to reduce the testing
costs. Intuitively, the co-failure of multiple tests may be due
to test dependencies. Test dependencies are often considered
harmful in prior research [16]. For example, if two tests have
a dependency on ordering (Test A needs to run before Test



B), we may not leverage our test selection and prioritization
technique to reduce the testing costs.
Solution: We aim to identify and resolve those dependencies
to improve the quality of the tests. However, in most of
the associations that were identified by our AssocFreqSelect
approach, we could not find any functional dependencies
among the tests.

By manually examining the tests and conducting deeper
investigations with the practitioners, we find that the tests that
are found to co-fail with each other, are often both dependent
on some common external resource. For example, it can be the
case that both tests depend on a common hardware component
that is currently failing to load. This can lead both of the tests
to fail at the same time.

Current research on test dependencies does not focus on the
cases where external resources are the root causes of the test
co-failures. Therefore, we had to manually label the tests with
their external dependencies with the relevant hardware to help
with maintaining the tests.
Lessons learned: There exist many tests in our study that co-
fail with each other, even though they may be functionally
independent or may be considered irrelevant to each other.
We find research efforts may be allocated to provide more so-
phisticated static analysis techniques to automatically identify
the root causes of associations between the tests, leading to a
more optimized approach in test selection and prioritization.�
�

�
�

Lesson 5: Tests that co-fail may not be functionally
dependent on each other. Instead, they may co-fail due
to their co-dependence on some external resources.

Challenge 5: Deciding on the granularity of the tests

Description: There exist different granularity levels for testing
software code. Unit tests are more focused and localized while
end-to-end system tests have a larger scope and scale. It is
sometimes challenging for the practitioners to decide the right
granularity level of each testing process. On one hand, the
focused unit tests are less costly to run and investigate. On the
other hand, the end-to-end system tests may be more realistic
and be more effective in catching bugs that are more likely to
exist in the real environments.
Solution: We analyzed the associations obtained from our co-
failure analysis of our AssocFreqSelect approach, with the
goal of examining whether there exist any associations among
the lower level unit tests and the more expensive end-to-end
system tests. If so, practitioners may consider executing only
the unit tests in order to save the costs associated with the
end-to-end system tests.
Lessons learned: We find that there exists an insignificant
overlap among the unit tests and the end-to-end system tests
in our studied subsystem. In particular, we find that out of all
true-positive test failures that are detected in the test results,
80% of them are detected by the end-to-end system tests
and only 34% of them are detected by the unit tests. Such
results show that 1) The more expensive end-to-end system
tests capture most of the true-positive test failures and 2) The

two test categories do not overlap heavily since only 13% of
the failures are detected by both of the categories.�

�

�

�

Lesson 6: The test failures from the unit tests and the
end-to-end system tests have little overlap. Removing the
more expensive tests in this case in order to reduce costs
may lead to major consequences in the overall product
flow.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity of the
findings of this paper.
External validity. Our study is only conducted on one area
of the testing processes of one of the subsystems in Erics-
son. Although ELS may carry many characteristics that are
common in large-scale software systems, the findings and
experiences may not be generalizable. For example, many of
our findings are associated with the complex and expensive
testing infrastructure that is specially designed for ELS. In
addition, our results are only based on the simulation of
six months testing results. However, adopting test selection
and prioritization techniques on systems with shorter test
execution history may result in different experiences. Finally,
the parameters that are used for tuning our adopted approaches
may be only suitable for ELS.
Construct validity. The evaluation of our adopted approaches
is based on the simulation of testing processes. Therefore,
the actual quality of the system has not been evaluated by
incorporating our approaches in practice. In addition, the goals
of our test selection and prioritization approaches may not
always align with the goals of the practitioners. For example,
our association based test selection approach aims to reduce
the redundancy among the tests while practitioners may opt to
favor those redundancies to retrieve more information about
the test failures. Further research may focus on evaluating
such adopted approaches considering different goals of the
practitioners.

The parameters used in cost functions in the TheoSelect
approach are either estimated by the practitioners or adopted
from the Microsoft’s Theo approach. These parameters may
not always exactly match the reality. Sensitivity analysis on
the parameters may complement our findings and experiences.

Our test evaluation is based on training on all data that is
available prior to the testing day. However, the testing results
that are closer to the testing day may have a better power to
predict the testing results. Our future research will evaluate
the best duration of training data in an industrial testing
environment. Our test evaluation simulation has an assumption
for independence among the tests, meaning tests can be re-
ordered or skipped without impacting the others. However, as
observed by Zhang et al. [16] this assumption may not always
hold. Future research by leveraging our approach in practice
may consider the dependencies among the tests for better test
selection and prioritization results.
Internal validity. Our approach relies on the labels that are
provided by practitioners to decide whether a test failure is



a false-positive. These labels may be inaccurate and incon-
sistent due to the experience and subjective bias from the
practitioners. Further validation of the labels may complement
the results of our study.

The simulation of evaluating the adopted approaches does
not consider the impact of the approaches on batches of
commits which are being tested. For example, skipping certain
tests may lead to a different testing process. However, our
simulation cannot change the execution of tests in the history.
Future research may study such impacts by using the adopted
approaches in practice to select and prioritize on the fly.

VII. RELATED WORK

Tremendous research efforts have been dedicated to im-
proving test effectiveness. The effectiveness of the tests is
optimized typically by test case minimization, selection, and
prioritization, as proposed by Laali et al. [17].

Static analysis and test coverage are leveraged as the major
source of information to improve the effectiveness of the
tests [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28]. For example, in a recent work, Saha et al. [29] propose
to address the test prioritization problem by reducing it to a
standard information retrieval problem. They assume that test
cases and source code usually embody meaningful identifiers
and comments which can be treated as natural language.
Therefore, information retrieval techniques can be utilized
on them to give priority values for running the tests. Nardo
et al. [21] evaluate seven coverage-based test improvement
techniques on a common carefully designed industrial system.
Their findings show that finer grained coverage information
can be leveraged to provide 79.5% savings in execution costs
while maintaining a fault detection capability level above 70%.
On the other hand, Koochakzadeh et al. claim that the test
coverage information itself can be misleading for eliminating
the tests’ redundancy and can result in weaker test cases [30],
[31]. Despite prior research, static analysis and test coverage
based approaches are not suitable for our subject system. Due
to the complexity of our subject system, the source code is
often not or only partially available. Therefore, in this paper,
we adopted approaches that depend on historical test execution
information.

Historical information about the test executions is a valuable
source for improving test effectiveness. A recent work by
Zhu et al. [6] demonstrates the use of learning co-failures in
test execution history to assist with test prioritization. Their
approach prioritizes the tests by using the co-failure history
of the tests and information about the tests that just recently
failed at any moment. Noor et al. [18] build logistic regression
models from the test executions history in order to rank the
effectiveness of test cases. Anderson et al. [32] propose a
classification based approach for predicting the test failures
based on the test executions history.

Research also leverages search-based techniques to optimize
test effectiveness. Panichella et al. [33] propose an approach
for test case selection using a customized genetic algorithm
named Diversity based Genetic Algorithm (DIV-GA). Their

approach is shown to improve the current state of the art by
diversifying the solutions (sub-sets of the test suites) generated
during the search process. Multi-objective based approaches
are used in prior research by Tyagi et al. [34] and Souza et
al. [35] to assist with test prioritization and selection. Both
pieces of research use the multi-objective particle swarm opti-
mization technique. Their objective functions include covering
more faults, maximizing the test coverage and minimizing the
execution time. We do not consider the use of a search-based
approach due to its limitation on scalability and the need for
optimizing a large number of tests for the subject system.

Empirical studies are conducted on the testing practices.
Labuschagne et al. [36] propose a study for cost measurement
of regression tests in practice. They study 61 Java projects
running on Travis CI and find that 18% of test suite executions
fail and that 13% of these failures are flaky. Among the non-
flaky failures, only 74% were true-positives and the remaining
26% were false-positives. Their study emphasizes the impor-
tance of the works like ours for improving test effectiveness
of continuous integration flows in large software projects.

VIII. CONCLUSION

Software testing consumes a significant amount of resources
in software projects. Therefore, it is of major importance
for our industrial partner to improve its test effectiveness.
In this paper, we adopt and customize multiple test selection
and prioritization techniques from prior research to improve
the effectiveness of testing processes for ELS. By simulating
the use of our adopted approaches on six months of testing
data, we demonstrated the effectiveness of our approaches in
reducing the costs, and test execution time. Our results show
that our standalone test prioritization approach significantly
outperforms all of our selection approaches, combination of
our prioritization and selection approaches and also the ran-
dom order. Therefore, we conclude that test prioritization is
the most effective and the least invasive approach for saving
costs in testing processes. However, test selection approaches
can also be used in scenarios where large number of slip-
throughs are acceptable. More importantly, we documented
our challenges and lessons learned as an experience report.
Such information is valuable for practitioners who are willing
to adopt test selection and prioritization techniques into their
day-to-day workflow. Our findings highlight the opportunities
and challenges involved in leveraging test execution history
for improving test effectiveness in both research and practice.
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