
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

Using Nudges to Accelerate Code Reviews at Scale
Qianhua Shan, David Sukhdeo, Qianying Huang, Seth Rogers, Lawrence Chen, Elise Paradis

Peter C. Rigby, Nachiappan Nagappan
Meta Platforms, Inc.

Menlo Park, New York, and Bellevue, USA
qshan@fb.com,davesukhdeo@fb.com,qyhuang@fb.com,sethrogers@fb.com,lchen@fb.com,pcr@fb.com,nnachi@fb.com

ABSTRACT
We describe a large-scale study to reduce the amount of time code
review takes. Each quarter at Meta we survey developers. Com-
bining sentiment data from a developer experience survey and
telemetry data from our diff review tool, we address, “When does a
diff review feel too slow?” From the sentiment data alone, we learn
that 84.7% of developers are satisfied with the time their diffs spend
in review. By enriching the survey results with telemetry for each
respondent, we determined that sentiment is closely associated
with the 75th percentile time in review for that respondent’s diffs,
i.e. those that take more than 24 hours.

To encourage developers to act on stale diffs that have had no
action for 24 or more hours, we designed a NudgeBot to notify, i.e.
nudge, reviewers. To determine who to nudge when a diff is stale,
we created a model to rank the reviewers based on the probability
that they will make a comment or perform some other action on
a diff. This model outperformed models that looked at files the
reviewer had modified in the past. Combining this information
with prior author-review relationships, we achieved an MRR and
AUC of .81 and .88, respectively.

To evaluate NudgeBot in production, we conducted anA/B cluster-
randomized experiment on over 30k engineers. We observed sub-
stantial statistically significant decrease in both time in review
(-6.8%, p=0.049) and time to first reviewer action (-9.9%, p=0.010).
We also used guard metrics to ensure that most reviews were still
done in fewer than 24 hours and that reviewers still spend the same
amount of time looking at diffs, and saw no statistically significant
change in these metrics. NudgeBot is now rolled out company wide
and is used daily by thousands of engineers at Meta.

CCS CONCEPTS
• Software and its engineering→ Collaboration in software
development.

KEYWORDS
Code Review, Efficiency, Nudging

∗ Rigby is an associate professor at Concordia University in Montreal, QC, Canada.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549104

ACM Reference Format:
Qianhua Shan, David Sukhdeo, Qianying Huang, Seth Rogers, Lawrence
Chen, Elise Paradis, Peter C. Rigby, Nachiappan Nagappan. 2022. Using
Nudges to Accelerate Code Reviews at Scale. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’22), November 14–18, 2022,
Singapore, Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3540250.3549104

1 INTRODUCTION
Code review is an effective process for identifying defects and
spreading knowledge. However, it is manual and time intensive and
can be a bottleneck for rapid releases and continuous integration.
In the early days of inspection, Fagan [15] reported that inspec-
tions took weeks or months to complete. In the late ’90s, Porter
et al. [27] simplified inspection and found that it could be reduced
to around one week. In contrast, Rigby et al. [28, 30] showed that
the contemporary lightweight review process used by open source
projects had a review interval of approximately one day, which was
confirmed to be similar to the review time at Microsoft [29] and
Google [33]. The goal of this paper was to investigate whether and
how time in review could be further reduced using nudges on slow
code reviews [23].

Code review is an important part of the software development
process at Meta. Every code change (called a “diff” and equivalent
to a pull request) must be approved by a peer before being shipped.
Meta’s code review tool is called the DiffTool (see Figure 1 for
an example of a diff under review). The code review team at Meta
supports the DiffTool tool, among other code review tools, and
aims to make code reviews as quick, productive, and delightful as
possible.

Twice annually, the team leverages data from a company-wide
"Developer Experience Survey" (or DevEx) to identify ways to im-
prove the tool. Survey data from the second half of 2020 showed
that while developers are overwhelmingly satisfied with code re-
view in general, they are less satisfied with the speed with which
their code is reviewed. In this paper, we address the following re-
search questions related to perception of review speed, whom to
nudge when diffs reviews are slow, and the NudgeBot tool and
cluster-randomized A/B experiment.

RQ1, Survey and Telemetry: When does a diff
review feel too slow?
Each half at Meta, the code review team examines data from a
Developer Experience Survey to understand how well the tool is
facilitating development and code review. While developers are
overwhelmingly satisfied with code review in general, some are

https://doi.org/10.1145/3540250.3549104
https://doi.org/10.1145/3540250.3549104
https://doi.org/10.1145/3540250.3549104

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
Qianhua Shan, David Sukhdeo, Qianying Huang, Seth Rogers, Lawrence Chen, Elise Paradis

Peter C. Rigby, Nachiappan Nagappan

dissatisfied with its speed. To dig deeper, we triangulated this sur-
vey’s satisfaction data with quantitative time in review telemetry
data.

We found that each developer’s slowest 75th percentile of diff
reviews strongly influences their level of frustration with diff review
time. Based on this time in review distribution, Meta set a goal to
reduce the number of stale diffs by nudging reviewers on diffs that
had not received any interaction for 24 hours or more.

RQ2, Who2NudgeModel: Who should be nudged
when a diff is stale?
To determine who should be nudged on a stale diff, we built a
statistical model. Using features including size of change, how the
diff was assigned, and the relationships among author and reviewer,
the model predicts the diffs developers are most likely to review.
We found that the most important features in the Who2NudgeModel
are: 1) the amount of time the reviewer spent viewing the author’s
diffs in the past 90 days, 2) how the reviewer was assigned, and 3)
the total number of assigned reviewers. The Who2Nudge Model has
an AUC and MRR of 0.88 and 0.81, respectively.

RQ3, Experiment and Rollout: Does stale diff
nudging work in practice?
We ran a cluster-randomized experiment with NudgeBot on code
review, to determine if it reduces the number of stale diffs, i.e. 24
hours with no action, by nudging a subset of reviewers to take
action. We observed statistically significant decreases 1) in review
cycle time (-6.8%, p=0.049), 2) the proportion of diffs that take longer
than three days to close (-11.89%, p=0.004), and 3) the time to first
action on a diff (-9.9%, p=0.010).

Meta also ensures that guard metrics are not negatively impacted.
We saw no statistically significant change (p > 0.38) in our guard
metrics, including the percentage of diffs reviewed in fewer than
24 hours, i.e. diffs that are not nudged, and the total time eyeball
time that reviewers spend looking at diffs in review, i.e. they do not
rush their reviews.

The remainder of this paper is structured as follows. In Section 2,
we introduce how code review is done at Meta, discuss the survey
and available telemetry data, and provide an overview of experi-
mentation at Meta. In Section 3, we use the survey and associated
telemetry data to provide quantitative evidence of when diff should
be considered stale. In Section 4, we train and evaluate a model of
who should be nudged on a stale diff. In Section 5, we describe our
cluster-randomized experiment and rollout of NudgeBot in produc-
tion. In Section 6, we discuss threats to validity. In Sections 7 and 8,
we discuss our work in the context of the literature, describe our
contributions, and conclude the paper.

2 BACKGROUND AND DATA
Meta is a large online services company that works across the
spectrum in the communications, retail, entertainment industries.
Meta has tens of thousands of employees with offices spread across
the globe (North America, Europe, Middle East and Asia). Meta has
its own dedicated infrastructure teams where the tools used are
a mix of commercial and in-house developed systems. The code
review tool discussed here (DiffTool) is also widely used across

the world released publicly by Meta as part of their open source
efforts.

2.1 Code Review at Meta
Following the descriptions of code review at Microsoft [3] and
Google [33], we provide a detailed description of code review at
Meta. Code changes are called “diffs" and each diff goes through a re-
view in the DiffTool. The DiffTool dashboard is a single-purpose
surface used only for diff review, whereas most other surfaces are
multi-purpose, with diffs comprising only a portion of the expe-
rience. For example, the Internal Home page (shown in Figure 2)
displays various chats, meetings, and other action items a user may
care about in addition to a widget containing up to five relevant
diffs.

The author uploads the diff and, after checking it and potentially
adding comments to guide reviewers, “publishes” the diff. The act of
publishing a diff sets the diff’s status to “needs review" whereupon
it becomes visible to all reviewers. The author can assign individual
reviewers and/or groups of reviewers, both before and after pub-
lishing. A recommender based on how often a potential reviewer
has previously modified the files in the diff also suggests potentially
competent reviewers. Numerous customized rules help assign de-
velopers to a review, e.g., any diff that modifies file X automatically
assigns reviewer A.

When reviewers are assigned to a new diff, they receive notifi-
cations across multiple surfaces, including email, desktop notifica-
tions, the Internal Home page, and the DiffTool dashboard. Some-
times the author may also directly message a reviewer with a link
to the diff, or otherwise notify the reviewer outside of DiffTool-
specific channels.

Once the reviewer has decided that they will review a particular
diff, they open the “diff page,” i.e. the web page with that specific
diff’s contents (See Figure 1). From there the reviewer can read the
author’s summary, the author’s testing notes, and the code change
itself. The reviewer can optionally add one or more comments to the
diff, which are visible to everyone. The reviewer can also take one
of several actions: accept, back-to-author, resign, or commandeer.
The accept action marks the diff as ready to be shipped, i.e. landed
on trunk. The “back-to-author" action is similar to the “reject"
or “request changes" action in other code review tools, indicating
to the author that changes or other follow-up is required before
the diff can be shipped. The resign action removes the reviewer
from the diff, and the commandeer action takes control of the diff,
whereupon the user ceases to be a reviewer and becomes the author
of the diff.

The diff author, meanwhile, has several actions at their disposal.
If the author wishes to amend their code change, they can do so and
update the diff accordingly. The author may also comment on their
own diff, for instance to explain an update to the code change or to
address reviewer feedback. If the diff has been accepted, the author
can ship it to production. If the diff is in review, the author can
mark their diff “changes planned" to indicate to reviewers that the
contents are not actually ready for review, effectively pausing the
review. And if the diff has been accepted, marked “back-to-author"
or marked “changes planned", the author can request another re-
view, typically after updating the code change. Lastly, the author

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

Using Nudges to Accelerate Code Reviews at Scale ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 1: A redacted view of a diff under review in DiffTool. Authors and reviewers can interact via the diff review page in
Phabricator. The diff under review has several sections including the diff summary, the actual changes that happened, the
assigned code reviewers, the interactions between the various reviewers and author, the test case information and status, the
results of static analysis, historical information etc.

Figure 2: A redacted view of the Internal Home page: a multi-
purpose surface that includes a widget showing up to five
relevant diffs

can “abandon" the diff at any time, which indicates that the change
is dead and will not be shipped. Throughout this process, the diff au-
thor’s ability to ship their code change is gated by this diff approval
process.

2.2 Meta Developer Experience Survey
The Developer Experience Survey is a company-wide survey run
twice annually. The data we use here were collected between Oc-
tober 19 and November 2, 2020 (i.e. H2 2020). Participants were
recruited from among all Meta developers who had published more
than 10 diffs and more than 50 lines of code over the past 90 days
at study launch time.

The H2 2020 survey took about 12 minutes to complete, and
covered all areas of a developer’s experience, from the organization
of work through to coding, code review, testing, landing, etc. The
section on code review asks about developers’ satisfaction with

1) the time it takes to get your diffs reviewed by peers; 2) your
ability to effectively review your peers’ diffs; and 3) the quality of
reviews on your diffs. We received approximately 2000 responses to
questions about participants’ code review experience, which were
shown to only a subsample of all survey respondents

Since employee IDs are associated with participants’ survey
answers, we can run analyses that join three data sources: employee
demographics (such as tenure, organization, role), telemetry data
(such as tool usage, coding languages, etc.), and survey data at the
user level as long as the confidentiality of each individual’s response
is preserved. This allows direct research into how sentiment data
is correlated with demographic and behavioral data, and supports
deeper insight about the intersection of experience and behavior.

2.3 Meta Developer Telemetry & Metrics
Meta logs business activity associated with each developer’s work.
With respect to code review, every diff action is logged: publishing
a diff, commenting on a diff, adding a reviewer to a diff, accepting
a diff, shipping a diff, etc. This telemetry also captures interactions
between diffs and both humans and bots, for instance when an
automated rule triggers a comment on a diff.

Every time a user views a diff is also logged, including the spe-
cific surface used to open the diff (e.g., opening a diff via email
notification vs the central diffs dashboard), regardless of whether
the user took any action. Various heuristics are applied to estimate
the “eyeball time" that a user spent looking at a particular diff.
Specifically, we track the duration that a particular diff is shown
in the active tab of a particular user’s browser, and sessionize user
activity when the user goes idle (stop or pause).

This telemetry can be aggregated into author metrics and re-
viewer metrics. For instance, we can compute how many diffs an
author has published or how long their diffs took to review during
a given time frame. Similarly, we can compute how many diffs a
reviewer has acted upon or how much time was spent looking at
others’ active diffs. Finally, we can also compute linkages between
users, for instance how many times User A has commented on User

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
Qianhua Shan, David Sukhdeo, Qianying Huang, Seth Rogers, Lawrence Chen, Elise Paradis

Peter C. Rigby, Nachiappan Nagappan

B’s diffs, or how much time User C has spent looking at User D’s
diffs.

2.4 A/B Experiments at Meta
Meta has a culture and infrastructure that allows engineers and
data scientists to run controlled experiments on all major changes
and new features. In the controlled A/B trial, the old control feature
“A” is experimentally compared with the new feature “B”. The ex-
perimentation framework allows experimenters to: 1) assign users
to groups through feature toggles, 2) collect experimental data, and
3) run basic hypothesis testing. Before the experiment begins, the
expected goal outcome measures are specified, and guard metrics
are used to ensure that other important outcomes are not negatively
impacted. The code review team at Meta leverages A/B testing to
determine the efficacy of new features and make launch decisions
based on the experiment results. Specifically, the instrumentation
infrastructure allows to answer: Do we observe substantial and
statistically significant improvements in goal metrics without re-
gressions in the guard metrics?

We note that the code review team at Meta is faced with unique
challenges with A/B testing compared to externally-facing user
products:

• Given that the DiffTool is an internal tool, it does not have
as many users as externally-facing user products. Since there
is smaller sample size, less data available, and more noise, the
code review team usually launches A/B tests to all developers
at Meta. In this experiment we have over 30k participants.

• DiffTool has large social effects, since code review is a
highly social activity. For instance, Alice’s behavior as a diff
reviewer affects Bob’s experience as a diff author. There-
fore, to contain the spillover effect between test and control
groups, a cluster-randomized experiment design is often
needed [34].

We discuss the full design of the stale diff nudge experiment in
the methodology Section 5.2.

3 RQ1, SURVEY AND TELEMETRY
When does a diff review feel too slow?

For RQ1, the first step was to define time in review. We computed
this as the total time a diff spends in the "Needs Review" status, i.e.
when the diff was explicitly waiting on a reviewer action, summing
over all rounds of review. To illustrate this with an example, con-
sider a hypothetical diff that was submitted for review at 9am, sent
back to the author for revisions at 11am, re-submitted for review at
2pm, and ultimately accepted at 3pm. We would sum the two "in re-
view" durations, i.e. 9am-11am and 2pm-3pm, to say this diff spent
3 hours in review. In this way, we specifically capture the extent to
which the developer was blocked waiting for the reviewer(s). From
there, we computed the 75th percentile, i.e. p75, for each developer’s
time in review, aggregating over all of the developer’s diffs during
July to November 2020, the quarter corresponding to the survey.
We selected the 75th percentile because this represents the lower
bound of the 25% of diffs that take the longest for each engineer.

We proceeded to join this data to each developer’s response to
the survey question "How satisfied are you with the time it takes to
get your diffs reviewed by peers?" To preserve the confidentiality of

Figure 3: Percentage of users dissatisfied with diff review
time vs the time it takes for their slowest 25% of diffs to be
reviewed. To preserve anonymity, we aggregate by decile,
which means that each datapoint is an aggregation of ~185
users. We see that as dissatisfaction increases with slower
diff reviews.

each developer’s survey response, we binned all developers into
deciles based on their p75 diff review time and only show these
numbers for decile aggregations. From the survey alone, we learned
that 84.7% of developers are satisfied with the time their diffs spend
in review, i.e. 15.3% dissatisfied. With the combination of survey
and telemetry, we are able to explore whether the developer’s actual
experience waiting for review in fact influences their subjective
perception of review timeliness.

Figure 3 plots the level of dissatisfaction against the developer’s
75th percentile of time in review. We see a clear relationship be-
tween an increase in dissatisfaction and the amount of time it takes
for engineers to get their diff reviewed. There is no sharp cliff or
threshold that separates a “good” experience from a “bad” one.
Rather, as an engineer’s diff review time increases so does their
frustration. After discussion and examination of the time in review
distribution, the code review team decided to consider a diff that
has had no action for 24 hours as stale. This threshold targets the
slowest 25% of diffs that have been waiting for review.

As a engineer’s diff review time increases so does their
frustration. We set a nudge threshold at 24 hours, which
roughly corresponds with the slowest 25% of engineers’
diffs.

4 RQ2, WHO TO NUDGE MODEL
Who should be nudged when a diff is stale?

We created a model to predict whether a reviewer will comment
on or otherwise act upon, e.g., accept or reject, a diff. The features
are presented in Table 1. We also created submodels to understand
how well subcategories of features perform. We briefly provide
background on the features and their respective categories below.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

Using Nudges to Accelerate Code Reviews at Scale ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 1: The Features and Feature Categories for RQ3: Who2NudgeModel. Note: the relationship features include raw, normalized
by author and normalized by review.

Category Feature Description
Diff info rule based change Is this diff created using a rule? An example, if a human wants to rename a widely used

class across the entire code base, they would apply a tool-based rule to implement the
diff.

Diff info num files changed Number of files in the diff
Diff info author is bot Is the code author a bot or developer
Diff info total num reviewer Total number of reviewers assigned to the diff. (not all assignees will review the diff)
Diff info num manually added re-

viewers
Total number of reviewers that were added by the author or another developer to the
diff.

Assignment expertise attribution
score

The target reviewer’s relevance score as computed by prior file line edits (prior work
includes [18, 37, 40])

Assignment expertise attribution
rank

The target reviewer’s rank as computed by prior file line edits

Assignment auto added Was the target reviewer added by a bot or rule (true), or directly by a human being
(false)?

Assignment only group added Was the target reviewer added explicitly (false) or only as part of a team (true)?
Relationship diff reviewer count The number of diffs created in the last 90 days where the target reviewer was a reviewer

on a diff by the author, whether individually or through a group (prior works include [25,
39])

Relationship diff reviewer subscriber
count

The number of diffs created in the last 90 days where the target reviewer was a reviewer
or subscriber on a diff by the author, whether individually or through a group

Relationship diff eyeball time open
status as reviewer

The total number of seconds the target reviewer has spent viewing the author’s diffs as
an assigned reviewer, while such diffs were in an open status, in the last 90 days. Open
status is any of: needs review, accepted, waiting for author, changes planned

Relationship diff eyeball time open
status

The total number of seconds the target reviewer has spent viewing the author’s diffs,
while such diffs were in an open status, in the last 90 days. Open status is any of: needs
review, accepted, waiting for author, changes planned

Relationship author reviewer same
team

Are the author and reviewer on the same team

Relationship author reviewer title Proportion of all diffs by employees with author’s job title that were acted/commented
on by employees with the target reviewer’s job title within the past 90 days. Captures,
for example, how likely is a data scientist to comment on a software engineer’s diff.

Diff info: Does information about the diff impact the diff ranking
for a reviewer? We examined the impact of predictors including the
type of change, the size of the change, and how many reviewers
have been notified about the diff. These features have less common
in prior research on reviewer recommendation because they do not
suggest anything about the relative importance of each reviewer.
Nevertheless, diffs with many reviewers may have a lower proba-
bility that any particular reviewer act upon the diff, and diffs with
more complex changes may attract engagement from more review-
ers. We reasoned that these features may interact with features
from other categories.

How assigned: How was the reviewer selected to review the diff?
Was the reviewer added directly by the author, or through a group,
by a rule, or by prior knowledge of the files under review? The
first three are straightforward selections. The fourth uses expertise
attribution as measured by the number of lines in the files under
review that a developer has modified in the past.

Relationships:We examined the organizational relationship of the
reviewer and author, the number of times they have reviewed each
other’s code, and the eyeball time or viewing time that they have
spent on each other’s diffs. For non-organizational relationships,
we included three variants: unnormalized, normalized by author,
and normalized by reviewer. For example, using the eyeball time
features, if we normalize by author, we would divide by the total
time that all reviewers have spent looking at that author’s past diffs.

4.1 Random Forest and Data
To evaluate our Who2Nudge Model and features, we determined
whether a reviewer will review the diff by the end of a diff review
session. If a diff went through multiple rounds of reviews and edits,
each round of review was considered as a distinct review session
for our model training and evaluation. We assigned a positive label
to a (diff review session, reviewer) pair when the reviewer made
an action such as accepting the diff, rejecting the diff, or leaving
a comment. We assigned a negative label to a (diff review session,

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
Qianhua Shan, David Sukhdeo, Qianying Huang, Seth Rogers, Lawrence Chen, Elise Paradis

Peter C. Rigby, Nachiappan Nagappan

reviewer) pair when the reviewer resigns from the diff or takes
no action. We built a random forest for each set of features and
combined them in a final model. We split the data into a time-
ordered test set and a training set, using data available before the
review session began. Our training set included all diff review
sessions during a 1.5 month period in Summer 2021 (9,170,299 diff
review sessions); our test set contains all diff review sessions the
subsequent week (331,239 diff review sessions).

To determine feature importances, we were able to extract the
magnitudes directly from the random forest. However, the direc-
tionality of each feature’s influence is not readily accessible from
random forest models. To infer the directionality of each feature’s
influence, we constructed a decision tree using features for the
relevant submodel and manually inspected the tree’s splits along
with the values in each leaf node. These decision trees were used
only for discussion purposes, namely to enrich our understand-
ing of the feature importances with directionalities along with the
magnitudes at which the most important splits occur.

We use two outcome measures: MRR and AUC. MRR (Mean
Reciprocal Rank) is defined as the average of the reciprocal of the
rank of the first relevant diff for any particular set of predictions
for a developer. AUC (Area Under the Curve) is defined as the area
under the ROC curve, and can be interpreted as the probability that
a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one. For a useless classifier that
gives random predictions, we would have an AUC equal to 0.5,
and for a classifier that predicts perfectly, an AUC equal to 1. We
calculated AUC across all reviews.

4.2 Model Results
Our model needs to nudge developers who are likely to take action,
so we predict the probability of a developer participating in a diff
review. Table 2 shows the AUC and MRR for each submodel and the
final model. Below, we discuss the importance of feature categories
and individual features for each submodel.

Using only basic diff info, we achieve an AUC of 0.73 and an
MRR of 0.67. Examining the model, we see that the total number
of reviewers assigned to a review has an importance of 0.95. This
implies that when there are few potential reviewers for a diff, it is
simplier to decide who to nudge. The remaining features contribute
little. For instance, the importance score of the number of files in
the diff is low, 0.013.

Expertise Attribution.Many review recommenders use prior edit-
ing experience in the files under review in their rules or models, e.g.,
[24, 40]. Reviewer with more expertise on the files under review
are more likely to act on a diff and we see a reasonable AUC and
MRR of 0.66 and 0.69, respectively.

How Assigned. This submodel includes the Expertise Attribu-
tion features along with whether the reviewer was automatically
assigned or assigned as part of a group. By adding these “how as-
signed" features, we see a substantial improvement in AUC and
MRR to 0.75 and 0.79, respectively. Reviewers that were directly
added are more likely to act on the diff, and the most influential
factor, at 0.58, is whether or not the reviewer was added as an indi-
vidual vs added as part of a group. The expertise attribution rank
was the next influential factor at 0.23.

Author-Reviewer Relationships. The organizational relationship
and latent review relationships between the author and reviewers
have an AUC and MRR of 0.82 and 0.74, respectively. Interestingly,
the formal position and whether the author and reviewer were on
the same team had the lowest importance at 0.0007 and 0.0008, re-
spectively. The strongest features are related to normalized eyeball
time: the more time reviewers had previously spent looking at a
particular author’s diffs, the more likely they were to act on the
review. The total importance of the eyeball time features was 0.71,
which includes importances of 0.56 when normalized by author,
0.12 when normalized by reviewer, and 0.03 when unnormalized.
This also indicates that normalization by author is the most effective
approach, much more so than normalization by reviewer.

The final Who2Nudge Model combines all the features and has
improved AUC and MRR of 0.88 and 0.81, respectively. These re-
sults were sufficiently robust to begin productionizing the model
and begin the rollout and experiment of NudgeBot. We did, how-
ever, eliminate the feature "author reviewer title" because of the
additional complexity and processing time required in its calcula-
tion and its low importance to the model. For the final production
model, we improved efficiency by batching predictions, instead of
separate predictions for each diff-reviewer pair. We also eliminated
the feature "author reviewer title" because of the additional com-
plexity and processing time required in its calculation and its low
importance to the model.

The most important features in the Who2NudgeModel are
the amount of time the reviewers have viewed the authors’
diffs in the past, how the reviewer was assigned, and the
total number of assigned reviewers. The AUC and MRR of
the final Who2NudgeModel are 0.88 and 0.81.

5 RQ3, EXPERIMENT AND ROLLOUT
Does stale diff nudging work in practice?

With NudgeBot, our core hypothesis is that nudging reviewers
for stale diffs can reduce the review cycle time, and improve per-
centage of diffs closed within 48 hours and 72 hours, since we only
nudge diffs after 24 hours. Our main quantifiable concern for po-
tential negative side-effects is that reviewers may spend less time
reviewing new diffs when they receive notifications for stale diffs.
We first describe the tool design and changes we made from an
opt-in trial. We then describe our company wide experiment and
the impact on our goal and guard measures.

5.1 NudgeBot Design and Opt-in Trial
AtMeta changes to the engineering infrastructure first pass through
an opt-in trial. The DiffTool teamused an early iteration of NudgeBot
along with 15 other teams that opted into trail. Figure 4 provides
an example of NudgeBot sending a chat message displaying three
stale diffs and providing developers with the option to be reminded
later. Below we discuss some of the important design decisions and
feedback that lead to changes:

• When to nudge. Based on the distribution of time in review
and survey responses (see Section 3), we decided to consider
a diff stale and nudge a reviewer when no action had been

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

Using Nudges to Accelerate Code Reviews at Scale ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 2: The Who2Nudge Model and the component parts of the model. We see that how the diff was initially assigned and how
often a reviewer has viewed the author’s diffs in the past are the strongest predictors.

Diff Info Expertise Attribution How Assigned Relationships Who2NudgeModel
MRR 0.67 0.69 0.75 0.74 0.81
AUC 0.73 0.66 0.79 0.82 0.88

taken on it for 24 hours. We attempted to create a model to
predict how long a diff will be in review, but were unsuccess-
ful [10].

• Medium. At Meta chat is by far the most popular communica-
tion method, we nudge on chat, but also send email nudges,
display the nudges in the general notification list, and the
diff dashboard.

• Default to #silent. Developers receive many IMs every day,
and adding a NudgeBotmessages can lead to more noise. We
want developers to be aware of diffs that need attention but
do not want to distract them from the task at hand. Our bot
defaults to sending messages silently that developers will
look at in-between tasks.

• Time of day.Whilewe discussed incorporating nudgeswithin
the calendar, eg nudging after a meeting, we decided to send
the nudges one hour after the start of the workday. We also
allowed developers to select the "remind me later option."
This option will nudge the reviewer again after a meeting to
avoid disrupting a longer focus block.

• Batch notifications. We do not want NudgeBot to be noisy
with a notification each time a diff is stale. We batch notifica-
tions and send them once in a day. We also do not notify the
same developer more than once about a stale diff.We initially
sent up to 10 diffs that needed review. Negative developer
feedback indicated that the dashboard showing stale diffs
took up too much space, so we reduced it to three diffs.

• Active reviewers. Sending a nudge to developers when they
are already reviewing lots of diffs lead to negative feedback
comments. We do not nudge extremely active reviewers,
which we quantified as 40 or more actions on diffs in the last
7 days.

• Wording. The initial nudge wording provided a long expla-
nation of why we were nudging particular reviewer. Based
on feedback from developers, we simplified it to a short sen-
tence asking developers to “unblock” a diff and simply show
how long the diff had been waiting for review.

• Opt-out. Developers are able to opt-out from NudgeBot. To
date, less than 1% of engineers opt-out. This is impressive,
given that we send between 2k and 4k nudges per day. Over
the course of the company-wide experiment, we see less than
four developers opting out per day, and 1 to 2 developers
opting back in per day.

5.2 Experimental Design
Experiments are only valid when we can contain the treatment
effect within the test group, and control group does not expose to
any of the treatment effect. This is formalized in Causal Inference
theory as the "stable unit treatment value assumption" (SUTVA)

[32]. However, SUTVA is not held perfectly with code review, since
code review is inherently social activity between authors and re-
viewers collaborating on a diff. Consider the following scenario:
Bob and Alice are frequent diff review collaborators. With user-
level randomization, Alice is assigned to the test group to receive
the nudging feature, while Bob is assigned to the control group.
Alice will get nudged for overdue diffs authored by Bob, but Bob
will not get nudged for overdue diffs authored by Alice. Since Alice
and Bob collaborate frequently on code review, although Bob does
not receive the nudging experience, his code review behavior may
still change since he knows Alice gets nudged for overdue diffs
authored by him. This is spill over of treatment effects, which may
lead to inaccurate treatment effect estimates [6, 34]. To contain the
spill over effects between test and control group in the experiment,
we set this up as a cluster-randomized experiment.

In a cluster-randomized experiment, treatment is assigned at
user cluster level, rather than individual user level [34]. For in-
stance, users who belong to the same cluster will enter treatment or
control group together. In the context of the overdue diff nudging
experiment, teammates and their frequent diff collaborators will
have the same experience with the nudging feature. To generate the
clusters of developers, we used the Louvain community detection
algorithm [8] to create clusters of developers based on the eyeball
time spent reviewing each other’s diffs together in the last 90 days.
User clusters are generated with the following steps:

• We first construct a graph with developers at Meta as nodes,
and use the total number of seconds person A spent looking
at person B’s diffs in the past 90 days while such diffs were
in an open status (needs review, accepted, changes planned,
waiting for author) as the edge weight between the nodes.
We chose 90 days because it is common for developers to
switch teams or change code review collaborators.

• We then use the Louvain community detection algorithm
to create clusters based on these edge weights. Louvain al-
gorithm identifies communities in graph with two steps:
modularity optimization and community aggregation [8].

The outcome is that developers who have commonly reviewed
each other’s diffs in the last 90 days are more likely be in the same
community cluster, to reduce spillover effects. The clustering was
locked as of October 8, 2021. New employees who joined Meta after
October 8, 2021 received the control experience, and they were
excluded from the experiment analysis.

The experiment took place over 28 days in Fall 2021. The ex-
periment was launched at Meta, with 15k developers in the test
group, and 16k developers in the control group. We anticipated
there would be queue-draining effect of stale diffs when the experi-
ment started because nudging reviewers should encourage them to

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
Qianhua Shan, David Sukhdeo, Qianying Huang, Seth Rogers, Lawrence Chen, Elise Paradis

Peter C. Rigby, Nachiappan Nagappan

Figure 4: NudgeBot sends up to three diffs that are stale to a developer who is likely to review them one hour after the start
of the workday. The chat message is sent with #silent, which will not push notify the developer, but will allow them to view
the message between blocks of focus. The time the diff has been waiting is shown along with the username of the author and
a clickable link to the diff. If the reviewer is busy, they can select “Remind Me Later." NudgeBot then examines the calendar
and selects the next fragmented time, e.g., between two meetings, to remind the developer later in the day. Emails are sent
with the same information and same ability to be reminded later. The diff numbers, log message, etc are mocked to preserve
confidentiality, but they are representative of real diffs at Meta.

review diffs that have been waiting for a long time. To avoid abnor-
mal fluctuations of the review cycle time goal metrics, we discarded
the first 7 days and analyzed data over the subsequent 21 days. The
experiment included reviews on over 330k diff. We confirmed that
the mean difference between control and experiment conditions
was normally distributed, which allows us to use a 95% confidence
interval and the Z-statistic to calculate statistical significance.

Outcomes. At Meta each experiment change must specify out-
come goal metrics as well as existing guard metrics that should not
be negatively impacted. Our hypothesis is that with NudgeBot the
amount of time a diff is under review will decrease. We measure this
in three ways: (1) the time a diff waits in with “needs review" status,
(2) we targeted the slowest 25% of diffs, so we look at the number of
diffs that take over 3 days to close, (3) we want to encourage early
actions, so we measure the time to first action.

When we nudge stale reviews, we make sure that diffs that
were typically reviewed quickly do not suffer because reviewers
are spending more time on stale diffs. Our guard measures are: (1)
the percentage of diffs reviewed in 24 hours or less, (2) the time a
reviewers speeds looking at each diff (eyeball time).

5.3 Experimental Results
We observed statistically significant improvement on the review
cycle time goal metrics, specifically:

(1) The average time of diffs in “needs review” status (time in
review) reduced by -6.8% (p=0.049).

(2) The percentage of diffs taking longer than 3 days to close,
excluding weekends [10], was reduced by -11.89% (p=0.004).

(3) The average time to first reviewer comment or action reduced
by -9.9% (p=0.010).

We did not observe any statistically significant regressions in
any of the guardrail metrics, specifically:

(1) Percentage of diffs reviewed in 24 hours (p=0.43)
(2) Total reviewer eyeball time while the diff is in needs review

status (p=0.39)

We observed substantial statistically significant decreases
in our goal metrics reducing time in review, the number
of diffs taking longer than 3 days, and the time for a first
reviewer action by -6.8%, -11.89%, -9.9%, respectively. We
did not observe any statistically significant regressions in
any of our guard metrics including diffs that take under 24
hours and the amount of time reviewers spend looking at
diffs. Given the positive results we observed from experi-
ment, the code review team rolled out NudgeBot to 100%
of developers at Meta.

6 THREATS TO VALIDITY
6.1 Generalizability
Drawing general conclusions from empirical studies in software
engineering is difficult because any process depends on a poten-
tially large number of relevant context variables. The analyses in
the present paper were performed at Meta, and it is possible that
results might not hold true elsewhere. For this reason, we cannot

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

Using Nudges to Accelerate Code Reviews at Scale ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

assume a priori that the results of our study will generalize beyond
the specific environment in which our research was conducted. Re-
searchers become more confident in a theory when similar findings
emerge in different contexts [5].

6.2 Construct Validity
Who2Nudge Model The labels for this model were a binary classi-
fications of whether or not a reviewer “reviewed" a diff during
any particular review iteration, which we defined as any action
(including accept/reject but not resign) or making any comment.
One could argue that only actions should count, not comments.
Conversely, one could argue that reviewer edits to a diff’s metadata
(e.g., a reviewer changing a diff’s test plan), or even reviewer inter-
actions between review sessions (e.g., while a diff is in the “waiting
for author" status) should be considered. Ultimately, the precise
definition of what counts as a user “reviewing" a diff requires subjec-
tive judgement over what to include, and we are confident that our
definition is reasonable and aligns with standard understanding.

6.3 Internal Validity
Data collected by the Developer Experience Survey in H2 2020
might not have been fully representative of the developer popu-
lation at Meta, since responses were not weighted. Our post-hoc
analyses confirmed undersampling of people with very short and
very long average diff review times, however the impact of this
skewed distribution only minimally influenced overall estimates of
sentiment towards code review times.

We did not perform any hyperparameter tuning for our Who2Nudge
Model, which leaves open the possibility that these models can be
further improved through a rigorous hyperparameter optimization.
By using unoptimized defaults, the hyperparameters were fixed be-
fore looking at the test set to ensure no contamination. In addition,
there is no reason that a hyperparameter search on random forest
would result in dramatic changes in which features are considered
the most important, which is what we focused on in the end. The
first hyperparameter of “depth" would mostly impact features that
are less important, since most major features would already be ac-
counted for in the first few layers of the model’s trees. In addition,
the other hyperparamer of “number of trees" would be expected
to have negligible impact on ranked feature importance given that
each tree in the random forest is independent.

Code review is a social activity and any experiment risks having
collaborating developers in different experimental conditions, i.e.
“spillover effects." We are unaware of prior work in empirical soft-
ware engineering that controlled for these network effects. To limit
the impact of collaborating developers having different control and
experimental conditions, we used a cluster-randomized experimen-
tal design to algorithmically-generated clusters. There will always
be some spillover effects because of error from Louvain commu-
nity detection algorithm and developers switching teams during
the experiment, but we believe these will be minimal, especially
compared to prior work that did not mitigate these effects.

7 LITERATURE AND DISCUSSION
Code review was first formalized over 45 years ago by Fagan [15]
where author, reviewers, mediators met in person to examine com-
pleted work artifacts. The inspect was conducted over weeks and
sometimes months. Much of the early work simply changed the
process, often adding more rigidity through process(e.g., [19]). The
use of time in review as an outcome metric dates back to the field-
changing experiments by Porter et al. [27] that demonstrated that
formality of the review process simply extended time in review
without identifying additional defects. They showed that expertise
was the most important factor in identifying defects. Votta [38]
proposed asynchronous review and Perry et al. [26] demonstrated
that this lighter-weight process found the same number of defects
as conducting reviews in meetings. In these late 1990’s experiments
the review timewas on the order of a week. Rigby et al. [28, 30] used
similar metrics to show how effective the extremely lightweight,
hugely iterative code review process was on major open source
projects. On the Linux and Apache project the review time was
on the order of a day. These results generalized to industry with
reviews being conducted in less than one day [29]. At Meta, we
showed that reviews happen very quickly, often being completed
in a few hours after publishing the diff (median 2.5 hours), and with
around 75% being completed in under 24 hours.

Surveys and interviews have been used extensively to under-
stand the code review process. Previous survey research about
code review has focused on the motivations for conducting code re-
views [3], challenges to code reviews [22], reviewers’ experiences of
confusion when reviewing code [13], and negative experiences with
pushback during code reviews [14]. Some works have triangulated
code review data with survey and interview data to understand the
process and the challenges [20, 21, 31].

To our knowledge, this study is the first to link telemetry data
on the time it takes to perform a review with developer sentiment.
Only the Egelman et al. [14] study combined survey and telemetry
data, and attempted to predict code review pushback from three
change request metrics: rounds of a review (i.e. number of times an
author or reviewer sent a batch a comments for a selected change
request), active reviewing time (i.e. time spent by the reviewer on
code review-related activities), and active shepherding time (i.e.
time spent by the author on code review-related activities). While
all three were useful for recalling instances of pushback, they only
had low precision: between 6% and 11%. Overall, the literature
to date does not seem to have explored systematically how an
individual’s sentiment about code review (in general, or about time
spent under review in particular) is related to that individual’s
objective experience of code review as monitored by telemetry.

Review recommendation. Identifying the right reviewers for a
given change is a challenging and critical step in the code re-
view process [16, 40, 41]. Inappropriate selection of reviewers can
slow down the review process [36] or lower the quality of inspec-
tion [3, 9]. The research on reviewer recommenders focuses on
the problem of automatically assigning review requests to the de-
velopers. Early works focused the files and paths that developers
had reviewed in the past [4, 17, 18, 37]. More advanced techniques
have also been developed including machine learning and socio-
technical factors [12, 25, 35, 39]. Recent research has expanded the

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
Qianhua Shan, David Sukhdeo, Qianying Huang, Seth Rogers, Lawrence Chen, Elise Paradis

Peter C. Rigby, Nachiappan Nagappan

focus of recommenders to find developers who have currently a low
review workload [1, 2, 11] and to ensure that knowledge is more
widely spread among the development team [24]. In our nudging
experiments, we recommended reviewers who are more likely to
act on a diff on a stale diff using more advanced measures, including
how long developers have actually viewed each other’s diff (eye-
ball time). We found that this normalized eyeball time is the best
predictor in our Who2NudgeModel, and achieved a high AUC and
MRR, .88 and .81, and we successfully integrated this recommender
in production for DiffTool.

Overdue Diff Nudging. The inspiration for our work is the Nudge
system deployed at Microsoft [23] for overdue pull requests. The
Microsoft context is substantially different from the one at Meta.
For example, Meta uses a mono repo (single repository for code
control) rather than the Microsoft branch structure [7]. Also the
systems built are different, the domain, the programming language
are all different. We discuss similarities and differences in our re-
sults and designs, which highlight our novel contributions. First,
Microsoft models the end-to-end time including both the author’s
and reviewer’s time. Unfortunately, they report very low accuracy
with a mean average error of 32.60 hours and a mean relative er-
ror of .58. We also modelled time in review at Meta and found a
similarly large error [10]. Instead of using this inaccurate model,
we decided to set a goal of nudging reviews at 24 hours, which
represents the 25% of slowest diffs and also corresponds to an in-
crease in negativity sentiment in our developer survey. Second,
both Microsoft and Meta’s bots were A/B tested, but Microsoft
did not run a cluster-randomized experiment. Without a cluster-
randomized experiment, teammates can have different experiences
of diff review, introducing a confounder into the results [34]. Our
experiment also covered many more reviews than that reported
in the Microsoft experiment. Third, Microsoft reduces the average
end-to-end time spent in for code review from 8 days to 3 days.
We explicitly only measure the time when the diff is waiting for a
review, and the median time in review at Meta is 2.5 hours. We also
do not nudge the author of the diff, as our tooling already includes
a set of notifications that keep the author appraised of the status of
their diff. Fifth, regardless of these differences, at both Microsoft
and Meta, nudging stale diffs improves the turnaround time for
reviews, and the feedback on nudging is overwhelmingly positive.
At Microsoft, 73% of nudges get a positive rating. At Meta, we see
few developers posting concerns on the NudgeBot feedback group
and less than 1% of developers have opted-out of receiving nudges
after a company-wide rollout.

8 CONTRIBUTIONS AND CONCLUDING
REMARKS

Code review is a computationally expensive, manually-intensive
practice that is necessary to find defects and also for compliance of
products atMeta.Wemake code reviewmore efficient and enjoyable
with the following specific contributions.

• We describe the review process used by over 30,000 devel-
opers at Meta, which has interesting differences with those
reported by Microsoft [3] and Google [33].

• We demonstrate determine when a diff review feels slow: a
review that takes more than 24 hours or is above the 75th

percentile of diff review time is associated with lower satis-
faction in our developer survey.

• We train and test the Who2Nudge Model to determine which
developer is mostly likely to take action when nudged. Our
model has an AUC and MRR of 0.88 and 0.81, and is used in
production.

• We designed and developed NudgeBot. We conducted an
opt-in trial and adapted the design based on feedback from
developers.

• To evaluate NudgeBot, we designed a cluster-randomized
experiment to ensure that collaborating diffs had a simi-
lar experience [34]. We are unaware of cluster-randomized
experiment design being used in the context of software
engineering. Our study involved over 30,000 developers at
Meta.

• Our NudgeBot experiment lead to substantial statistically
significant decreases in our goal metrics, with time in re-
view being reduced by -6.8% (p=0.049), a -11.89% (p=0.004)
decrease in the percentage of diffs taking longer than 3 days
to close, and a -9.9% (p=0.010) decrease in the time to first
comment or action from a reviewer. We did not observe any
statistically significant regressions in any of our guard met-
rics including diffs under 24 hours and the amount of time
reviewers spend looking at diffs.

• Given the positive results we observed from experiment, the
code review team rolled out NudgeBot to all developers at
Meta.

ACKNOWLEDGEMENTS
The authors thank Katherine Zak, Nolan Sandberg, Ivan Mistrianu,
Tobi Akomolede, and Akin Olugbade for their feedback and help
with this work.

REFERENCES
[1] Wisam Haitham Abbood Al-Zubaidi, Patanamon Thongtanunam, Hoa Khanh

Dam, Chakkrit Tantithamthavorn, and Aditya Ghose. 2020. Workload-Aware
Reviewer Recommendation Using a Multi-Objective Search-Based Approach. In
Proceedings of the 16th ACM International Conference on PredictiveModels and Data
Analytics in Software Engineering (Virtual, USA) (PROMISE 2020). Association
for Computing Machinery, New York, NY, USA, 21–30. https://doi.org/10.1145/
3416508.3417115

[2] Sumit Asthana, Rahul Kumar, Ranjita Bhagwan, Christian Bird, Chetan Bansal,
Chandra Maddila, Sonu Mehta, and B Ashok. 2019. Whodo: Automating reviewer
suggestions at scale. In Proceedings of the 2019 27th ACM JointMeeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 937–945.

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings of the 2013 international conference
on software engineering. IEEE Press, 712–721.

[4] Vipin Balachandran. 2013. Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation. In
Proceedings of the 2013 International Conference on Software Engineering. IEEE
Press, 931–940.

[5] V.R. Basili, F. Shull, and F. Lanubile. 1999. Building knowledge through families
of experiments. IEEE Transactions on Software Engineering 25, 4 (1999), 456–473.
https://doi.org/10.1109/32.799939

[6] Guillaume Basse and Edoardo Airoldi. 2017. Limitations of design-based causal
inference and A/B testing under arbitrary and network interference. arXiv
preprint arXiv:1705.05752 (2017).

[7] Christian Bird and Thomas Zimmermann. 2012. Assessing the Value of Branches
with What-If Analysis. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (Cary, North Carolina)
(FSE ’12). Article 45, 11 pages.

https://doi.org/10.1145/3416508.3417115
https://doi.org/10.1145/3416508.3417115
https://doi.org/10.1109/32.799939

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

Using Nudges to Accelerate Code Reviews at Scale ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

[8] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Sta-
tistical Mechanics: Theory and Experiment 2008, 10 (oct 2008), P10008. https:
//doi.org/10.1088/1742-5468/2008/10/p10008

[9] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics of
useful code reviews: An empirical study at microsoft. In 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, 146–156.

[10] Lawrence Chen, Peter C. Rigby, and Nachiappan Nagappan. 2022. Understanding
why we cannot model how long a code review will take at Meta (ESEC/FSE 2022).
Association for Computing Machinery, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3468264.3473930

[11] Moataz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikovina Kula,
and Katsuro Inoue. 2021. WhoReview: A multi-objective search-based approach
for code reviewers recommendation in modern code review. Applied Soft Com-
puting 100 (2021), 106908.

[12] A. Chueshev, J. Lawall, R. Bendraou, and T. Ziadi. 2020. Expanding the Number of
Reviewers in Open-Source Projects by Recommending Appropriate Developers.
In 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 499–510. https://doi.org/10.1109/ICSME46990.2020.00054

[13] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2021.
An exploratory study on confusion in code reviews. Empirical Software Engineer-
ing 26, 1 (2021), 1–48.

[14] Carolyn D Egelman, Emerson Murphy-Hill, Elizabeth Kammer, Margaret Morrow
Hodges, Collin Green, Ciera Jaspan, and James Lin. 2020. Predicting develop-
ers’ negative feelings about code review. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). IEEE, 174–185.

[15] M. E. Fagan. 1976. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal 15, 3 (1976), 182–211.

[16] Michaela Greiler, Christian Bird, Margaret-Anne Storey, Laura MacLeod, and
Jacek Czerwonka. 2016. Code Reviewing in the Trenches: Understanding Chal-
lenges, Best Practices and Tool Needs.

[17] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and Volker Gruhn.
2016. Automatically recommending code reviewers based on their expertise:
An empirical comparison. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 99–110.

[18] Gaeul Jeong, Sunghun Kim, Thomas Zimmermann, and Kwangkeun Yi. 2009. Im-
proving code review by predicting reviewers and acceptance of patches. Research
on software analysis for error-free computing center Tech-Memo (ROSAEC MEMO
2009-006) (2009), 1–18.

[19] John C Knight and E Ann Myers. 1993. An improved inspection technique.
Commun. ACM 36, 11 (1993), 50–61.

[20] Oleksii Kononenko, Olga Baysal, and Michael W Godfrey. 2016. Code review
quality: how developers see it. In Proceedings of the 38th International Conference
on Software Engineering. 1028–1038.

[21] Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Al-
berto Bacchelli. 2018. Does reviewer recommendation help developers? IEEE
Transactions on Software Engineering (2018).

[22] L. MacLeod, M. Greiler, M. Storey, C. Bird, and J. Czerwonka. 2018. Code Review-
ing in the Trenches: Challenges and Best Practices. IEEE Software 35, 4 (2018),
34–42. https://doi.org/10.1109/MS.2017.265100500

[23] Chandra Maddila, Sai Surya Upadrasta, Chetan Bansal, Nachiappan Nagappan,
Georgios Gousios, and Arie van Deursen. 2020. Nudge: Accelerating Overdue
Pull Requests Towards Completion. arXiv preprint arXiv:2011.12468 (2020).

[24] Ehsan Mirsaeedi and Peter C. Rigby. 2020. Mitigating Turnover with Code Review
Recommendation: Balancing Expertise, Workload, and Knowledge Distribution.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery,
New York, NY, USA, 1183–1195. https://doi.org/10.1145/3377811.3380335

[25] Ali Ouni, Raula Gaikovina Kula, and Katsuro Inoue. 2016. Search-Based Peer
Reviewers Recommendation in Modern Code Review. In 2016 IEEE International

Conference on Software Maintenance and Evolution (ICSME). 367–377. https:
//doi.org/10.1109/ICSME.2016.65

[26] D.E. Perry, A. Porter, M.W. Wade, L.G. Votta, and J. Perpich. 2002. Reducing
inspection interval in large-scale software development. IEEE Transactions on
Software Engineering 28, 7 (2002), 695–705. https://doi.org/10.1109/TSE.2002.
1019483

[27] Adam Porter, Harvey Siy, Audris Mockus, and Lawrence Votta. 1998. Under-
standing the sources of variation in software inspections. ACM Transactions on
Software Engineering and Methodology (TOSEM) 7, 1 (1998), 41–79.

[28] Peter Rigby, Daniel German, and Margaret-Anne Storey. 2008. Open source
software peer review practices. In 2008 ACM/IEEE 30th International Conference
on Software Engineering. 541–550. https://doi.org/10.1145/1368088.1368162

[29] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer
review practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. ACM, 202–212.

[30] Peter C Rigby, Daniel M German, Laura Cowen, and Margaret-Anne Storey. 2014.
Peer review on open-source software projects: Parameters, statistical models,
and theory. ACM Transactions on Software Engineering and Methodology (TOSEM)
23, 4 (2014), 35.

[31] Peter C Rigby and Margaret-Anne Storey. 2011. Understanding broadcast based
peer review on open source software projects. In 2011 33rd International Confer-
ence on Software Engineering (ICSE). IEEE, 541–550.

[32] Donald B. Rubin. 1990. Formal modes of statistical inference for causal effects.
Quality Engineering 36 (1990), 185–188.

[33] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern code review: a case study at google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice. ACM, 181–190.

[34] Martin Saveski, Jean Pouget-Abadie, Guillaume Saint-Jacques, Weitao Duan, Sou-
vik Ghosh, Ya Xu, and Edoardo M. Airoldi. 2017. Detecting Network Effects:
Randomizing Over Randomized Experiments. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (Hali-
fax, NS, Canada) (KDD ’17). Association for Computing Machinery, New York,
NY, USA, 1027–1035. https://doi.org/10.1145/3097983.3098192

[35] Anton Strand, Markus Gunnarson, Ricardo Britto, and Muhmmad Usman. 2020.
Using a Context-Aware Approach to Recommend Code Reviewers: Findings
from an Industrial Case Study. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Practice (Seoul, South
Korea) (ICSE-SEIP ’20). Association for Computing Machinery, New York, NY,
USA, 1–10. https://doi.org/10.1145/3377813.3381365

[36] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu Iida.
2017. Review Participation in Modern Code Review: An Empirical Study of the
Android, Qt, and OpenStack Projects. Empirical Software Engineering 22, 2 (2017),
768–817.

[37] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. 2015. Who should
review my code? a file location-based code-reviewer recommendation approach
for modern code review. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, 141–150.

[38] Lawrence G. Votta. 1993. Does Every Inspection Need a Meeting? SIGSOFT Softw.
Eng. Notes 18, 5 (Dec. 1993), 107–114. https://doi.org/10.1145/167049.167070

[39] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommenda-
tion for pull-requests in GitHub: What can we learn from code review and bug
assignment? Information and Software Technology 74 (2016), 204–218.

[40] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2016. Automati-
cally Recommending Peer Reviewers in Modern Code Review. IEEE Trans. Softw.
Eng. 42, 6 (June 2016), 530–543. https://doi.org/10.1109/TSE.2015.2500238

[41] H. Alperen Çetin, Emre Doğan, and Eray Tüzün. 2021. A review of code reviewer
recommendation studies: Challenges and future directions. Science of Computer
Programming 208 (2021), 102652. https://doi.org/10.1016/j.scico.2021.102652

https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1145/3468264.3473930
https://doi.org/10.1145/3468264.3473930
https://doi.org/10.1109/ICSME46990.2020.00054
https://doi.org/10.1109/MS.2017.265100500
https://doi.org/10.1145/3377811.3380335
https://doi.org/10.1109/ICSME.2016.65
https://doi.org/10.1109/ICSME.2016.65
https://doi.org/10.1109/TSE.2002.1019483
https://doi.org/10.1109/TSE.2002.1019483
https://doi.org/10.1145/1368088.1368162
https://doi.org/10.1145/3097983.3098192
https://doi.org/10.1145/3377813.3381365
https://doi.org/10.1145/167049.167070
https://doi.org/10.1109/TSE.2015.2500238
https://doi.org/10.1016/j.scico.2021.102652

	Abstract
	1 Introduction
	2 Background and Data
	2.1 Code Review at Meta
	2.2 Meta Developer Experience Survey
	2.3 Meta Developer Telemetry & Metrics
	2.4 A/B Experiments at Meta

	3 RQ1, Survey and Telemetry
	4 RQ2, Who to Nudge Model
	4.1 Random Forest and Data
	4.2 Model Results

	5 RQ3, Experiment and Rollout
	5.1 NudgeBot Design and Opt-in Trial
	5.2 Experimental Design
	5.3 Experimental Results

	6 Threats to validity
	6.1 Generalizability
	6.2 Construct Validity
	6.3 Internal Validity

	7 Literature and Discussion
	8 Contributions and Concluding Remarks
	References

