
WarningsGuru: Integrating Statistical Bug Models with Static
Analysis to Provide Timely and Specific Bug Warnings

Louis-Philippe Querel
Department of Computer Science

Concordia University, Montreal, QC, Canada
l_querel@encs.concordia.ca

Peter C. Rigby
Department of Software Engineering

Concordia University, Montreal, QC, Canada
peter.rigby@concordia.ca

ABSTRACT

The detection of bugs in software systems has been divided into
two research areas: static code analysis and statistical modeling of
historical data. Static analysis indicates precise problems on line
numbers but has the disadvantage of suggesting many warning
which are often false positives. In contrast, statistical models use the
history of the system to suggest which files or commits are likely to
contain bugs. These course-grained predictions do not indicate to
the developer the precise reasons for the bug prediction. We com-
bine static analysis with statistical bug models to limit the number
of warnings and provide specific warnings information at the line
level. Previous research was able to process only a limited number
of releases, our tool, WarningsGuru, can analyze all commits in
a source code repository and we currently have processed thou-
sands of commits and warnings. Since we process every commit,
we present developers with more precise information about when
a warning is introduced allowing us to show recent warnings that
are introduced in statistically risky commits. Results from two OSS
projects show that CommitGuru’s statistical model flags 25% and
29% of all commits as risky.When we combine this with static analy-
sis in WarningsGuru the number of risky commits with warnings
is 20% for both projects and the number commits with newwarnings
is only 3% and 6%. We can drastically reduce the number of commits
and warnings developers have to examine. The tool, source code,
and demo is available at https://github.com/louisq/warningsguru.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;

KEYWORDS

Static Analysis, Statistical Bug Models, WarningsGuru

ACM Reference Format:

Louis-Philippe Querel and Peter C. Rigby. 2018.WarningsGuru: Integrating
Statistical Bug Models with Static Analysis to Provide Timely and Specific
Bug Warnings. In Proceedings of the 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3236024.3264599

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3264599

1 INTRODUCTION

Static analysis tools find defects by examining the code, data-flow,
and control-flow for problematic patterns. To make static checking
tractable in practice, FindBugs and Jlint make simplifications and
abstractions that lead to a large number of warnings many of which
can be false positives, including trivial and unlikely warnings [1, 2].
The advantage of static analysis is that the warnings are specific,
e.g., a null pointer on a specific source code line. The disadvantage
is the overwhelming number of reported warnings [7, 13] and a
disconnect between field defects and warnings [3].

In contrast, statistical bug models use historical development
information to indicate risky, i.e. potentially defective, files or com-
mits [4, 5]. The predictors used in the models include both product
measures, such as the number of lines changed in a commit, and the
process measures, such as the expertise of the developers modifying
a file. The advantage of statistical bug models is that they provide
reasonable predictions of field defects in commits and files [4]. The
disadvantage is that the prediction is not fine-grained, i.e. an entire
file or commit is flagged as risky.

We developed a tool called WarningsGuru which combines the
two approaches, using statistical models to identify which commits
are likely to contain defects and showing the specific line numbers
of the new static analysis warnings that have been introduced for
the commit. We also develop a technique which traces the warning
introducing commit which we use to retroactively assign warnings
to failed builds.

2 WARNINGSGURU FEATURES AND

ARCHITECTURE

We give an overview of the features of WarningsGuru illustrated
by figures. Each feature is implemented as part of the pipeline
in Figure 1. WarningsGuru builds on an existing statistical bug
modeling tool, CommitGuru [10]; static analysis tools, including
FindBugs and Jlint; and static analysis warning integration tool,
TOIF [6].

(1) Figure 2 shows for each commit the total number of warn-
ings and new warnings and CommitGuru’s statistical risk
prediction.

(2) Figure 3 shows the number of existing and new warnings
associated with each file for a commit and which measures
indicate risk in CommitGuru’s model.

(3) Figure 4 shows the warnings per line reported by FindBugs
and JLint. WarningsGuru reports the commit in which the
warning first appeared and the line which it is presently
on. WarningsGuru can retroactively assign warnings to
commits that do not build.

(4) Each warning is clickable taking the developer to the high-
lighted problematic line on GitHub. By clicking the commit
hash of the originating commit, the developer will instead be

892

https://github.com/louisq/warningsguru
https://doi.org/10.1145/3236024.3264599
https://doi.org/10.1145/3236024.3264599

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Louis-PhilippeQuerel and Peter C. Rigby

Static Analysis
Tools

CommitGuru WarningsGuru

Jlint

Findbugs

GIT Maven

SZZ Model Get Commits

Checkout
Commit

Build
Commit

Analyse
files

Get
Warnings

Analysis of
Warnings

WarningsGuru
Results

Identify
Modified files

TOIF

Tool Runner
(Adaptor)

Warnings
Assimilator

GIT GIT
blame

Warnings
Recovery

GIT

Figure 1: Architecture of the WarningsGuru integration

Figure 2: Commits that are considered by the statistical model to be risky are highligted. The number of new and existing

warnings are also shown. For example, commit ‘b36bb31fe4’ is not considered risky even though the changed files have 34

existing warnings. There are no new warnings introduced in this commit.

Figure 3: The number of new and existing warnings are shown for the commit and for each modified file. The CommitGuru

measures are shownwith anomalous values highlighted in red for the commit. For example, “Lines added” is abnormally high

and large commits tend to be risky.

893

WarningsGuru ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Figure 4: When a file is selected, the warnings are shown for each line number. The star indicates new warnings. The commit

that the warning was introduced in is also shown. Clicking on a line takes the user to that line on GitHub.

taken to the original problematic commit on GitHub which
introduced the warning (not shown in a figure).

(5) New projects can be added simply by submitting the Git URL
of a Maven project hosted on GitHub to WarningsGuru
(not shown in a figure).

In the remainder of this paper, we describe each component
in detail, provide examples of our integration of statistical bug
models with static analysis and discuss planned future work. We
conclude the paper with preliminary results that show less than 9%
of commits contain new static analysis warnings and less than 6%
of statistically risky commits contain new warnings.

3 BUILDING THOUSANDS OF COMMITS

Recent works have shown that combining static analysis with sta-
tistical models can increase the defect finding effectiveness of both
techniques [9, 11]. However, these research works did not provide
developers with a usable tool and were performed on a small num-
ber of releases. For example, Rahman et al. [9] study between 5
and 8 release for five open source projects for a total of 34 releases.
They state that the effort to build and run JLint and FindBugs on
the 34 versions took six person-months of effort. One of our major
contributions is a Maven based technique that allows us to build
and run JLint and FindBugs on thousands of project versions. In this
demonstration we process 1.6k and 3.5k commits for the Phoenix
and Kylin projects respectively. By processing all the commits for
a project, WarningsGuru gives precise and timely information
about when a static analysis warning first appeared simplifying
future comparisons of statistical and static bug predictions.

Static analysis tools typically require a buildable system to run.
To build a each historical commit,WarningsGuru requires aMaven
POM file [12]. A POM file stores the build configurations of the
project including version numbers of required dependencies allow-
ing us to build historical versions. We automatically modify the
POM file to retroactively add static analysis as part of the build
process using Maven’s exec-maven-plugin plugin. We determine
which files have been added or modified and run static analysis

only on these files making the process scalable across thousands of
commits.

Researchers and developers can add new projects to Warnings-
Guru provided that a Maven POM file exists. For the two sample
projects in this demonstration, we find that we process a median of
one commit every 69 seconds running on a standard desktop. The
processing time depends on the project build time and the number
of files that changed. Commits can be processed by in parallel.

Warnings on broken builds. We found that 11% and 15% of
commits for Phoenix and Kylin could not be built. We cannot di-
rectly generate warnings on a commit that does not build; however,
on subsequent commits that are buildable we use Git blame to
retroactively assign warnings to lines that originated in files that
did not initially build. In practice we can generate static analysis
warnings for all commits, even those that do not build. An inter-
esting preliminary finding is that commits that do not build tend
to introduce a higher percentage of static analysis warnings. For
example, broken builds are 1.8 and 1.6 times more likely to in-
troduce warnings than buildable commits for Phoenix and Kylin,
respectively.

4 STATIC ANALYSIS INTEGRATION - TOIF

Each static analysis tool has its own execution flow and method
of reporting warnings. We use TOIF, an open source framework
developed by our partner KDM Analytics to integrate static analyt-
ics tools [6]. TOIF provides a common execution interface for the
static analysis tool and parses their results to convert them into a
common format. We currently run JLint and FindBugs, which are
Java static analysis tools.

TOIF also enriches the warnings by mapping them to software
security warnings including the common weakness enumeration
(CWE) [8] and software fault pattern (SFP)[6] categories. This map-
ping is security focused, allowing developers and future researchers
interested in security to ignore warnings that rarely lead to security
problems. Figure 4 shows the integrated and additional warning
fields in a GUI in WarningsGuru.

894

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Louis-PhilippeQuerel and Peter C. Rigby

5 VERSION CONTROL - GIT

Version control system are used to manage the source code of soft-
ware projects where incremental changes are stored. Warnings-
Guru uses Git to retrieve the state of the system at each commit.
The system state at each commit is then analyzed for the following
four purposes. First, we walk the Git DAG to checkout the state of
the system at each commit. WarningsGuru then builds and runs
static analysis tools on each commit. Second, running static analysis
tool is computationally expensive. We use Git to identify only the
files that have been added, removed, or modified for a commit. From
these files we are able to determine the new and removed warnings.
Third, we use Git blame to determine the commit in which a line in
a file was last modified. This allows us to determine the historical
commit in which the warning was introduced. Figure 4, developers
can click on the “Origin" commit of older warnings or view the
lines with new “starred” warnings. Fourth, CommitGuru works at
the commit level allowing us to combine its statistical risk measures
with the warnings for each commit.

6 STATISTICAL MODELS WITH

COMMITGURU

Statistical models indicate when a change may introduce a bug by
predicting when a commit or file is prone to being buggy using his-
torical measures such as churn, entropy of change and experience
of the developer [5]. By being able to identify bug fixing commits
from either an issue tracker or commit message it is possible to
determine which commits might have introduced the faulty change.
The measures from these candidate buggy commits are then used
to identify other commits which may also be bug introducing based
on historical patterns.

CommitGuru implements the SZZ/ASZZ algorithm [5]. Bug
fixing commits are identified based on keywords in their commit
message. Using Git blame, the fixing commit is traced back to the
commit that last changed the fixed lines. The lines that have been
changed are deemed to be bug introducing. Measures are extracted
at each commit and used as predictors in a logistic regression with
ten-fold cross validation. This logistic regression model is used to
predict whether or not a commit is likely to introduce a bug, i.e. is
risky.

In Figure 2 we see for each commit whether the statistical model
has determined if a change is likely to introduce a bug. We see
which measures contribute additional risk. While this allows Com-
mitGuru to determine which commits may be the most risky, it
does not give additional details of where the issue might be in the
commit as the predictions are not at the line level. For example, this
figure shows that the model predicts a change to be risky because
many new lines are being added in the commit. WarningsGuru
supplements this knowledge with specific static analysis warnings
that have been introduced in a change.

7 TOOL EFFECTIVENESS AND CONCLUSIONS

To illustrate the effectiveness of our approach we ran Warnings-
Guru on two Apache foundation projects: Phoenix and Kylin. Our
study is retrospective as neither project uses static analysis or statis-
tical bug prediction. We study 1,602 commits over 23 month period
for Phoenix and 3,568 commits over a 14 month period of Kylin. We
found that 65% and 49% of commits contain warnings, while only
6% and 9% introduced new warnings. By progressively examining

new warnings as changes are made developers need examine only
a small number of warnings and commits.

By using a statistical model alone, we find that CommitGuru
flags 25% and 29% of commits as risky. When we combine this with
static analysis in WarningsGuru the number of risky commits
with warnings is 20% for both projects and the number of new
warnings is 3% and 6%, respectively.

In conclusion, we can drastically reduce the number of commits
and warnings developers have to examine by combining statistical
models with static analysis. Future work is necessary to determine
if the warnings and commits that we select help developers find
defects. We are working with KDMAnalytics and Defense Research
and Development Canada to determine if WarningsGuru is ef-
fective in practice. Our tool is also publicly available for use by
researchers and developers.1

ACKNOWLEDGEMENT

The authors would like to thank KDM Analytics, Defense Research
and Development Canada, and NSERC for funding this tool devel-
opment. We also thank Dr. Shihab’s team for providing feedback as
we integrated our code with CommitGuru.

REFERENCES

[1] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian
Zhou. 2007. Evaluating Static Analysis Defect Warnings on Production Software.
In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE ’07). ACM, 1–8. https://doi.org/10.
1145/1251535.1251536

[2] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman. 2016. Analyzing the State of
Static Analysis: A Large-Scale Evaluation in Open Source Software. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. 470–481. https://doi.org/10.1109/SANER.2016.105

[3] Cesar Couto, João Eduardo Montandon, Christofer Silva, andMarco Tulio Valente.
2013. Static correspondence and correlation between field defects and warnings
reported by a bug finding tool. Software Quality Journal 21, 2 (2013), 241–257.
https://doi.org/10.1007/s11219-011-9172-5

[4] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. 2012. A Systematic
Literature Review on Fault Prediction Performance in Software Engineering.
IEEE Transactions on Software Engineering 38, 6 (Nov 2012), 1276–1304. https:
//doi.org/10.1109/TSE.2011.103

[5] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. 2013. A Large-Scale Empirical Study of
Just-in-Time Quality Assurance. IEEE Trans. Softw. Eng. 39, 6 (June 2013), 757–773.
https://doi.org/10.1109/TSE.2012.70

[6] KDM Analytics. 2016. Blade Tool Output Integration Framework (TOIF). http:
//www.kdmanalytics.com/toif/.

[7] Ugur Koc, Parsa Saadatpanah, Jeffrey S. Foster, and Adam A. Porter. 2017.
Learning a Classifier for False Positive Error Reports Emitted by Static Code
Analysis Tools. In Proceedings of the 1st ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages (MAPL 2017). ACM, 35–42.
https://doi.org/10.1145/3088525.3088675

[8] MITRE Corporation. 2016. Common Weakness Enumeration (CWE). https:
//cwe.mitre.org/.

[9] Foyzur Rahman, Sameer Khatri, Earl T. Barr, and Premkumar Devanbu. 2014.
Comparing Static Bug Finders and Statistical Prediction. In Proceedings of the
36th International Conference on Software Engineering (ICSE 2014). ACM, New
York, NY, USA, 424–434. https://doi.org/10.1145/2568225.2568269

[10] Christoffer Rosen, Ben Grawi, and Emad Shihab. 2015. Commit Guru: Analytics
and Risk Prediction of Software Commits. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York,
NY, USA, 966–969. https://doi.org/10.1145/2786805.2803183

[11] Hao Tang, Tian Lan, Dan Hao, and Lu Zhang. 2015. Enhancing Defect Prediction
with Static Defect Analysis. In Proceedings of the 7th Asia-Pacific Symposium
on Internetware (Internetware ’15). ACM, New York, NY, USA, 43–51. https:
//doi.org/10.1145/2875913.2875922

[12] The Apache Software Foundation. 2016. Maven - POM Reference. https:
//maven.apache.org/pom.html.

[13] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014.
ALETHEIA: Improving the Usability of Static Security Analysis. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS
’14). ACM, New York, NY, USA, 762–774. https://doi.org/10.1145/2660267.2660339

1WarningsGuru source code: https://github.com/louisq/warningsguru

895

https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1007/s11219-011-9172-5
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TSE.2012.70
http://www.kdmanalytics.com/toif/
http://www.kdmanalytics.com/toif/
https://doi.org/10.1145/3088525.3088675
https://cwe.mitre.org/
https://cwe.mitre.org/
https://doi.org/10.1145/2568225.2568269
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/2875913.2875922
https://doi.org/10.1145/2875913.2875922
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://doi.org/10.1145/2660267.2660339
https://github.com/louisq/warningsguru

	Abstract
	1 Introduction
	2 WarningsGuru Features and Architecture
	3 Building thousands of commits
	4 Static Analysis Integration - TOIF
	5 Version Control - Git
	6 Statistical models with CommitGuru
	7 Tool Effectiveness and Conclusions
	References

