
Warning-Introducing Commits vs Bug-Introducing
Commits: A tool, statistical models, and a

preliminary user study
Louis-Philippe Querel

Department of Computer Science and Software Engineering
Concordia University, Montreal, Canada

l querel@encs.concordia.ca

Peter C. Rigby
Department of Computer Science and Software Engineering

Concordia University, Montreal, Canada
peter.rigby@concordia.ca

Abstract—This paper partially replicates prior works on build-
ing historical commits [1], commit risk modeling [2], and a
comparison of statistical bug models and static bug finders [3].

We examine 8 Maven-based projects with an average lifespan
of 5.8 years. To historically build these projects across a total of
45k commits, we develop a series of techniques, such as flexibly
selecting the version of a library that is closest to the commit
date. We are able to build a per project average of 78.4% of all
commits, a doubling in buildability compared to prior work. We
also develop a git blame strategy to assign warnings even when
a commit does not build.

We run JLint and FindBugs and create a logistic regression
model to predict if a commit that introduces a warning has
higher odds of introducing a bug. The static bug finders model
accounted for only 13% of the deviance, while the statistical
bug model accounted for 19.5%. We had expected static bug
finder warnings to improve the predictive power of models of bug
introducing changes, but we clearly attained a negative result.

To understand this negative result, we perform a preliminary
user study of developers who introduced new warnings in 37
projects. We found that while warnings might not predict bugs,
53% and 21% of warnings in Findbugs and Jlint respectively are
useful. We also study whether just-in-time warnings presentation
on each commit impacted usefulness. We find that the later a
warning is shown to a developer, the less useful it is perceived to
be (a median of 11.5 days versus 23 days for non useful warnings).

Based on our findings, we modify the existing COMMITGURU
interface to add new warnings to the specific line in a changed
file. The empirical study data [4] and WARNINGSGURU tool [5]
are publicly available.

Index Terms—bug detection, static bug finder, statistical bug
prediction, user study

I. INTRODUCTION

Static analysis finds faults by examining the code, data-
flow, and control-flow for problematic patterns. To make
static analysis tractable in practice static bug finders, such as
FindBugs and JLint, make simplifications and abstractions that
lead to a large number of warnings many of which can be false
positives, including trivial and unlikely warnings [6], [7]. The
advantage of static bug finders is that the warnings are specific,
e.g., a null pointer on a specific source code line. The disad-
vantage is the overwhelming number of reported warnings and
a disconnect between field defects and warnings [8].

In contrast, statistical bug models use historically mined
development information, such as the number of lines changed
and the developer’s experience, to indicate risky, i.e. po-
tentially defective modules, files, and bug-introduction com-
mits [9], [10], [2], [11]. The advantage of statistical bug
models is that they provide reasonable predictions of field
defects in commits and files [11]. The disadvantage is that the
prediction is not fine-grained, e.g., an entire file or commit
is flagged as potentially bug introducing because the file has
been changed recently.

In this paper, we partially replicate work on statistical bug
models using change measures [2] and compare them with
static bug finders performing a replicating with a differing,
negative result [3]. Before we can create these models, we
first need to build historical commits and replicate work by
Tufano et al. [1]. We describe our research question below.

RQ1, Builds and Warnings. What proportion of his-
torical commits can be built and analyzed by static bug
finders?

To extract the static bug finder warnings from the history of
a project each commit needs to be buildable. Tufano et al. [1]
attempt to build 279k commits across 100 projects using
Maven. They find that for the average project only 38.13%
of the commits can be built. The biggest barrier to building
historical commits is resolving dependencies.

Replication Result: We examine over 45k commits across
eight large projects with an average history of 5.8 years. Our
technique uses dependencies outside Maven Central and also
uses older versions of libraries that are closer in date to the
the time of the commit. We are able to build an average
78.4% of commits on each project. While we examine fewer
projects than Tufano et al., on a per project basis we are able
to proportionally build twice as many commits.

We then run static bug finders on the builds. We use git
blame to trace warnings back to their original commit, which
may not necessarily build. In this way, we are able to assign all
the warnings to their warning-introducing commit regardless
of the build status.

RQ2, Change Measures. Using change measures, how
well can we predict bug-introducing changes?



We create a baseline statistical bug model using historically
mined development information to identify bug-introducing
commits. We need this baseline model to be able to later
control for the the predictive power of the typical measures
used in the research literature, such as churn and developer
expertise [2], [11].

Replication Result: We create a logistic regression of the
commits that introduce bugs and change measures. The model
has reasonable fit with the deviance explained at 19.5%. This
is a partial replication of Kamei et al. [2] on a new set of
projects.

RQ3, Static bug finder warnings. Do the warnings
present in a commit predict bug-introducing changes?

A commit that contains a new warning should be at higher
risk to introduce a bug in the system than a commit with
no warnings. We use the presence of warnings to statistically
model the odds of introducing a bug. We break warnings into
categories, including JLint vs FindBugs warnings, security
warnings, and new vs existing warnings.

Negative Result: The model explains only 13% of the de-
viance. When we combine the change measures and warnings
into a single model we can explain 22% of the deviance. Even
when compared with a simple baseline model that does not
reach the sophistication of the state-of-the-art, the addition
of warnings on commits does not improve the predictive
power. This finding is a negative replication of prior work that
examined warnings on a small number of releases and found
that change measures and static bug finder warnings had near
equivalent power in identifying field bugs [3].

Although static bug finder warnings do not substantially
improve the predictive power of traditional statistical models,
static bug finders are not designed to catch all types of bugs,
for example, they were never intended to catch a usability
bug [6]. To better understand this negative result, we assess
the perceived usefulness of static bug finder warnings in a user
study and answer the following research questions.

RQ4, Perceived usefulness. How useful do developers
perceive warnings to be?

We create dynamic survey requests that displayed the com-
mit and the new warning to the author of the commit. We sent
surveys to 179 developers from randomly sampled commits
and received perceived usefulness ratings on 81 warnings. We
purposefully left the definition of usefulness at the discretion
of the developer.

Result: 53% and 21% of warnings in Findbugs and Jlint are
perceived as useful by developers. Although warnings may be
poor predictors of bug-introducing changes, they often provide
useful information to the developer.

RQ5, Recency. Does the time lag from the introduction
of a warning to when a developer sees it influence the
perceived usefulness of the warning?

Some teams review warnings periodically, e.g., at a security
review, while others examine the warnings with each commit.
We want to determine the impact of recency on the perceived
usefulness of warnings (just-in-time warnings). We randomly
vary the delay in sending the warning survey to a developer.

TABLE I
PROJECTS UNDER STUDY

Project Years Commits Success Failure Build Success
Commons-lang 10.2 3314 3123 191 94.2 %
Hadoop 5.5 14458 9360 5098 64.7 %
Ignite 1.7 4368 3606 762 82.6 %
Kylin 2.4 5749 5084 665 88.4 %
Phoenix 3.0 1892 1818 74 96.1 %
Ranger 3.0 1913 961 952 50.1 %
Tika 9.9 3345 3166 179 94.7 %
Wicket 10.6 10910 6164 4746 56.5 %
Average: 5.8 5744 4160 1583 78.4 %
Total: – 45949 33282 12667 72.4 %

Result: Useful warnings were a median of 11.5 days old,
while non-useful warnings were a median 23 days old. Re-
cently introduced warnings are perceived as more useful than
older warnings.

The practical outcome of our work is the WARNINGSGURU
tool.1 The tool uses a statistical model to flag risky commits
and then indicates which lines contain warnings. We also flag
the warnings as new to the current commit or show the commit
that originally introduced an existing warning. The empirical
study data [4] and WARNINGSGURU tool [5] are publicly
available.

This paper is structured as follows. In Section II, we
describe WARNINGSGURU’s processing pipeline, the projects
we analyze, and the descriptive statistics on the buildability
of commits and the number of new warnings per commit.
In Section III, we introduce the change history measures and
warnings counts that will be included in our models to predict
bug-introducing commits. In Section IV, we conduct a user
study to understand how developers perceive the usefulness
of warnings. In Section V, we discuss how our design of
the WARNINGSGURU interface was driven by our statistical
models and user study results. In Sections VI, VII, and VIII
we respectively discuss threats to validity, related work, and
conclude the paper.

II. WARNINGSGURU PIPELINE, PROJECTS, AND DATA

WARNINGSGURU integrates source version control, build
tools, and static bug finders to build and analyze thousands
of historical commits. Using WARNINGSGURU we identify
which commit a warning originates from and which warnings
are new to a commit. We also develop a technique to assign
warnings even when a commit does not build.

A. Processing Pipeline

Figure II-A illustrates our processing pipeline and we dis-
cuss the stages in detail below:

1. Git Commits. WARNINGSGURU obtains the list of
commits from COMMITGURU [10]. This includes historical
commits and new commits as COMMITGURU updates the
repositories. WARNINGSGURU analyses commits incremen-
tally from the newest to oldest. Once a commit has been
analyzed the results are stored in a database.

1We build upon the publicly available preliminary version of the tool that
was presented in the tool demo track of FSE [12]



Fig. 1. WARNINGSGURU architecture

2. Building Commits. WARNINGSGURU depends on the
Apache Maven POM configuration file [13] and builds the
commit. Tufano et al. [1] found that on average only 38.13%
of a project’s historical commits could be built. We developed
strategies to increase the buildability of the history of projects.
We observed that some were not specifying in their POM files
the version of Java which they were targeting to be used as part
of their build. While newer versions of the Java Development
Kit (JDK) should be able to build code which was meant for
older versions of Java, the lack of targeting resulted in in-
compatibilities which caused builds to fail. WARNINGSGURU
implements a mechanism to override the version of the JDK
used for building based on the date of a commit to build older
commits which do not support the newer versions of Java.
Since we override the JDK, WARNINGSGURU also provides
a mechanism to override the version of Maven to ensures that
a compatible version of the build tool is employed to perform
the build.

The parameters used by the projects can also evolve with
subsequent releases. Some of the projects have their build con-
figured to fail where a test on the application is unsuccessful.
As we are only building to obtain the build artifacts, we are not
interested in the results of the tests which would significantly
reduce the performance of WARNINGSGURU. We therefore
disable test build failures.

The memory requirements for a project were not specified
in the Maven files. To improve buildability, additional memory
is allocated as part of the execution which WARNINGSGURU
performs by default. This reduces the risk that the build would
fail due to insufficient memory.

While Maven provides mechanisms to manage the depen-
dencies, it is still possible that a build fails due to a missing
project configured dependency. To mitigate this issue we
have added additional repositories to our Maven instance that
include dependencies that are not present in Maven Central.
Furthermore, projects would often use a ‘SNAPSHOT’ depen-
dency of a intermediate version of library that no longer exists.
In these cases, we replaced the intermediate versions with a

version that exists and is closer to the date of the commit.
Warnings. WARNINGSGURU runs Findbugs and JLint and

extracts the list of warnings associated with the modified
files. TOIF [14] augments these results with CWE [15] and
SFP [14] which are a warning type and security-related type
classification, respectively.

Historical Warning Reassignment. Static bug finders as-
sign warnings to a line of code but do not determine when a
warning was introduced. We use Git blame to identify when
the line last changed and reassign warnings on a line to the
commit in which the line was last changed. Since Git blame
does not require a commit to build, we can retroactively assign
warnings to lines added even when a commit does not build.

B. Studied Projects

We analysed the following projects: Commons-lang,
Hadoop, Ignite, Kylin, Phoenix, Tika, Ranger and Wicket.
Each projects has between 1.9 and 14k commits over mul-
tiple years, see Table I. The project are written primarily
in Java and use the Apache Maven build tool to manage
their build configuration and are available on GitHub. We
briefly describe each project. Commons-lang is a library which
provides additional utilities to the core Java classes. Hadoop is
a distributed computing and storage platform. Ignite is an in-
memory computing platform. Kylin is a distributed analytical
engine which interacts with solutions such as Hadoop. Phoenix
is a library that provides SQL support for non-SQL databases.
Tika is a tool which extracts metadata from files which can be
used for indexing. Ranger is a monitoring and security utility
for Hadoop. Wicket is a web framework to build Java server
side based services.

C. Result for Builds and Warnings

RQ1: What proportion of historical commits can be built
and analyzed by static bug finders?

Tufano et al. [1] studied the buildability of 100 projects
over 249k versions and found that an average of 38.13% of
commits could be built per project. As described above, we



TABLE II
BREAKDOWN OF COMMITS WITH WARNINGS. WE ARE ABLE TO

RE-ASSIGN WARNINGS TO FAILED BUILDS. INTERESTINGLY, THE NUMBER
OF WARNINGS ON PASSING VS FAILING BUILDS IS SIMILAR.

Commits Percentage
Total 45949 -
With warnings 26898 58.5%
With new warnings 5881 12.8%
Total successful builds 33282 72.4%
Successful with warnings 19553 58.7%
Successful with new warnings 4387 13.2%
Total failed builds 12667 27.6%
Failed with warnings 7345 58.0%
Failed with new warnings 1494 11.8%

varied the version of the JDK and other libraries to match the
date closest to the commit and included repositories outside
Maven Central. Using these techniques, on a smaller sample of
8 projects, we are able to proportionally build twice as many
commits with a per project average of 78.4% of the commits.
The full breakdown is in Table I.

Prior works that combine static analysis with statistical bug
models include only a small number of project snapshots and
do not provide a tool or replication package [3], [16]. For
example, Rahman et al. [3] study between 5 and 8 release
for five open source projects for a total of 34 releases. They
state that the effort to build and run JLint, FindBugs, and
PMD on the 34 versions took six person-months of effort.
Tang et al. [16] studied 3 and 5 releases of 2 projects for a
total of 8 releases. Nanda et al. [17] created a private tool
which ran static analysis tools on commits, but did not build
current or historical commits.

Table II shows the breakdown of warnings and builds. We
extracted the warnings from 45,949 commits an increase of
1,351 times as many versions compared to Rahman et al. [3].
58.5% or 26,898 commits contained warnings and 12.8% or
5,881 introduced at least one warning. In total, we identified
940k distinct warnings. As noted by prior works, building
historical versions of projects is difficult and 27.6% or 12,667
of the commits did not build. However, using our Git blame
strategy we were able to reassign 256k warnings to their
originating commit. Without this approach, 28.2% of the total
warnings would be attributed to the wrong commit. By pro-
cessing all the commits of a project, WARNINGSGURU gives
precise and timely information about when a warning first
appeared and avoids the complex accounting schemes used
by prior works to compare static bug finders with statistical
bug models.

We build over 45k builds across eight large projects
with an average history of 5.8 years. Our technique
uses dependencies outside Maven Central and also
uses older versions of libraries that are closer in date to
the the time of the commit. We are able to build a per
project average of 78.4% of the commits, a doubling in
buildability compared to prior work. We assign each
static bug finder warning to the originating commit
regardless of whether it builds. We find that 58.5% of
commits contain warnings and 12.8% introduce new
warnings.

III. STATISTICAL MODELS

Statistical bug models have been used to predict the oc-
currences of bugs in projects. They use historically mined
development information to indicate risky, i.e. potentially
defective, files or commits, e.g., [2], [11].

We investigate the use of warnings as a change measure for
statistical bug prediction models. Warnings have previously
been used by Rahman et al. [3] and Tang et al. [16], but they
were using a small number of snapshots of projects. Since they
use release snapshots they cannot determine the exact change
that introduced a warning. WARNINGSGURU assigns warnings
to commits allowing us to assess how well warnings predict
bug introducing commits.

We systematically built a series of models to assess the
predictive power of warnings in predicting bug-introducing
changes and compare them with COMMITGURU’s change
measures model. The models are logistic regressions with the
binary response measure being whether a commit introduced
a bug, i.e. IsBugIntroducting. These bug-introducing commits
are found by first identifying the commit that fixes a bug
based on keywords in their commit message, e.g., “fixing bug
#14934.” Using Git blame, the fixing commit is traced back
to the commit that last changed the fixed lines [18], [10].

We compare three models: a traditional model including the
COMMITGURU change measures, a static analysis warnings
model, and the combined COMMITGURU and warnings model.
We describe the measures and model creation below.

1) Building the COMMITGURU model: The predictors or
independent variables are measured are at the commit level
and are divided into churn and developer measures. Since
these measures have been widely used in COMMITGURU,
we only briefly summarize them here and refer the reader to
Kamei et al. [2] for further details. The final churn measures
are the number of modified directories, lines added, lines
removed, and the LOCs in the files before the change. The
final developer measures are the number of developers that
have modified the files in the change, the authoring developer’s
experience measured as the number of prior changes the
developer has made, and the recent developer experience
weighted by the number of changes made in each year. We
also include the binary “fix” variable that indicates whether
the commit is fixing an existing bug.



We run a Spearman correlation among the measures and
keep the most parsimonious measure when the correlation is
greater than 0.75. We excluded the number of modified files
and entropy as they correlate at 0.94 and 0.89 respectively
with the number of modified directories. We also excluded the
number of changes to a file as it correlates at 0.78 with total
line count before the file was modified. Due to the removal
of the numbers subsystems measure, we also removed the
developer’s subsystem experience due to correlation of 0.74
with a developer’s experience.

To represent our models, we use the R language notation.
For example, the formula y ∼ a+ b means that “the response
y is modeled by explanatory variables a and b.” As discussed
above, the response variable is a binary variable indicating
whether the commit introduced a bug, i.e. IsBugIntroducing.
Following prior works [19], [20], we applied a log transforma-
tion to explanatory variables when they are right skewed with
a long tail. To avoid taking the logarithm of zero, we add one
to the variables. The project variable is added as factors to
account for individual project differences. The final model is

IsBugIntroducing ∼
log2(Number of directories + 1)

+ log2(Lines added + 1)

+ log2(Lines removed + 1)

+ log2(Lines before change + 1)

+ fix

+ log2(Number of developers + 1)

+ log2(Average time between changes + 1)

+ log2(Developer experience + 1)

+ log2(Recent developer experience + 1)

+ as.factor(Project)
family=binomial()

2) Building the static bug finder model: Unlike previous
works that work with a limited number of releases ([8], [3],
[16]), we analyze the entire history of warnings on over 45k
commits. Instead of indicating whether or not a commit has
a new warning, we use counts of warning types. We measure
the number of new warnings, and we are able to differentiate
security warnings allowing us to determine when security
warnings are introduced.

When building our warnings model we first include the
number of new security warnings. We then include the number
of new warnings, which is effectively the addition of inter-
action terms between the number of new security warnings
+ the number of new non-security warnings. We continue
this process adding the the total number of security warnings
and then the number of total warnings. In the model we also
differentiate between the tool that found the warning, either
FindBugs or JLint.

A final measure is whether the build failed. A failed build
can demonstrate problems in the code and environment and

may indicate significant problems with the commit.
The final R model for the Warnings model is

IsBugIntroducing ∼
log2(NewSecurityWarnings + 1)

+ log2(SecurityWarnings + 1)

+ log2(NewFindbugsWarnings + 1)

+ log2(NewJlintWarnings + 1)

+ log2(FindbugsWarnings + 1)

+ log2(JlintWarnings + 1)

+ BuildFailed
+ as.factor(Project)
family=binomial()

3) Combining the COMMITGURU and static bug finder
models: We combine all the measures from previous models.
We include the COMMITGURU measures first and the warning
measures second because we want to determine the degree
of redundancy of our warnings measures compared with the
COMMITGURU measures. In the model, the measures are
added in the order shown in Table III.

A. Results for COMMITGURU model

RQ2: Using change measures, how well can we predict bug
introducing changes?

In the first column of Table III we see the results of
the COMMITGURU change measure logistical regression bug
model. We can see that the model explains a reasonable
amount of the deviance, 19.5%. Since our predictors are
skewed any non-categorical variable is transformed using log2.
We report the odds ratio for each predictor. However, since
they are log2 transformed they represent a twofold increase in
the predictor. For example, a twofold increase in the number
of directories touched, lines added, and lines before a change
makes it 1.25, 1.44, and 1.15 times more likely for a bug to
occur in a commit. Previous work has found that files with
more churn tend to have more bugs, our findings confirm this
suggesting that large changes introduce more bugs [21].

FIX which is the identification of a commit as being bug
fixing, is binary. As a result a commit that is fixing an existing
bug is 1.52 times more likely to introduce a bug. Our findings
indicate that bug fixes likely touch fragile or complex code
and lead to further bugs. This agrees with the findings that
the number of past defects is a strong predictor of future
defects [22].

The strongest negative predictor is the number of developers
who touch a file, with a twofold increase in this predictor
leading to a 26% decrease in the likelihood of the commit
introducing a bug. This is surprising as this implies that
the greater number of people modifying the files the fewer
bugs. These results agree with Bird et al.’s [23] findings
that showed that even geographically distributed developers



TABLE III
STATISTICAL MODELS PREDICTING BUG-INTRODUCING COMMITS

COMMITGURU Warnings Combined
Num Directories 1.25 † 1.05 *
Lines added 1.44 † 1.39 †
Lines removed 1.03 † 1.02 *
Lines before change 1.15 † 1.08 †
FIX 1.52 † 1.51 †
Num of Devs on files 0.74 † 0.82 †
Avg time between changes 1.00 1.01
Developer Experience 1.05 † 1.04 †
Recent Dev. Experience 0.97 † 0.99
new security warnings 1.02 1.08
security warnings 0.89 † 0.93 †
new FindBugs warnings 1.43 † 1.10 *
new JLint warnings 1.58 † 1.14 †
FindBugs warnings 1.19 † 1.07 †
JLint warnings 1.35 † 1.22 †
build failed 2.00 † 1.75 †
Hadoop 0.56 † 0.57 † 0.42 †
Ignite 0.55 † 0.62 † 0.48 †
Kylin 0.84 * 1.01 0.85 *
Phoenix 0.38 † 0.28 † 0.26 †
Ranger 0.42 † 0.46 † 0.33 †
Tika 0.57 † 0.98 0.65 †
Wicket 0.82 † 0.89 * 0.69 †

Deviance Explained 19.5% 13.4% 22.0%
Residual 41195 44323 39928

Statistical significance: †p� 0.05, ∗p < 0.05, otherwise p ≥ 0.05
Table interpretation: We report the standard odds ratio and p value. With
the exception of binary variables, all predictors are log2 transformed. As a
result, instead of a linear increase in odds, the odds ratio represents a doubling
or twofold increase. For example, a twofold increase in the number of lines
added increases the odds of a bug being introduced by 1.44 times. To compare
the odds of introducing a bug for each project a reference project is arbitrarily
choose, in this case Commons-lang. The odds ratio for each project shows
the relative increase or decrease in the odds of introducing a bug.

did not introduce more bugs. Herbsleb and Mockus however
identified that bug fixing was more prevalent with more
geographical distributed developers [24]. Clearly future work
into understanding the social interactions is required.

We create a logistic regression of the commits that in-
troduce bugs using COMMITGURU model that includes
change measures. The model has reasonable fit with
the deviance explained at 19.5%. Churn and whether
a commit fixes a bug remain the strongest predictors
of future bugs.

B. Result for static bug finder warnings model

RQ3: Do the warnings present in a commit predict bug
introducing changes?

In the second column of Table III, we see the results of our
static analysis warnings bug regression model. We can see
that the model explains a smaller proportion of the deviance,
13.4%.

The strongest predictor of bug introduction is whether the
build succeeded. A build failure doubles the likelihood of
a bug being introduced. A twofold increase in the number
of new warnings for a commit increases the likelihood of

introducing a bug by 1.5 and 1.19 times for JLint and Find-
Bugs respectively. Having more existing warnings in the code
that is changed in a commit also increases the likelihood of
introducing a bug. New security warnings were not statistically
significant while the total number of security warnings actually
reduced the likelihood of a bug. This security finding is likely
related to the difficulty and rarity of actual security bugs,
which as Camilo et al. [25] point out, make vulnerabilities dif-
ficult to predict statistically. Overall, our findings contradicts
smaller studies that suggest that change measures and static
analysis warnings have similar defect prediction potential [3],
[16].

In the third column of Table III, we see the combination
of the COMMITGURU change measures and static bug finder
warning measures. The deviance explained is 22.0%, only
2.5 percentage points higher than the COMMITGURU change
measures model. The measures are for the most part consistent
in terms of direction and power with the largest drops in
predictive power seen by the new warnings predictors. Our
analysis suggests that the warning counts are largely redundant
with COMMITGURU measures such as file size accounting for
larger warning counts.

The static bug finder warnings model explains 13.4%
of the deviance. When we combine it with the COM-
MITGURU change measures the single explains 22%
of the deviance. The increase over the COMMITGURU
model is only 2.5 percentage points. The warnings
counts are mostly redundant explaining similar phe-
nomena. These negative results indicate that warnings
are poor predictors of bug introducing changes.

IV. PERCEIVED USEFULNESS OF STATIC BUG FINDER
WARNINGS

The statistical models in the previous section indicate that
static bug finder warnings do not substantially improve the
predictive power of COMMITGURU change measure statistical
models. However, static bug finders are not designed to catch
all types of bugs [6], for example, static bug finders were
never intended to catch, a UI bug on the position of a button
for improved usability. We conduct a preliminary study of how
useful developers perceive static bug finder warnings to be.

A. Study Design and Methodology

To ensure a sufficient number of developers, we increased
the number of projects from 8 to 37. We analysed the fol-
lowing Apache projects: Accumulo, Apex core, Apex malhar,
Asterixdb, Beam, Brooklyn-server, Calcite, Canyenne, Cloud-
stack, Commons-lang, Commons-net, Commons-text, Crunch,
Curator, Falcon, Hadoop, HBase, Ignite, Tamaya-Extension,
Knox, Kylin, ManifoldCF, Oozie, OpenNLP, Phoenix, Ranger,
Sentry, Storm, Tika, Tinkerpop, Twill, Wicket and Zeppelin.

For each project, we ran WARNINGSGURU. When a new
warning was identified we sent the committing developer a



Fig. 2. The dynamically generated warnings survey page provides the
developer with the warning and the context. The developer decides if the
warning is useful.

survey asking if the new warning provided useful informa-
tion. As shown in Figure IV-A, to assist the developers in
their assessment, we provide the context of the warning by
presenting the lines of code and its surrounding code as part
of the warning.

We emailed the survey to 179 developers and obtained a
response rate of 17.9%. In total, we obtained a usefulness
rating for 81 warnings. While the number of total warnings is
small for a study, as we will discuss, the results are statistically
significant indicating a strong difference in what constitutes a
useful warning. We make the tool to generate the survey from
commits and static analysis warnings publicly available [4].

B. Results for perceived usefulness of warnings

RQ4: How useful do developers perceive warnings to be?
Table IV shows that only 34.6% of warnings are useful. This

results concurs with prior work that many warnings are false
positives [6]. Comparing the perceived usefulness of JLint
vs Findbugs, we find that 52.9% of Findbugs warnings are
useful as opposed to 21.3% for Jlint warnings (Table IV).
To provide a statistical comparison, we use the Fisher Exact
test and find p < 0.05 indicating that the difference is

TABLE IV
DEVELOPERS’ PERCEPTION OF STATIC BUG FINDER WARNING

USEFULNESS

Tool Warnings Useful
JLint 47 21.3%
Findbugs 34 52.9%
Total 81 34.6%

statistically significant and Findbugs warnings are perceived
as more useful than JLint warnings. While future work may
be necessary, as a linter, JLint likely points out potentially
obvious syntax problems, while Findbugs provides warnings
of more substance that have the perception of greater utility.

52.9% and 21.3% of warnings in Findbugs and Jlint
are perceived as useful by developers. Warnings may
be poor predictors of bug introducing changes, but they
often provide useful information to developers.

C. Results for Warning Recency

RQ5: Does the time lag from the introduction of a warning to
when a developer sees it influence the perceived usefulness of
the warning?

In our discussion with developers, we found that some
teams examined warnings with each commit, while others
periodically processed a large number of warnings before a
release or during a security audit. To understand the impact
of warning recency on perceived warning usefulness we con-
ducted a preliminary study.

We sent requests to developers who introduced new warn-
ings within a 45 day window. Some developers received
the request immediately, while others received the survey
request weeks after the commit. The time lag, developer, and
warning were selected at random. This methodology allows
us to determine the impact of warning recency on perceived
usefulness.

We calculate the recency as a time delta in days between
the introduction of a new warning by a developer and the time
which we receive a response to our survey request, i.e. the time
the developer examined the warning.

Recency results: Warnings that developers labeled as useful
had a median time delta of 11.5 days between their introduc-
tion in the commit and the developer response. For warnings
which were indicated to be non-useful by developers, there
was a median of 23 days. Using a Wilcoxon test, we find the
difference is statistically significant with p = 0.018. Figure 3
is a violin plot that shows the distribution of recency in days.
There is a clear skew, indicating that the sooner a warning
is seen the more likely that it will be perceived as useful.
However, some old warnings do provide value with the oldest
useful warning of 43 days.

These preliminary results have implication for tool design.
Warnings should be seen by developer as soon as possible.
Many teams already practice in this way adding hooks in



Fig. 3. The violin plots shows the distribution of perceived usefulness of a
warning relative to recency delta in days. The dot represents the median of
the dataset and the box plot shows the second and third quantiles. The sooner
a warning is seen by a developers, the more useful the warning is perceived
to be.

their continuous integration infrastructure to show warnings
immediately at commit.

For researchers, this result opens an interesting area of
future work. A preliminary hypothesis is that the developers
forget the context of the commit as more time passes, which
results in the developers identifying the warnings as not being
useful. This would require additional research to assess if this
could be an analog in software projects for the forgetting
curve which is the study how people remember and recall
information [26].

Warnings that are perceived to be useful were more re-
cent with a median time delta of 11.5 days, while non-
useful warnings have a median of 23 days. Recently
introduced warnings are perceived as more useful than
older warnings.

V. WARNINGSGURU TOOL INTERFACE

The design and integration WARNINGSGURU into the in-
terface of COMMITGURU is grounded in the results from the
statistical models in Section III and the preliminary user study
in Section IV. Figure 4, shows WARNINGSGURU integrated
into COMMITGURU.

A limitation of models that predict commit risk and bug
introducing changes is that they do not provide a specific file
or reason for flagging a commit. For example, in Figure 4, we
see that COMMITGURU has flagged commit bea9e03aeb as
risky because there were many lines added and removed. This
“rationale” does not provide a specific actionable guide to the
developer that would allow him or her to ensure that this risky
commit does not introduce a bug. We augment the statistical
model by adding the warning counts to the COMMITGURU.
In Figure 4, we see that the commit has 2 new warnings and
15 total warnings.

Our user study shows that warnings are perceived to be
more useful to developers when they are received in a timely

manner. To provide timely actionable results, we show the
number of warnings per file in the commit. When a file
is selected, we show the line that the warning occurs on
and a link to the source line on GitHub. Based on the
results from our study on timelines, we also indicate to the
developer which lines contain new warnings with a star (?).
For example, we see in the figure that on line 2658 in file
ConnectionQueryServiceImpl.java the JLint warning that the
“Comparison always produces the same result”. The developer
can also see that there are multiple warnings on line 1 that
were introduced in an older commit c5b80246. The developer
can click on the line or commit to see the change diff that
introduced the warnings.

Querel and Rigby [5] made the WARNINGSGURU source
code, a docker installation file, and a running webserver avail-
able since 2017, however, there was no substantial adoption.
Devanbu et al. [27] note that adoption of research tools is diffi-
cult because developers are reluctant to change their workflows
and have biased perspectives based on their experience. As a
retrospective, if we were to create a future WARNINGSGURU
prototype we would integrate it into top ranked continuous
integration tools like Jenkins and Travis CI. 2 Since there are
already plugins for static bug finder tools, such as FindBugs,
we would simply need to create a COMMITGURU plugin that
uses change measures to flag commits in the CI as potentially
bug introducing. Studying and adopting our research ideas
would be facilitated by the large number of developers already
using these CI tools.

Despite integrating WARNINGSGURU in to COMMIT-
GURU, we saw little adoption of the tool. This negative
result indicates that it may be better to integrate into
tools that are widely used in developer CI pipelines
such as Jenkins rather than into research tools.

VI. THREATS TO VALIDITY

The COMMITGURU measures and logistic regression are
simplistic compared to the current state-of-the-art commit risk
and bug prediction measures and models. We acknowledge
this limitation, however, this is not a threat to the validity
of this study because the WARNINGSGURU model explained
even less deviance than the simple COMMITGURU model.
Clearly the use of more advanced state-of-the-art statistical bug
models which outperform COMMITGURU will also outperform
WARNINGSGURU at finding bug introducing changes.

Our results may not generalize beyond the projects under
study and the static bug finder tools under study. We did,
however, choose a wide range of project domains, from web
to analytics to databases. We also examined a large number
of commits, over 45k.

There are more advanced static bug finder and static analysis
techniques than FindBugs. In this paper we compare and
combine change measures with warnings on a large number

2Ranking of CI tools, accessed February 2021. https://bitbar.com/blog/
top-continuous-integration-tools-for-devops/



Fig. 4. Integration of WARNINGSGURU in modified COMMITGURU interface. Each commit lists the risk predictors and the warnings associated with each
modified file. The individual warnings are shown with links to their originating line on GitHub. A star indicates a new warning.

of commits. As result, we stated our inclusion criteria for both
static bug finder tools and projects and select static bug finder
tools that could be run in a reasonable time. Future work
is necessary to run computationally expensive static analysis
tools on large number of projects.

Our primary focus was on assessing the predictive power
of WARNINGSGURU warnings in statistical bug models of
bug-introducing changes. Instead of coming to the incorrect
conclusion, “static bug finders do not find bug introduces
changes and are not useful,” we conducted a preliminary study
of the perceived usefulness of warnings (afterall, static bug
finder tools are widely used by professional developers [7]).
In total we surveyed 179 developers with a response rate of
17.9% and the surveyed developers determined the utility of
81 warnings. While 81 warnings is a relatively small sample,

the results were statistically significant due to the large skew
in perceived usefulness. Clearly larger studies are necessary,
but these results stand as a statistically valid first step.

VII. RELATED WORK

The effectiveness of static bug finders and static analysis
in general has long been contentious. A preliminary work by
Tang et al. [16] on 2 projects and 8 revisions showed that OOP
measures such as LCOM “Lack of Coupling in Methods” and
McCabe complexity provide less predictive power than static
analysis warnings. The predictive models were unstable across
revisions suggesting that future work is necessary to replicate
these finding on a larger number of project revisions.

Wedyanf et al. [28] applied Findbugs, Jlint and the static
analysis component of Intellij Idea to 20 releases of 2 projects.



They found that fewer than 3% of warnings are associated with
bugs and that the warnings are predominately associated with
refactorings.

Couto et al. [8] studied the bug finding effectiveness of
FindBugs on three projects. Of the 280 bug fixing changes
FindBugs produced a warning for only 33. Furthermore, static
bug finder tools produce a large number of warnings bewteen 4
and 10 warnings per KLOC depending on the project. Consid-
ering the multitude of warnings and the limited effectiveness
of identifying commits that contain bugs, the authors find a
median precision and recall for FindBugs of zero. The authors
conclude that static bug finder warnings do not correspond to
field defects. When they examine a individual releases for 30
projects they find a moderate correlations of .56 between the
number of warnings and the number of bugs reported against
a release.

Work by Rahman et al. [3] concluded that “under some
accounting principles, they [FindBugs, PMD, JLint] provide
comparable benefits [to statistical bug models].” Unfortunately,
the methodology and accounting schemes in the paper make
replication and interpretation difficult as the statistical models
provide predictions at the file level and the static analysis
tools provide warnings at the line or code unit level requiring
complex “budgeting” of warnings and statistical risk. A further
limitation is that the authors process only 34 versions requiring
complex git blame assignment of warnings to past revisions
ignoring static analysis warnings that may have been removed
between releases. Despite these limitations, the authors con-
clude that the “performance of certain static bug-finders can
be enhanced using information provided by statistical defect
prediction.”

In contrast to these works, our WARNINGSGURU tool runs
static bug finder on every commit of a project for a total of
45k commits processed. WARNINGSGURU uses git blame to
assign warnings when a commit does not build. Since we know
exactly when and on which line a warning first was intro-
duced, we eliminate the need for Rahman et al.’s “complex
accounting.” We find that the static analysis measures add only
a small 2.5 percentage point increase in deviance explained
over the change measures indicating that the computationally
expensive static analysis has much redundancy with simple
churn measures and will only provide limited enhancement in
predictions. Our tool and data are publicly available [4].

Static bug finder tools are widely used in the software
industry [7] and proponents of static bug finder correctly
argue that the warnings identified are not designed to find
many classes of bugs, such as those related to user experience
problems. A manual study of FindBugs by at Google [6] found
that of the 1127 warnings examined, 17% of the warnings
were “impossible” meaning that they “could not be exhibited
by the code.” An additional 11% of the warnings were deemed
to be trivial. While static analysis warnings may not increase
the number of bugs found, we have developed a tool to help
developers see the warnings that are present in risky commits
and those that are new to the current commit. Future user
studies are necessary to understand if limiting the number of

warnings that a developer sees reduces the effort in eliminating
the impossible, trivial, and false positives warnings suggested
by static analysis.

VIII. CONCLUSION AND CONTRIBUTIONS

We developed tools and techniques to build historical
commits and run static bug finders on the build artifacts.
In Section II, we used the WARNINGSGURU pipeline to
process over 45k commits on 8 projects, and introduced new
strategies including identifying the correct library by finding
the version that existed closest to the commit data. We were
able to double the per project buildability compared to prior
work to 78.4% of commits [1]. We also found that 58.5%
of commits contain a warning, that 12.8% of all commits
introduced new warnings, and 6.8% of all commits have new
security warnings. WARNINGSGURU is capable of managing
multiple concurrent Maven based projects and identifies the
new warnings which are introduced in each commit.

We add the static bug finder warning counts and types to
COMMITGURU’s statistical bug prediction models and found
that the warnings were are largely redundant with simple
historical change measures. The static bug finder warnings
are ineffective at predicting bug-introducing commits with the
model only explaining 13% of the deviance. This negative
result contradicts prior work that found under certain account-
ing schemes that statistical bugs models and static bug finders
were similarly effective at identifying bugs [3].

Static bug finders were not designed to find all bugs and
are in wide use, so we expanded the analyse to an additional
37 projects for a total of over 55k commits to conduct a
preliminary user study of the perceived usefulness of static bug
finder warnings. We surveyed 179 developers with a response
rate of 17.9% for a total of 81 warnings across 45 days. From
these responses we found that the perceived usefulness of the
warning is partially dependent on the tool which generated
it. 52.9% of new Findbugs warnings were deemed useful as
opposed to only 21.3% of new Jlint warnings. The dynamic
survey software which includes the commit, warning, and
records the developer’s response is publicly available [4].

One of the goals of COMMITGURU [10] was to provide
“just-in-time” commit risk information to developers. In our
user study we evaluated the timeliness of informing the
developer of a new warning by evaluating the impact of time
on the usefulness of warnings. We concluded that developers
who are informed of the warning in a median of 11.5 days are
more likely to indicate it as useful as oppose to a median of
23 day for warnings that were not useful. While future work
is necessary, this finding quantifies how quickly developers
forget the context of a commit.

We integrate the results of WARNINGSGURU into the in-
terface of COMMITGURU [10] where we present the new and
historical warnings identified in each commit. These warnings
provide concrete actionable insights into why a commit may be
flagged as risky. The tool [5] and data [4] are publicly available
for both researchers and developers who may be interested in
warning-introducing commits.



REFERENCES

[1] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “There and back again: Can you compile that
snapshot?” Journal of Software: Evolution and Process, vol. 29, no. 4,
p. e1838, 2017.

[2] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus,
A. Sinha, and N. Ubayashi, “A large-scale empirical study of
just-in-time quality assurance,” vol. 39, no. 6. Piscataway, NJ,
USA: IEEE Press, Jun. 2013, pp. 757–773. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2012.70

[3] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu, “Comparing static
bug finders and statistical prediction,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 424–434. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568269

[4] L.-P. Querel and P. C. Rigby, “WarningsGuru, research scripts and data
for replication,” https://doi.org/10.5281/zenodo.3747582.

[5] ——, “WarningsGuru tool GitHub Repo,” https://github.com/louisq/
warningsguru.

[6] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production software,”
in Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, ser. PASTE
’07. New York, NY, USA: ACM, 2007, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/1251535.1251536

[7] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing
the state of static analysis: A large-scale evaluation in open source
software,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1, March 2016,
pp. 470–481.

[8] C. Couto, J. E. Montandon, C. Silva, and M. T. Valente, “Static
correspondence and correlation between field defects and warnings
reported by a bug finding tool,” vol. 21, no. 2, 2013, pp. 241–257.
[Online]. Available: http://dx.doi.org/10.1007/s11219-011-9172-5

[9] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, p. 15, May 2005.
[Online]. Available: https://doi.org/10.1145/1082983.1083147

[10] C. Rosen, B. Grawi, and E. Shihab, “Commit guru: Analytics and risk
prediction of software commits,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: ACM, 2015, pp. 966–969. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2803183

[11] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” vol. 38, no. 6, Nov 2012, pp. 1276–1304.

[12] L.-P. Querel and P. C. Rigby, “Warningsguru: Integrating statistical
bug models with static analysis to provide timely and specific bug
warnings,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p.
892895. [Online]. Available: https://doi.org/10.1145/3236024.3264599

[13] The Apache Software Foundation, “Maven - POM Reference,” 2016,
https://maven.apache.org/pom.html.

[14] KDM Analytics, “Blade Tool Output Integration Framework (TOIF),”
2016, http://www.kdmanalytics.com/toif/.

[15] MITRE Corporation, “Common Weakness Enumeration (CWE),” 2016,
https://cwe.mitre.org/.

[16] H. Tang, T. Lan, D. Hao, and L. Zhang, “Enhancing defect
prediction with static defect analysis,” in Proceedings of the 7th
Asia-Pacific Symposium on Internetware, ser. Internetware ’15. New
York, NY, USA: ACM, 2015, pp. 43–51. [Online]. Available:
http://doi.acm.org/10.1145/2875913.2875922

[17] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt,
and P. Balachandran, “Making defect-finding tools work for you,”
in Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 2, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 99–108. [Online]. Available:
http://doi.acm.org/10.1145/1810295.1810310

[18] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead,
“Automatic identification of bug-introducing changes,” in Proceedings
of the 21st IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 81–90. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2006.23

[19] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies
of open source software development: Apache and mozilla,” vol. 11,
no. 3. New York, NY, USA: ACM, Jul. 2002, pp. 309–346. [Online].
Available: http://doi.acm.org/10.1145/567793.567795

[20] P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey, “Peer review
on open-source software projects: Parameters, statistical models, and
theory,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 4, Sep. 2014.
[Online]. Available: https://doi.org/10.1145/2594458

[21] E. Giger, M. Pinzger, and H. C. Gall, “Comparing fine-grained source
code changes and code churn for bug prediction,” in Proceedings
of the 8th Working Conference on Mining Software Repositories, ser.
MSR ’11. New York, NY, USA: ACM, 2011, pp. 83–92. [Online].
Available: http://doi.acm.org/10.1145/1985441.1985456

[22] N. Nagappan and T. Ball, “Use of relative code churn measures
to predict system defect density,” in Proceedings of the 27th
International Conference on Software Engineering, ser. ICSE ’05.
New York, NY, USA: ACM, 2005, pp. 284–292. [Online]. Available:
http://doi.acm.org/10.1145/1062455.1062514

[23] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy,
“Does distributed development affect software quality?: An empirical
case study of windows vista,” vol. 52, no. 8. New York,
NY, USA: ACM, Aug. 2009, pp. 85–93. [Online]. Available:
http://doi.acm.org/10.1145/1536616.1536639

[24] J. D. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,” vol. 29,
no. 6. Piscataway, NJ, USA: IEEE Press, Jun. 2003, pp. 481–494.
[Online]. Available: http://dx.doi.org/10.1109/TSE.2003.1205177

[25] F. Camilo, A. Meneely, and M. Nagappan, “Do bugs foreshadow
vulnerabilities? a study of the chromium project,” in Mining Software
Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on.
IEEE, 2015, pp. 269–279.

[26] L. Averell and A. Heathcote, “The form of the forgetting curve and the
fate of memories,” vol. 55, no. 1. Elsevier, 2011, pp. 25–35.

[27] P. Devanbu, T. Zimmermann, and C. Bird, “Belief evidence in empirical
software engineering,” in 2016 IEEE/ACM 38th International Confer-
ence on Software Engineering (ICSE), May 2016, pp. 108–119.

[28] F. Wedyan, D. Alrmuny, and J. M. Bieman, “The effectiveness of
automated static analysis tools for fault detection and refactoring
prediction,” in Proceedings of the 2009 International Conference
on Software Testing Verification and Validation, ser. ICST ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 141–150.
[Online]. Available: http://dx.doi.org/10.1109/ICST.2009.21


