
The Impact of Failing, Flaky, and High Failure Tests on the
Number of Crash Reports Associated with Firefox Builds

Md Tajmilur Rahman∗

PBSC Urban Solutions
Longueuil, QC, Canada
trahman@pbsc.com

Peter C. Rigby
Department of Computer Science and Software

Engineering, Concordia University
Montreal, QC, Canada

peter.rigby@concordia.ca

ABSTRACT

Testing is an integral part of release engineering and continuous

integration. In theory, a failed test on a build indicates a problem

that should be �xed and the build should not be released. In practice,

tests decay and developers often release builds, ignoring failing

tests. In this paper, we studying the link between builds with failing

tests and the number of crash reports on the Firefox webbrowser.

Builds with all tests passing have amedian of only two crash reports.

In contrast, builds with one or more failing tests are associated with

a median of 508 and 291 crash reports for Beta and Production

builds, respectively. We further investigate the impact of “�aky”

tests, which can both pass and fail on the same build, and �nd

that they have a median of 514 and 234 crash reports for Beta and

Production builds. Finally, building on previous research that has

shown that tests that have failed frequently in the past will fail

frequently in the future, we �nd that Builds with HighFailureTests

have a median of 585 and 780 crash reports for Beta and Production

builds. Unlike other types of test failures, HighFailureTests have a

larger impact on Production releases than on Beta builds, and they

have a median of 2.7 times more crashes than builds with normal

test failures. We conclude that ignoring test failures is related to a

dramatic increase in the number of crashes reported by users.

CCS CONCEPTS

• Software and its engineering→ Software testing;

KEYWORDS

Software Testing, User Crash Reports, Builds, Flaky Tests

ACM Reference Format:

Md Tajmilur Rahman and Peter C. Rigby. 2018. The Impact of Failing, Flaky,

and High Failure Tests on the Number of Crash Reports Associated with

Firefox Builds. In Proceedings of the 26th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software En-

gineering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3236024.3275529

∗This work was completed while Rahman was a PhD student at Concordia

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275529

1 INTRODUCTION

Software builds are tested to ensure that the functionality of the

system is not broken by a change. Developers write test cases when

they are developing new features or �xing bugs. In a rapid release

model, �xed and shortened release schedules reduce the time for

investigation of the test regressions [13]. We examine the impact of

ignored failing tests, �aky tests, and HighFailureTests on the build

quality as measured by the number of user crash reports associated

with a build.

We organize our research around the following questions:

(1) RQ1, Number of Crashes: Howmany crashes are there

for builds on dev, beta, and production?

Firefox stages its development into three channels. The de-

velopment channel contains the current work being done

by developers. The beta channel is used by early testers and

users. The production channel is released to end users. The

stability of the code and the number of users increase as we

move from the Dev to Production channel. This �rst research

question quanti�es the number of crashes on each channel.

This basic information is important to put the remaining re-

search questions into context as low use channels will likely

have few crashes but may not be of high quality.

(2) RQ2, Test Failures: How many crashes are associated

with builds that contain test failures?

This research question quanti�es the impact of test failures

on crashes. Our goal is to understand if ignored test failures

lead to an increase in end user crash reports.

(3) RQ3, Flaky Tests: How many crashes are associated

with builds that contain �aky tests?

Flaky tests fail non-deterministically[12]. For example, a

test may both pass and fail on the same build. As a result,

developers cannot trust a �aky test to determine software

quality. Our goal is to understand if ignored �aky test failures

lead to an increase in the number of browser crashes.

(4) RQ4, Historical Failures: Do failures of tests that have

failed many times in the past lead to an increase in

crashes?

Researchers have shown the tests that have failed in the past

tend to continue to fail at high levels [10]. These HighFail-

ureTests allowed researches to re-order tests based on their

historical likelihood to fail [1, 18]. We consider tests that

historically fail 10% of the time to be HighFailureTests. We

investigate whether failures of these tests lead to an increase

in the number of crash reports.

857

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Md Tajmilur Rahman and Peter C. Rigby

The paper is organized as follows, Section 2 provides the back-

ground on the Firefox project’s build process and crash collection.

Section 3 describes the research methodology. This section also

describes the data used in this case study. Section 4 discusses the

results for each research question. Section 5 positions our work in

the literature on build systems and testing. Section 6 concludes the

paper.

2 FIREFOX RELEASE PROCESS

Firefox is a popular open source modern web browser and has

been funded by the Mozilla Corporation since November 2004.

Firefox’s release process involves three channels: Development,

Beta,1 and Production [7–9]. Code remains on each channel for six

weeks before transitioning to the next channel. Each channel has a

di�erent level of stability, purpose, and number of developers and

users who exercise it. McIntosh et al. [15] found that the number

of users per channel is 100K for Development, 1M for Beta, and

100M+ for the Release channel.

To create a release, a continuous integration tool, Buildbot, is

used through Bootstrap automation scripts to build newly commit-

ted features into a new release [5]. The Buildbot master creates the

build logs and manages the overall process. Each build has a report

that contains the logs for each build and includes basic information

about the build-setup, environment, test steps, the test verdict, and

the overall build result.

When the browser closes unexpectedly a dialogue box allows

users to submit crash reports [6]. Each submitted crash report

contains a crash dump including the crashing page address, user’s

local environment, and the Firefox build id.

3 METHODOLOGY AND DATA

Our goal is to investigate the impact of ignored failing tests and �aky

tests on the number of reported end user browser crashes.We follow

a straight-forward method for our study. After loading the data

into a database we normalize the test status into three categories:

“Pass”, “Fail” and “Flaky”. We calculate which tests are historically

HighFailureTests. We then link the build and crash reports based on

the build id. We use R to provide statistical answers to our research

questions. Figure 1 illustrates our research methodology.

3.1 Data

We collect the historical build logs and crash reports for Mozilla

Firefox spanning from December 2010 to December 2012. We parse

the build logs and store the extracted information in a database. The

top portion of the log �le contains the basic build summary includ-

ing information about the builder, slave process, start time, pass

or fail verdict, build id, and source code revision number (commit

hash).

The test information is contained at the end of the build log �le

and includes the test status, test path, and a short description of

the test. We use the test path to uniquely identify each test. The

path is a URL that is linked to the test steps.

We then parse and extract all the crash reports into the database.

Each crash report contains a crash signature, URL with an unique

id, build id, operating system and other information that may be

1Beta was original divided into two channels: Aurora and Beta

useful to developers. Once we load the data into the database, we

remove incomplete data-rows that have missing information, such

as the crashes with no build id.

After extracting the build logs and crash reports we have two

data sets containing the crash information and the build history.

The attributes are listed in Table 1. By joining the two data sets

of builds and crashes we extract the builds that could be mapped

with one or more crashes. For each build we extract the test steps

from the build log and store them separately. We link them based

on build_id and we found a total of 2.8K unique build ids that have

both crash and test information. Associated with these builds are

729K crashes.

Table 1: Attributes for the build and crash data

Build Data Attr. Crash Data Attr.

build_id build_id

build_uid url

revision uuid_url

start_time crash_date

test_info signature

test_description -

test_name -

3.2 Test Status Mapping

We found six statuses that Firefox developers use to label their

tests. Since there is no formal de�nition for these test labels, we

examined the code of the test scripts [4] [3]. For this paper, we map

the test statuses into three categories: Pass, Fail, and Flaky tests.

The mapping between Firefox statuses and the categories is found

in Table 2 along with the number of test runs associated with each

status.

In Table 2 the status “PASS” maps to a normal test pass. The

“FAIL”, “UNEXPECTED-PASS”, and “UNEXPECTED-FAIL” are cate-

gorized under the “Fail” category. In contrast, the “PASS(EXPECTED

RANDOM)” and “KNOWN-FAIL(EXPECTED RANDOM)” are seen

as failing and passing non-deterministically and we consider them

to be �aky tests.

3.3 Identifying Flaky Tests

Flaky tests non-deterministically lead to a pass or fail verdict. Lou

et al. identi�ed �aky tests in their study [2] by searching for the key-

words “intermittent” and “�ak” within the commit history. They

used commit logs for identifying �aky tests because they were

mostly interested in �aky tests that are already �xed. However, we

do not use a keyword search to identify �aky tests. We use the ex-

isting Firefox classi�cation in the build log. In the test logs the tests

that are marked as “*-RANDOM”, we include them in the “Flaky”

category which means, tests that are labelled with the statuses

“PASS(EXPECTED RANDOM)” and “KNOWN-FAIL(EXPECTED

RANDOM)” are considered to be the �aky tests (See table 2).

858

The Impact of Failing, Flaky, and High Failure Tests on . . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Figure 1: Steps in our Research Methodology

Table 2: Mapping between Firefox test status and categories used in this paper

Firefox Test Status Normalized Categories Number of test verdicts

PASS Pass 120M

PASS(EXPECTED-RANDOM) Flaky 265K

KNOWN-FAIL(EXPECTED-RANDOM) Flaky 10K

FAIL Fail 2M

UNEXPECTED-PASS Fail 1K

UNEXPECTED-FAIL Fail 705

3.4 Identifying HighFailureTests

The distribution of failures is not normal. Certain HighFailureTests

account for a large proportion of total failures. Previous works have

used this historical property to re-prioritize tests so that those that

have failed frequently in the past will be run �rst [1, 10, 18]. We

investigate if builds with HighFailureTests have an increase in the

number of crash reports.

We de�ne a HighFailureTest to be one that has failed on 10%

or more test runs. As an example from the Firefox data set, a test

“brokenUTF-16” ran 131K times and 79% of the total runs resulted

with a “Pass” while 21% times it resulted as a “Fail”. We consider

this test to be a HighFailureTests. In contrast, the test “hiddenpaging”

which ran 275K times passed 97% of the time with only 3% failures.

This test would not be considered a HighFailureTest even though it

has failed on past builds.

4 RESULTS

4.1 RQ1: Number of Crashes

How many crashes are there for builds on Dev, Beta, and Production?

The distributions in Figure 2 are the per-build number of crashes

on development, beta and production channels. A box plot, is also

contained within the distributionwith the bottom and top of the box

showing the 25th and 75th percentiles, respectively. The vertical

line shows the median.

In total their are 2.8K builds associated with one or more crash

reports and 3.8K builds that do not have any crash reports. Although

the Dev channel contains experimental code and is likely not as

stable as the other channels, we see fewer crashes on this channel. In

the median case, development builds are associated with 0 crashes

and with 3 crashes at the 75th percentile. The Beta channel builds

are associated with a median of 437 crashes, and the Production

builds are associated to 233 crashes.

Since builds on the Development channel are not typically run

by main-stream end users, the number of total users is less likely

explaining the limited number of crash reports for builds on this

channel. As a result, we do not consider development channel in

the remainder of this paper.

The purpose of the Beta channel is to stabilize code. Early adopters

use these builds and provide crash and bug reports to help devel-

opers to stabilize the code. Despite having fewer users than the

Production channel [15], builds on this channel have the highest

number of crashes.

Code that reaches the Production channel has passed through

various stabilization and bug �xing stages which are intended to

reduce the number end user crashes. Although there are many

crash reports, given the expanded number of users the production

code does appear to be the most stable.

There are a median of 437 and 233 crashes for builds on

the Beta and Production channels. Despite having more end

users on the Production channel, there are fewer crashes likely

indicating that production code has high stability.

859

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Md Tajmilur Rahman and Peter C. Rigby

1 5 50 500 5000

D
e
v

B
e
ta

P
ro

d
u
c
tio

n

Crash reports per build + 1 (log scale)

Figure 2: Number of crashes for each channel

4.2 RQ2: Test Failures

How many crashes are associated with builds that contain test fail-

ures?

Our conjecture is that when developer ignore quality assurance

indicators therewill bemore crashes on these builds. In this research

question, we examine the number of ignored test failures for builds

and relate them with the number of crashes. We expect that more

browser crashes will be associated with builds that have failing

tests (i.e. failing builds) compared to those that do not have failing

tests (i.e. passing or clean builds).

Firefox runs a large number of tests during each build. In the

median case 3M tests are run on each build with a maximum

of 11M. Table 2 shows the number of passing and failing tests:

120M and slightly over 2M, respectively. We exclude “random”,

non-deterministic tests examining them in the next section.

Figures 3 and 4 contrasts the number of crash reports for builds

with at least one failing test with builds that have only passing tests.

For the Beta channel, we found that builds that have failing tests

have a median of 508 crash reports. In contrast, passing test builds

have a median of 2 crash reports with 5 at the 75th percentile and

a maximum of 25.

In the Production channel builds with failing tests have a median

of 291 crashes. In contrast, passing build are associated with a

median of 2 crash reports with 13 at the 75th percentile.

In the median case, builds that have failing tests are associated

with 508 and 291 crash reports for the Beta and Production

channels. In contrast, builds with passing tests have a median of

only two crash reports, with some outlier pass production builds

with many crashes.

4.3 RQ3: Flaky Tests

How many crashes are associated with builds that contain �aky tests?

Flaky tests fail in a non-deterministic manner and potentially

hide bugs. For example, if a �aky test fails frequently, developers

tend to ignore the failures and could miss the real bugs. We investi-

gate whether ignoring �aky tests is a potential reason for increased

browser crashes. We use the Firefox test outcome labels that contain

“-RANDOM" to determine which tests are �aky (See the Method-

ology Section 3 for more details on the process of classi�cation).

In table 2, we see that 275K �aky test-runs are labelled with the

“-RANDOM” verdict across all builds.

In the median case each Production channel build that contains

at least one �aky test failure is associated with 234 crashes. There

is a high degree of variation with 585 crashes at the 75th percentile

and a maximum of 93k crash reports. Production builds with �aky

tests are associated with almost the same number of crashes as

those with regular failing tests.

For the Beta channel in Figure 3 we observed a similar patter with

a 514, 1.2K, 21K crash reports for the median, 75th percentile and

maximum, respectively. Beta builds with Flaky tests are associated

with almost the same number of crashes as those with regular

failing tests.

A Wilcoxon test comparing the crashes for �aky builds shows a

statistically signi�cant di�erence between the Beta and Production

channels with the p-value p < .001. While future work is necessary,

we conjecture that developers are more conservative with releasing

production builds with known failing and �aky tests than with beta

builds.

In the median case, builds with failing �aky tests we asso-

ciated with 514 and 234 crash reports for Beta and Production,

respectively.

4.4 RQ4: Historically HighFailureTests

Do failures of tests that have failed many times in the past lead to an

increase in crashes?

In software systems, problems cluster around defective code and

tests that have failed frequently in the past are likely to fail in the

future [1, 10, 18]. To investigate these tests, we classify test that fail

in 10% or more of their total runs as historically HighFailureTests.

In the last distribution in Figures 3 and 4, we show that builds that

have a failing test that is classi�ed as HighFailureTest lead to lower

quality builds as measured by an increase in reported crashes on

both the Production and Beta channels.

The crash distribution for production builds that have one or

more failing tests that are categorized as HighFailureTests show a

medium, 75th percentile, and maximum of 780, 1.4k, and 21k crash

reports, respectively. Production builds with HighFailureTests are

associated with 2.7 times more crashes than builds with regular

failing tests and 390 times higher than the passing builds.

For Beta builds the corresponding values are 585, 1.5k, and 92k

crashes reports for the median, 75th percentile, and maximum, re-

spectively. Beta channel builds with HighFailureTests are associated

860

The Impact of Failing, Flaky, and High Failure Tests on . . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

1 5 50 500 5000

P
a
s
s

F
a
il

F
la

k
y

H
ig

h
 F

a
il

Crash reports per Beta build (log scale)

Figure 3: Crashes per type for Beta builds

1 5 50 500 5000

P
a
s
s

F
a
il

F
la

k
y

H
ig

h
 F

a
il

Crash reports per Production build (log scale)

Figure 4: Crashes per type for Production builds

with 1.3 times more crashes than builds with regular failing tests

and 292 times higher than the passing builds.

A Wilcoxon test comparing HighFailureTests on the Beta and

Production channels shows a statistically signi�cant di�erence

between the crashes on these two channels with the p-value p <

0.022.

Unlike the �aky tests that are labeled by Firefox developers,High-

FailureTests are not di�erentiated from other types of failing tests by

the developers. This is especially problematic on production builds

as these ignoring these HighFailureTests lead to many crash reports.

Firefox developers might bene�t from identifying and monitoring

this classi�cation of tests.

In the median case, builds that contain failing historically

HighFailureTests are associated with 585 and 780 crashes for

Beta and Production respectively. HighFailureTests are partic-

ularly problematic with production builds where there are 2.7

times more crash reports when compared to builds with normal

test failures.

5 RELATED WORK

We divide the related work into testing and build maintenance and

quality. We are unaware of any work that has studied the impact

of testing on �eld crash reports.

Testing and Flaky Tests. Labuschagne et al. studied the cost of

regression testing in practice [11]. They found that 18% of the total

test suite executions fail. More interestingly, 13% of these failures

are �aky. Of the non-�aky failures, only 74%were caused by a bug in

the system under test and the remaining 26% were due to incorrect

or obsolete tests. They also found that in the failed builds, only 0.38%

of the test case executions failed and 64% of failed builds containing

more than one failed test. This study illustrates the importance of

dealing with the �aky tests to improve the quality of the regression

testing. Our study adds to this knowledge by studying the impact

of test failures on �eld crashes.

Recent works on �aky tests identi�ed the root cause of the �aki-

ness. For example, Eloussi identi�ed �aky tests from test results [2]

in her doctoral research where she proposes three improvements

for the basic technique to identify �akiness of tests. By manually

examining the �aky test Eloussi divided the tests into three types:

Non-Burstly, Burstly and State-Dependent Burstly. Another study

on �aky test by Memon et al. [16] provides a detail post-mortem

of �aky tests that provides actionable information about avoiding,

detecting and �xing these types of non-deterministic tests. They

inspect the test code by analyzing the code commits that likely �x

�aky tests. They also identi�ed the root causes of �akiness but not

the impact after release. In our work, we measured the impact of

�aky tests on crashes. Future work could use the crash reports on

�aky tests to validate the causes identi�ed by Eloussi and Memon.

General build system studies. Xin et al. performed an empirical

study on bugs in build systems [17]. They categorized bugs based on

their type and severities and found that the third highest percentage

of bugs belong to the build-con�guration category. They examined

the association between the bugs and the build con�gurations,

while we associate browser crashes with the failing tests in a build.

McIntosh empirically studied build systems in his dissertation

[14]. His publications include a build maintenance study of the

e�ort spent on maintaining the build process and the ownership of

these build scripts [15]. He found that maintaining the build system

required signi�cant e�ort, with an overhead of 27% on source code

861

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Md Tajmilur Rahman and Peter C. Rigby

development and 44% on test development. Our work adds evidence

that build maintenance is an important problem by showing that

ignoring build and test problems lead to substantially more crashes

increasing developer e�ort and impact on end users.

6 CONCLUSION AND FUTUREWORK

In this paper, we investigate the association between builds and

browser crashes on Beta and the Production channels of the Firefox

web browser. We study the impact of ignoring failing, �aky, and

HighFailureTests on the number of crashes for a build.

We observe that ignoring failing tests makes the Firefox builds

much more crash prone compared to the builds that do not have

any failing tests (passing builds). Passing builds have a median of 2

crashes for both Beta and Production. In contrast, builds with failing

tests have 508 and 291 crashes in the median case, respectively.

Flaky tests non-deterministically pass or fail reducing developer

con�dence in the test. In the median case, builds with failing �aky

tests had 514 and 234 crashes for the Beta and Production channels,

respectively. Previous works have shown that tests that have failed

in the past are more likely to fail in the future [1, 10, 18]. We

quanti�ed HighFailureTests as those that have failed in 10% of past

runs. In the median case, builds with failing HighFailureTests have

585 and 780 crashes for Beta and Production.

Our results show that ignoring failing and �aky tests results in

more crashes in Beta than Production. However, ignoring HighFail-

ureTests tests leads to more crashes on the Production than Beta

channel. Ignored HighFailureTests were associated with a median

of 780 crashes on the Production channel. This is the most crashes

associated with any type of failing test and channel. In the median

case there are 2.7 times more crashes per build than builds with

normal test failures. A failing HighFailureTests clearly warrants a

detailed investigation before release by Firefox developers.

We hope that our work will inspire developers to understand

the high risk of ignoring failing tests. We hope that researchers

will extend our work by examining both the root causes of failing

and �aky tests and by contributing advanced statistical models to

enhance our understanding of the associated risks.

ACKNOWLEDGEMENTS

We would like to thank Bram Adams from Ecole Polytechnique

Montreal for providing the Firefox data and for helping us under-

stand some its key features.

REFERENCES
[1] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for

Improving Regression Testing in Continuous Integration Development Envi-
ronments. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA,
235–245. https://doi.org/10.1145/2635868.2635910

[2] Lamyaa Eloussi. 2015. Determining �aky tests from test failures. Ph.D. Dissertation.
University of Illinois at Urbana-Champaign.

[3] Mozilla Firefox. 2012. Test Labeling in Mozilla : integration-mozilla-inbound.
http://bit.ly/2riO0Nh.

[4] Mozilla Firefox. 2012. Test Labeling in Mozilla : Xpcshell Self Test.
http://bit.ly/2scySB1.

[5] Mozilla Firefox. 2017. Build:Release Automation.
https://wiki.mozilla.org/Build:Release_Automation.

[6] Mozilla Firefox. 2017. Firefox Crash Reporter. https://support.mozilla.org/en-
US/kb/mozillacrashreporter.

[7] Mozilla Firefox. 2017. Release Management/Release Process.
https://mzl.la/1KhlZf9.

[8] Foutse Khomh, Bram Adams, Tejinder Dhaliwal, and Ying Zou. 2015. Under-
standing the impact of rapid releases on software quality. Empirical Software
Engineering 20, 2 (2015), 336–373.

[9] Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. 2012. Do faster
releases improve software quality?: an empirical case study of Mozilla Firefox. In
Proceedings of the 9th IEEE Working Conference on Mining Software Repositories.
IEEE Press, 179–188.

[10] Jung-Min Kim and Adam Porter. 2002. A history-based test prioritization tech-
nique for regression testing in resource constrained environments. In Software
Engineering, 2002. ICSE 2002. Proceedings of the 24rd International Conference on.
IEEE, 119–129.

[11] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring
the Cost of Regression Testing in Practice: A Study of Java Projects Using Con-
tinuous Integration. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 821–830.
https://doi.org/10.1145/3106237.3106288

[12] Eloussi Luo, Hariri. 2014. An empirical analysis of �aky tests. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 643–653.

[13] Mika V.Mäntylä, Foutse Khomh, BramAdams, Emelie Engström, and Kai Petersen.
2013. On Rapid Releases and Software Testing. In Proceedings of the 2013 IEEE
International Conference on Software Maintenance (ICSM ’13). IEEE Computer
Society, Washington, DC, USA, 20–29. https://doi.org/10.1109/ICSM.2013.13

[14] Shane McIntosh. 2015. Studying the Software Development Overhead of Build
Systems. PhD dissertation. Queen’s University.

[15] S. McIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei, and A. E. Hassan. 2011. An
empirical study of build maintenance e�ort. In 2011 33rd International Conference
on Software Engineering (ICSE). 141–150. https://doi.org/10.1145/1985793.1985813

[16] Cohen Memon. 2013. Automated testing of gui applications: models, tools,
and controlling �akiness. In Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 1479–1480.

[17] X. Xia, X. Zhou, D. Lo, and X. Zhao. 2013. An Empirical Study of Bugs in Software
Build Systems. In 2013 13th International Conference on Quality Software. 200–203.
https://doi.org/10.1109/QSIC.2013.60

[18] Y. Zhu, E. Shihab, and Rigby PC. 2018. Test Re-prioritization in Continuous Test-
ing Environments. In 2018 IEEE International Conference on Software Maintenance
and Evolution. 10.

862

