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Peer review is seen as an important quality-assurance mechanism in both industrial development and the
open-source software (OSS) community. The techniques for performing inspections have been well studied
in industry; in OSS development, software peer reviews are not as well understood.

To develop an empirical understanding of OSS peer review, we examine the review policies of 25 OSS
projects and study the archival records of six large, mature, successful OSS projects. We extract a series of
measures based on those used in traditional inspection experiments. We measure the frequency of review, the
size of the contribution under review, the level of participation during review, the experience and expertise
of the individuals involved in the review, the review interval, and the number of issues discussed during
review. We create statistical models of the review efficiency, review interval, and effectiveness, the issues
discussed during review, to determine which measures have the largest impact on review efficacy.

We find that OSS peer reviews are conducted asynchronously by empowered experts who focus on changes
that are in their area of expertise. Reviewers provide timely, regular feedback on small changes. The descrip-
tive statistics clearly show that OSS review is drastically different from traditional inspection.
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1. INTRODUCTION

Over the years, formal peer reviews (inspections) have been perceived as a valuable
method for improving the quality of a software project. Inspections typically require pe-
riodic group reviews. Developers are expected to prepare for these meetings by studying
the artifact under review, and then they gather to discuss it [Fagan 1976; Laitenberger
and DeBaud 2000; Kollanus and Koskinen 2009].

In practice, industrial adoption of software inspection remains low, as developers and
organizations complain about the time commitment and corresponding cost required
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for inspection, as well as the difficulty involved in scheduling inspection meetings
[Johnson 1998]. These problems are compounded by tight schedules that make it easy
to ignore peer reviews.

Given the difficulties with adoption of inspection techniques in industry, it is sur-
prising that most large, successful projects within the open-source software (OSS)
community have embraced peer review as one of their most important quality-control
techniques. Despite this adoption of peer review, there are very few empirical studies ex-
amining the peer review techniques used by OSS projects. There are experience reports
[Lussier 2004; Raymond 1999], descriptions at the process and policy level [Dinh-Trong
and Bieman 2005; Mockus et al. 2000], and empirical studies that assess the level of
participation in peer reviews [Asundi and Jayant 2007; Lee and Cole 2003]. There has
also been some more recent work that examines OSS review when conducted on bug-
tracking tools, such as Bugzilla [Breu et al. 2010; Jeong et al. 2009; Nurolahzade et al.
2009]. In this article, we examine the widely used email-based style of OSS peer review.

A review begins with an author creating a patch (a software change). The author
can be anyone from an experienced core developer to a novice programmer who has
fixed a trivial bug. The author’s patch, which is broadcast on the project’s mailing
list, reaches a large community of potentially interested individuals. The patch can be
ignored1, or it can be reviewed with feedback sent to the author and also broadcast
to the project’s community. The author, reviewers, and potentially other stakeholders
(e.g., nontechnical users) discuss and revise the patch until it is ultimately accepted or
rejected.

The study of software inspection for the last 35 years has produced a set of pa-
rameters of inspection that can be measured in order to determine the efficacy of an
inspection technique. For example, the expertise of reviewers, the review interval, and
the effectiveness of review. Our goal is to measure similar parameters to provide an
empirically examination of peer review across six successful, mature OSS projects and
to model the efficiency and effectiveness of each projects’ review technique. By measur-
ing these parameters of review, we expand what is known about OSS and can identify
techniques from OSS peer review that might be valuable and transferable to industry
or vice versa.2 We have chosen the Apache httpd server (referred to as Apache in this
work), Subversion, Linux, FreeBSD, KDE, and Gnome to study, because each project
is widely used, large, and mature. While future work may study unsuccessful or small
projects, we feel that it is important to first understand the review techniques origi-
nating in successful projects that manage a large number of reviews and have a high
degree of collaboration. This article replicates and augments the parameters measured
in Rigby et al.’s [2008] case study of the Apache server. A further contribution of this
work is statistical models of the peer review processes that help us determine which
parameters have the largest impact on review efficacy.

The article is organized as follows. Section 2 lays out our research questions and
discusses related work. Our questions mirror those asked of traditional inspection
techniques. In Section 3, we present the types of review that we extracted from the
review policies of 25 successful OSS projects. Section 4 describes our quantitative
research methodology, data, and data extraction techniques. Section 5 answers our
research questions by extracting a series of measures on archival data. In Section 6,
we develop statistical models to determine which measures have the largest impact on
review efficiency and effectiveness. In Section 7, we introduce our theory of OSS peer
review, describe our findings in the context of the software inspection literature, and
discuss the validity of our study.

1Contributions that receive no review responses are not studied in this work.
2A summary of our findings for practitioners can be found in IEEE Software [Rigby et al. 2012].
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2. RESEARCH QUESTIONS AND RELATED WORK

To facilitate comparison of our findings with those of the last 35 years of inspection
research, we base our research questions upon those that have previously been asked
and answered for inspection techniques (e.g., [Ackerman et al. 1989; Cohen 2006;
Porter et al. 1998, 1997]). Each set of research questions are operationalized as a set of
measures. Since these measures depend on the type of data used and are often proxies
for the actual quantity we wish to measure, the measures are introduced, along with
any limitations, in the section in which they are used. Each measure will provide us
with a variable to use in our statistical models of review efficacy.

Q1 Frequency and Activity. What is the frequency of review? Can reviewing keep up
with development or do we see an increase in the proportion of unreviewed contribu-
tions when more commits are being made?

OSS peer review policies enforce a review around the time of a commit. For pair
programming, reviews are conducted continuously [Cockburn 2004], while for inspec-
tions, reviews are usually conducted infrequently on completed work products [Fagan
1986]. As development activity increases, so does the number of contributions and com-
mits. In OSS, if the level of reviewing does not increase with development activity, this
could mean that contributions could go unreviewed. To study this concern, we correlate
review frequency to development activity.

Q2 Participation. How many reviewers respond to a review? How much discussion
occurs during a review? What is the size of the active reviewer group?

In his experience-based analysis of the OSS Linux project, Raymond [1999] coined
Linus’s Law as “Given enough eyeballs, all bugs are shallow.” It is important to gauge
participation during peer reviews to assess the validity of this statement. Earlier re-
search into the optimal number of inspectors has indicated that two reviewers perform
as well as a larger group [Buck 1981; Porter et al. 1998; Sauer et al. 2000]. Previous
OSS research has found that there are on average 2.35 reviewers who respond per
Linux review [Lee and Cole 2003]. Similar findings were attained when replications
were performed on other projects [Bird et al. 2006, 2007]. The amount of discussion is
also measured to gauge participation by counting the number of messages exchanged
during a review. We add a new measures to gauge the size of the reviewer group (i.e.,
the number of people participating in reviews on a regular basis) at monthly intervals.

Q3 Expertise and Experience. For a given review, how long have the authors and
reviewers been with the project? How much work has a developer done on the project?

Expertise has long been seen as the most important predictor of review efficacy
[Porter et al. 1998; Sauer et al. 2000]. We measure how much experience and expertise
authors and reviewers have based on how long they have been with the project and
the amount of work they do. Based on the experiences of prominent OSS developers
[Fielding and Kaiser 1997; Fogel 2005; Raymond 1999], developers self-select work
that they find interesting and for which they have the relevant expertise. Two papers
[Asundi and Jayant 2007; Rigby and German 2006] indicate that a large percentage of
review responses are from the core group (i.e., experts). We expect OSS reviews to be
conducted by expert developers who have been with the project for extended periods
of time.

Q4 Churn and Change Complexity. How does the size of change (churn) affect peer
review?

Mockus et al. [2002] found that the size of a change, or churn, for the Apache and
Mozilla projects were smaller than for the proprietary projects they studied, but they
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did not understand or investigate why. We investigate the relationship between OSS
review policy and practice with the size of the artifact under review. We want to un-
derstand whether the small change size is a necessary condition for performing an
OSS-style review.

Q5 Review Interval. What is the calendar time to perform a review?

The review interval, or the calendar time to perform a review, is an important mea-
sure of review effectiveness [Kollanus and Koskinen 2009; Porter et al. 1998]. The
speed of feedback provided to the author of a contribution is dependent on the length
of the review interval. Review interval has also been found to be related to the overall
timeliness of a project. For example, Votta [1993] has shown that 20% of the interval
in a traditional inspection is wasted due to scheduling. Interval is one of our response
variables, and in Section 6, we create a statistical model to determine how the other
variables influence the amount of time it takes to perform a review.

Q6 Issues. How many issues are discussed during a review?

Fagan [1976] measured the effectiveness of inspection by counting the number of
defects, and then, based on the cost of fixing defects later in the development cycle, he
determined the time savings of finding defects early. Variations on Fagan’s measure of
the number of defects found have been used in many subsequent studies of review effec-
tiveness [Votta 1993; Knight and Myers 1993]. Research on inspection has established
inspection as an effective defect removal technique, with the result that researchers
usually calculate the number of defects found instead of the ultimate cost savings to
determine the effectiveness of a review process [Kollanus and Koskinen 2009]. We do
not have data that would allow us to measure the costs savings on OSS projects, so we
create a proxy measure of the number of defects found.

OSS developers do not record the number of defects found during review, so we
measure: the number of issues found during review. An issue, unlike a true defect,
includes false positives and questions. For example, an issue brought up by a reviewer
may actually be a problem with the reviewer’s understanding of the system instead
of with the code. In Section 6, we statistically model the number of issues discussed
per review to understand which of the variables previously described have the greatest
impact on review effectiveness.

3. BACKGROUND: REVIEW PROCESSES AND CASE STUDIES

Before we quantify OSS review processes, we study the review processes that are used
on successful OSS projects. The accurate determination of success in OSS is difficult
to quantify [German 2007], and there are thousands of potentially successful OSS case
studies [Freshmeat 2009; SourceForge 2010; Howison et al. 2006]. When it is not obvi-
ous which cases must be examined, Yin [2003] recommends collecting “limited informa-
tion on a large number of cases as well as intensive information on a smaller number.”

We use two approaches to identify potential case studies. First, we use an online
“catalogue” of thousands of OSS applications and sample the 19 highest ranked
projects [Freshmeat 2009]. Second, we examine six high-profile projects which have
obvious measures of success (e.g., dominance in a particular software domain). We
manually classify the review processes of these 25 projects. We visited each project’s
main development page and searched for links relating to peer review or patch
submission. We noted the type of project, the review types and policies used on the
project, and any other observations, such as the size of the development team and the
governance structure. Figure 1 illustrates the steps in the two most common review
types. Table I shows the types of review policies used on each project. Since our unit
of analysis is the individual peer reviews, the pertinent “limited information” is the
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Fig. 1. Review processes: RTC and CTR.

Table I. Review Types Used by the 25 Projects
Examined

Project Review Types
Apache RTC, Lazy RTC, CTR
Subversion RTC, CTR
Linux Maintainer RTC
FreeBSD Maintainer RTC, CTR
KDE RTC, CTR, ReviewBoard tool
GNOME RTC, CTR, Bugzilla
Mozilla “Strong” RTC in Bugzilla
Eclipse RTC in Bugzilla
GCC Maintainer RTC
cdrtools Small, stable no formal review
Postgresql RTC in Commitfest
VLC RTC
MPlayer RTC, CTR
Clam AntiVirus Commercially run, no policy
MySQL “Strong” RTC
PHP Informal RTC, CTR, Bugzilla
PHPMyAdmin Informal RTC, CTR
NTop Informal RTC, Trac tool
TightVNC RTC using Sourceforge tools
GTK+ Bugzilla
LibJPEG Small, stable no formal review
WebGUI Commercially run, no policy
NMap RTC
Samba RTC, CTR

review process, which we summarize next. Rigby [2011, Appendix A] contains the
details of the attributes and context for each project.

3.1. Review Process

Although the level of formality of the review processes varies among OSS projects, the
general steps involved in review are as follows:(1) the author submits a contribution
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(a patch or diff) by emailing it to the developer mailing list, (2) one or more people review
the contribution, (3) it is modified until it reaches the standards of the community,
and (4) it is committed to the code base. This style of review is called review-then-
commit (RTC). In contrast to RTC, some projects allow trusted developers to commit
contributions (i.e., add their contributions to the shared code repository) before they are
reviewed. According to the policy statements of OSS project, the main or core developers
for the project are expected to review all commits. This style of review is called commit-
then-review (CTR). Figure 1 illustrates the differences between RTC and CTR. CTR is
less commonly used than RTC but has consistent application across project. For RTC,
there are five variants: informal, strong, maintainer RTC, lazy, and tracker-based.

—Informal RTC exists when there is no explicit policy for review, but contributions are
sent to the mailing lists where they are discussed. This is the most common type of
review in OSS.

—In contrast, strong RTC occurs when all developers must have their code reviewed
before committing it regardless of their status within the community. For example,
on the MySQL and Mozilla projects, all developers, including core-developers, must
have two reviewers examine a change before it can be committed. When a project
uses strong RTC, CTR is not used.

—Maintainer RTC occurs on large projects that have explicit code ownership. For
example, GCC, Linux, and FreeBSD use this style of review. In this case, developers
must get the approval of the code’s maintainer before committing any changes in
that part of the system.

—Lazy RTC, as used on Apache and Subversion, occurs when a core developer posts
a change to the mailing lists, asking for feedback within a certain time period. If
nobody responds, it is assumed that other developers have reviewed the code and
implicitly approved it.

—Tracker-Based RTC occurs when the review is conducted on a Web-based tracking
tool (e.g., Bugzilla, ReviewBoard) instead of on a mailing list. Tracker-based review
is outside the scope of this work. However, bugtracker review is used by several
projects that have been studied by other researchers, including Eclipse [Breu et al.
2010], Mozilla [Jeong et al. 2009; Nurolahzade et al. 2009], KDE, and GNOME.
On some projects, such as Apache and Linux, a bugtracker is used, but according
to project policy, all reviews are still performed on the developers mailing list; the
bugtracker is simply for reporting bugs.

Aside from the actual processes of review, there are two policies that apply to all
changes to OSS projects. First, a contribution must be small, independent, and com-
plete. Reviewers do not want to review half-finished contributions or contributions that
involve solutions to multiple unrelated problems (e.g., a change that involves fixing a
bug and correcting the indentation of a large section of code). Second, on projects with
a shared repository, if any core developer feels that a contribution is unacceptable, he
or she can place a veto on it, and the contribution will not be committed or, in the case
of CTR, it will be removed from the shared repository.

3.2. Detailed Case Study Replications

Having developed a broad understanding of the review policies on successful OSS
projects, we used theoretical sampling to sequentially select six well-known projects to
examine intensively [Yin 2003]. The projects are presented in order in which they were
studied and represent both literal and contrasting replications.

Apache is a the most widely used httpd server [Netcraft 2010]. Apache is a
successful, medium-sized project that is run by a foundation. It has been the focus of
many empirical investigations because early on it formalized and enforced its project

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 35, Pub. date: August 2014.



Peer Reviews on Open-Source Software Projects 35:7

policies [Mockus et al. 2000; Gutwin et al. 2004; Bird et al. 2006; Rigby et al. 2008].
Some OSS projects state that they are doing “Apache Style” development [Fogel 2005].

Subversion is a version control system that was designed to replace CVS. Subversion
is a good first test of our evolving theory because it borrowed many of its policies
from the Apache project and several of the original Subversion developers were also
involved in the Apache project [Fogel 2005]. It is also run by a foundation and is
similar in size to Apache.

FreeBSD is both a UNIX based kernel and a UNIX distribution. FreeBSD is similar
to the previous projects in that it is governed by a foundation and has similar styles
of review to Apache and SVN. However, it is a much larger project than either of the
previous cases and tests the impact of size on peer review.

Linux Kernel is a UNIX based kernel, like FreeBSD, but also contrasts sharply with
the first three projects on the governance dimension. It is governed by dictatorship
instead of by a foundation. This difference in governance means that Linux can only
use RTC and that patches are passed up a “chain-of-trust” to the dictator.

KDE is a desktop environment and represents not a single project, as was the case
with all the previous projects, but an entire ecosystem of projects. KDE also contrasts
with the other projects in that end-user software as well as infrastructure software
is developed. By being a composite project the relationship between each individual
subproject is less well defined. We are interested in understanding how a diverse
and large community like KDE conducts peer review. The exact review process varies
among subprojects.

GNOME, like KDE, is a desktop environment and an ecosystem of projects. Devel-
opers on this project write infrastructure and end user software. For both KDE and
GNOME, reviews were at one point conducted exclusively over email. However, many
reviews on GNOME are now being performed in Bugzilla, and on KDE, in Bugzilla or
ReviewBoard, depending on the subproject.

4. METHODOLOGY AND DATA SOURCES

We scope this work around the parameters of peer review that have been measured
in the past. We only consider patch contributions that receive a response, because a
contribution to the mailing list that is ignored by the developer’s peers is not a review.
For a qualitative perspective, see Rigby and Storey [2011] and Rigby’s dissertation
[2011], where they interviewed core developers and manually inspected 500 review
threads to understand the interactions, roles, and types of review on the the same set
of OSS project that are quantitatively examined in this work.

OSS developers rarely meet in a synchronous manner, so almost all project commu-
nication is recorded [Fielding and Kaiser 1997]. The OSS community fosters a public
style of discussion, where anyone subscribed to the mailing list can comment. Discus-
sions are usually conducted on a mailing list as an email thread. A thread begins with
an email that includes, for example, a question or a patch contribution. As individuals
reply, the thread becomes a discussion about a particular topic. If the original message
is a patch contribution, then the discussion is a review of that contribution.

We define a review on an OSS project to be an email thread discussion which
contains a patch (i.e., a change to the software system). All 25 projects we examined
required a patch in order to start a review. The patch contribution may be any kind of
software artifact. New artifacts are also patch contributions that contain only added
lines. A patch contribution that is posted to a mailing list but that does not receive a
response from other developers is the is equivalent to a co-located inspection meeting
where only the author shows up to the review meeting—there is no discussion, so it
is not a review. Contributions that receive no comments from other developers are
excluded from our dataset.
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Table II. Project Background Information

Project Period Years Patches RTC RT C
Patches Commits CTR CT R

Commits

Apache (ap) 1996–2005 9.8 4.6K 3.4K 74% 32K 2.6K 8%

Subversion (svn) 2003–2008 5.6 2.9K 2.8K 97% 28K 2.2K 8%

Linux (lx) 2005–2008 3.5 50K 28K 56% 118K NA NA

FreeBSD (fb) 1995–2006 12 73K 25K 34% 385K 24K 6%

KDE (kde) 2002–2008 5.6 22K 8K 36% 565K 15K 3%

Gnome (gn) 2002–2007 5.8 12K 8K 67% 450K NA NA

Note: The time period we examined in years, the number of patches submitted, the number of RTC-style
reviews, the proportion of patches that have a review discussion, the number of commits, the number of
CTR-style reviews, and the proportion of commits that have a review discussion.

RTC. For review-then-commit, we identify contributions on the mailing list by ex-
amining threads looking for diffs. A diff shows the lines that an author has changed,
including lines around the change to help reviewers understand the change [Eggert
et al. 2002]. We examine only email threads that contain at least one diff, while in
previous work, we considered an email thread to be a review if the email subject con-
tained the keyword “[PATCH]” [Rigby et al. 2008]. This technique works well on the
Apache project, as developers usually include the keyword in the subject line; however,
other projects do not use this convention. For consistent comparison with the other
projects, we re-ran the analysis on Apache, this technique identified an additional
1,236 contributions or an additional 60% of the original sample.

CTR. Every time a commit is made, the version control system automatically sends
a message to the “version control” mailing list containing the change log and diff. Since
the version control system automatically begins each commit email subject with “cvs
[or svn] commit:”, all replies that contain this subject are reviews of a commit. In this
case, the original message in the review thread is a commit recorded in the version
control mailing list.

Extraction Tools and Techniques. We created scripts to extract the mailing lists and
version control data into a database. An email script extracted the mail headers in-
cluding sender, in-reply-to, and date. The date header was normalized to coordinated
universal time (UTC). Once in the database, we threaded messages by following the ref-
erences and in-reply-to headers. Unfortunately, the references and in-reply-to headers
are not required in RFC standards, and many messages did not contain these headers
[Resnick et al. 2001]. When these headers are missing, the email thread is broken,
resulting in an artificially large number of small threads. To address this problem, we
use a heuristic based on the date and subject to join broken threads. For further details
of our data extraction techniques, please see Rigby [2011, Appendix B].

4.1. Project Background Information

The purpose of Table II is to show that we have sampled a variety of projects and to
give a sense of the size of our data sets. Comparisons of raw, absolute values among
projects is meaningless. For example, the time periods that we had available for study
vary drastically—we studied 12 years of FreeBSD development, but only 3.5 years
of Linux development. More meaningful comparisons can be made at the level of
individual reviews. When we answer our research questions, individual reviews are
our unit of analysis unless otherwise noted.

Ignored Contributions. One commonality across projects is that a large number of
patch contributions that are ignored. Rigby and Storey [2011] have examined this issue
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and found that interviewed developers ignore any patch that is not interesting to them:
they ignore a patch rather than rush through a review missing potentially important
flaws. An ignored patch may be re-posted at a later time.

The number of ignored patches varies from 66% on FreeBSD to 3% on Subversion.
This variation can be partially explained by the culture on the projects. For example,
on Subversion, one developer set a community norm by reviewing each patch that was
submitted to the mailing list and this culture was adopted by the project [Fogel 2005;
Rigby and Storey 2011]. In contrast, interviews with FreeBSD developers indicated
that they would only respond to knowledgeable contributors and that a substantial
problem for the project’s developers was finding someone with the appropriate exper-
tise to review each contribution. KDE and Gnome in particular, have drastically more
patch contributions and commits than reviews, indicating that many reviews occur in
the bug repository or reviewing tool. Tracker-based review is becoming increasingly
popular on projects with a large number of nontechnical users, but it is outside the
scope of this article and has recently been examined by other researchers, such as
Nurolahzade et al. [2009].

Since OSS developers follow a community norm to only comment when some new
insight can be added [Hambridge 1995; Fogel 2005; Rigby and Storey 2011], a response
to a commit indicates some potential problem has been found. We see that 8%, 8%,
and 6% of commits contain at least one potential problem for Apache, Subversion, and
FreeBSD, respectively. Given that we selected successful mature projects for study, it
would be surprising to see higher percentages of commits containing potential defects.
For KDE, only 3% of changes are reviewed after commit. Since subprojects can vary
their review practices, it is clear that some do not use CTR and so none of their changes
are reviewed after commit.

Despite the many ignored contributions, this article studies drastically more reviews
than any earlier work. For example, Porter et al. [1998, 1997] studied 88 reviews at
Lucent and Cohen studied 2.5K peer reviews at Cisco [2006].

Plotting the Data. We use two types of plots: beanplots and boxplots. Beanplots show
the distribution density along the y-axis and in this work contain a horizontal line that
represents the median [Kampstra 2008]. Since most of the distributions in this article
are nonnormal, a beanplot allows us to view any irregularities. However, when we have
count data that is highly concentrated, we use a boxplot, as a beanplot will appear as
one or two concentrated points. For all the boxplots in this work, the bottom and top
of the box represent the first and third quartiles, respectively. Each whisker extends
1.5 times the interquartile range. The median is represented by the bold line inside
the box. Since our data are not normally distributed, regardless of the style of plot, we
report and discuss median values.

5. ARCHIVAL DATA RESULTS

We present results related to our research questions. Since each question requires a
different set of measures, we describe each measure and discuss its limitations in the
section in which it is used. A discussion of the validity of this study can be found in
Section 7.2. Although the operationalization of the measures may be unfamiliar to
readers, they are designed to mirror those used in traditional inspection experiments
(e.g., Fagan [1976] and Porter et al. [1998]).

5.1. Frequency and Activity

Q1. What is the frequency of review? Can reviewing keep up with development or do
we see an increase in the proportion of unreviewed contributions when more commits
are being made?
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Fig. 2. RTC – reviews per month. Fig. 3. CTR – reviews per month.

We measure the relationship between development activity and reviews. For this
research question, the unit of analysis is the number of reviews per month. For RTC,
review frequency is measured by counting the number of contributions submitted to the
mailing list that receive at least one reply. For CTR, we count the number of commits
that receive at least one reply on the lists. Development activity is measured as the
number of commits.

Figures 2 and 3 show the number of reviewers per month for RTC and CTR, re-
spectively. We see that RTC Linux has far more reviews per month (median of 610)
than any other project. KDE, FreeBSD, and Gnome all have medians of slightly over
100 reviews per month, while the smaller projects, Apache and SVN, have around
40 reviews in the median case. A similar divide occurs when we look at CTR.

In order to determine the relationship between commit activity and review type, we
conduct both Pearson and Spearman correlations.3 We assume that commit activity
is related to development activity [Nagappan and Ball 2005]. The correlation between
the number of CTRs and commits is strong. Person r = .80, .73, .82 and Spearman
r = .75, .69, and .84, for Apache, SVN, and FreeBSD, respectively.4 This correlation
indicates that the number of CTRs changes proportionally to the number of commits.
Therefore, when there are more changes to be reviewed, there are more CTR reviews.
While future work is necessary, this finding suggests that as the number of commits
increases, CTR continues to be effective and does not become, as one Apache developer
feared, “commit-then-whatever.” The correlation for KDE is low (r = .16). Since KDE
is a large set of related OSS projects, the lack of correlation between CTR and commits
may be because not all projects use CTR.

In contrast, the correlation between the number of RTCs and commits is weak to
moderate. Only two projects (Linux with r = .55 and FreeBSD with r = .64, respec-
tively) are correlated above r = 0.50 with the number of commits. With RTC, the code
is not yet committed, so it cannot cause bugs in the system. This contrasts with CTR,

3All correlations are significant at p � .001.
4For SVN, we eliminated one month that had 1.4k commits and only 26 reviews.
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which is a review of committed code. As Rigby and Storey found [2011], interviewed
developers tend to only review code that interests them and is related to their area of
expertise, so many RTC contributions are ignored. Other researchers have provided
quantitative evidence on the acceptance rate of RTC. Bird et al. [2007] find that the
acceptance rate in three OSS projects is between 25% and 50%. Also on the six projects
examined by Asundi and Jayant [2007], they found that 28% to 46% of noncore devel-
opers had their patches ignored. Estimates of Bugzilla patch rejection rates on Firefox
and Mozilla range from 61% [Jeong et al. 2009] to 76% [Nurolahzade et al. 2009].

The frequency of review is high on all projects and tied to the size of the project. The
frequency of CTR has a reasonably strong correlation with the number of commits,
indicating that reviewers likely keep up with changes to the system. The correlation
between commits and RTC is less strong and may be related to the high levels of ignored
RTC contributions, as well as the conservative, self-selecting nature of the developers
on the mature projects we examined.

5.2. Participation

Q2. How many reviewers respond to a review? How much discussion occurs during a
review? What is the size of the active reviewer group?

It is simple to count the number of people that come to a co-located inspection
meeting. Ascertaining this measure from mailing list-based reviews is significantly
more difficult. The first problem is that developers use multiple email addresses. These
addresses must be resolved to a single individual. We use Bird et al.’s [2006] name
aliasing tool, which calculates the Levenshtein edit distance between normalized pairs
of email addresses. The tool is conservative, so we manually inspect and divide the
clusters of aliased email addresses that it creates.

The remaining problems relate to the data available for each review type. In mailing
list-based reviews, it is only possible to count reviewers who respond to a contribution.
So, if an individual performed a review and did not find any issues or found the same
issue as other reviewers, this individual would not be recorded as having performed a
review. If an individual is performing reviews regularly over a period of time, he or she
will eventually be the first person to find an issue and will respond to a contribution (if
a reviewer never responds, the reviewer is not helping the software team). We define
the active reviewer group as all individuals who have participated in a review over a
given time period. Since reviews are completed quickly, we define it on a monthly basis
(i.e., number of reviewers per month). We have three measures to gauge participation
in reviews: the number of developers per review (roughly equivalent to the number of
people who actively participate in an inspection—see Figures 4 and 5), the number of
emails per review (the amount of discussion per review—see Figures 6 and 7), and the
reviewer group or the number of people who performed at least one review in a given
month (roughly equivalent to the pool of reviewers who participate in inspections). For
each measure, the author of the patch is not counted.

Figure 4 shows that, for RTC, all the projects have, with the exception of Gnome, a
median of two reviewers per review. The number of reviewers for CTR is one in the
median case (see Figure 5). The median number of messages ranges from three to five
for RTC and from two to five for CTR, with RTC having more discussion during review.
Despite the large differences in the frequency of reviews across projects, the amount
of discussion surrounding a review appears to consistently involve few individuals and
have a limited number of exchanges.

Surprisingly, the number of reviewers per month (the reviewer group, which excludes
authors) is very similar to the number of reviews per month. The size of the reviewer
group ranges from a median of 16 (Apache CTR) to 480 (Linux RTC) reviewers, while the
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Fig. 4. RTC – reviewers per review. Fig. 5. CTR – reviewers per review.

Fig. 6. RTC – messages per review. Fig. 7. CTR – messages per review.

number of reviews ranges from 18 (Apache CTR) to 610 (Linux RTC, see Figures 2 and 3)
reviews. It is clear from these numbers, and Figures 8 and 9, that most reviewers do not
partake in very many reviews. In the median case, a reviewer participates in between
two and three reviews per month. However, the top reviewers, that is the reviewers in
the 95th percentile, participate in between 13 (Apache CTR) and 36 (Linux RTC) reviews
per month. Although 13 Apache CTR reviews may not appear to be many reviews,
proportionally, the top reviewers are involved in 72% of all Apache CTR reviews.
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Fig. 8. RTC – number of reviews a developer is involved in
per month.

Fig. 9. CTR – number of reviews a de-
velopers is involved in per month.

The consistently small number of reviews a developer partakes in likely relates
to inherent human limits and developer expertise. Interviewed developers stated that
they specialize in a particular aspect of a large system, which in turn limits the number
of reviews in which they are able to participate [Rigby and Storey 2011].

Overall, we find that few individuals are involved and few messages are exchanged
during each review. Most developers do few reviews per month, and only the top review-
ers participate in a large number of reviews per month. However, there is a very large
number of developers who participate in only one review in a given month, indicating
that a proportionally large number of developers see each review.

5.3. Experience and Expertise

Q3. For a given review, how long have the authors and reviewers been with the project?
How much work has a developer done on the project?

Expertise has long been seen as the most important predictor of review effi-
cacy [Porter et al. 1998; Sauer et al. 2000]. We measure expertise as the amount of
work a developer has done. We also measure experience as the length of time a de-
veloper has been with the project. In the case of the reviewers, both the average and
maximum experience and expertise value is calculated. Since a small group of experts
will outperform a larger group of inexperienced reviewers [Sauer et al. 2000], it is
important to record the level of experience of the most experienced reviewer. This max-
imal value will be unaffected by a large number of inexperienced reviewers supported
by one experienced reviewer.

5.3.1. Experience. The experience of an author or reviewer is calculated as the time
between a developer’s first message to the mailing list and the time of the current
review. Figures 10 and 11 show the distribution of author experience as well as the
experience of the top reviewer. For RTC, the median author experience ranges from 275
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Fig. 10. RTC – author (left) and reviewer (right) experience
in years.

Fig. 11. CTR – author (left) and re-
viewer (right) experience in years.

to 564 days, and the median top reviewer experience ranges from 708 to 1,110 days.5
There are also a large number of authors who have made only one contribution, so
they have less than one day of experience on the project.6 For CTR, the median author
experience ranges from 558 to 1,269 days, and the median top reviewer experience
ranges from 715 to 1,573 days. Given that different time periods were examined for the
projects (i.e., Linux = 3.5 years to FreeBSD = 12.0 years), it may not be appropriate to
compare across projects. Regardless of time period, both authors and reviewers appear
to have been on the mailing lists for extended periods of time, and reviewers typically
have more experience than authors. It is also clear that both authors and reviewers
for RTC have been with a project for a shorter period of time, and they are likely less
experienced than reviewers and authors involved in CTR. This result is not surprising
because CTR requires the author to have commit privileges, and experienced core-
developers are often required to monitor the commit mailing list, making it more likely
that experienced developers are involved in CTR than RTC.

5.3.2. Expertise. Mockus and Herbsleb [2002] find evidence that links the amount of
work a developer performs in a particular area to his or her level of expertise. They
measure the number of commits a developer made to a particular file in the system.
We extend and simplify their measure. The amount of “work” done by an author or
reviewer is calculated on a monthly basis as the number of review messages, reviewed
commits, and unreviewed commits a developer has made before the current review,
regardless of area or files modified.7

Let the function work(m, i) be the number of times an individual i has made a
commit or participated in a review in month m. We use the following linear decay
function to weight the measure. We divide the life of the project into monthly intervals

5In all our measures, the correlation between the average and maximum reviewer is at or above r = .89.
Due to this high correlation, we use the maximal reviewer in the remainder of this work.
6We add one day to our measure of experience to avoid taking the log(0).
7In Rigby [2011], the granularity is also calculated at the file level.
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Fig. 12. RTC – author (left) and reviewer (right) weighted
work expertise.

Fig. 13. CTR – author (left) and re-
viewer (right) weighted work expertise.

and divide the work by the number of months since a given review. So, the weighted
work measure is

workw(m, i) =
m∑

w=1

work(w, i)
m− w + 1

,

where m is the calendar month in which the review occurred.
By using this weighting, we factor in the diminishing effect that inactivity and time

has on expertise and status within the community. This weighting allows the expertise
associated with files developed by one individual but then maintained by another to be
appropriately divided. For the remainder of this article, the “work” measure refers to
the weighted version.

From Figures 12 and 13, we can see that reviewers have more active work expertise
than do authors. Individuals involved in CTR have more expertise than those involved
in RTC. The direct interpretation of these findings is difficult because expertise is
weighted. A possible simplified interpretation is, in the case of Apache RTC, authors
having the equivalent of 111 fewer commits and review messages than do reviewers.

In summary, we find that authors have less experience and work expertise than
reviewers and that RTC involves less experienced individuals with less work expertise
than CTR.

5.4. Churn and Change Complexity

Q4. How does the size of change (churn) affect peer review?

The change size or churn of the artifact under review is a common measure in the
inspection literature [Laitenberger and DeBaud 2000]. Mockus et al. [2002] found that
changes to Apache and Mozilla were smaller than changes to the industrial projects
they examined, but they did not explain why this was the case. Software changes are
contributed in the form of diffs, which are fragments that indicate what has changed
between two versions of a file [Eggert et al. 2002]. We examine the size of changes
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Fig. 14. RTC churn. Fig. 15. CTR churn.

that are reviewed. The change size is measured by summing the number of added and
deleted lines in a software change or patch.

Figures 14 and 15 show the churn size of reviewed contributions. For RTC, the
median churn ranges from 11 to 32 changed lines, while the 75th percentile is between
37 and 174. For CTR, the median churn ranges from 12 to 35 changed lines, and
the 75th percentile is between 46 and 137. OSS projects have a policy that requires
contributions to be small, independent and complete, so it is not surprising that the
change sizes are smaller than those in industrial development. This policy allows
developers to periodically and quickly review a large number of contributions [Lussier
2004; Rigby and Storey 2011].

In Rigby’s dissertation [2011], he also measured the complexity of a change. The
change complexity measures he consider were the following: the number of modified
lines (churn), the number of modified files in a change, the number of distinct diffs
per review, the distance between contiguous change blocks within a diff, the depth of
indentation in a change [Hindle et al. 2008], and the directory distance between files
in a diff. Other works have found high correlation between complexity measures, such
as McCabe’s cyclomatic complexity, and the size of a file. Similarly, Rigby found high
correlations between each change complexity measure and the size of the change. This
co-linearity would make the interpretation of statistical models difficult. Since churn is
the most parsimonious measure of change complexity and it has been used in previous
inspection experiments, we use it as a proxy measure of change complexity.

5.5. Review Interval

Q5. What is the calendar time to perform a review?

Porter et al. [1997] define review interval as the calendar time to perform a review.
The full interval begins when the author prepares an artifact for review and ends when
all defects associated with that artifact are repaired. The pre-meeting interval, or the
time to prepare for the review (i.e., reviewers learning the material under review), is
also often measured.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 35, Pub. date: August 2014.



Peer Reviews on Open-Source Software Projects 35:17

Fig. 16. RTC – First response (left) and full review interval
(right) in days.

Fig. 17. CTR – First response (left) and
full review interval (right) in days.

RTC. For every contribution submitted to the mailing list, we determine the dif-
ference in time from the first message (the author’s diffed contribution) to the final
response (the last review or comment). The review interval is short on all projects. For
RTC, on the right of Figure 16, we see that the median interval is between 23 and 46
hours, while 75% of contributions are reviewed in 3 to 7 days. We also measure the how
long it takes the first reviewer to respond. This time is roughly equivalent to what is
traditionally called the pre-meeting time. First-response time, on the left of Figure 16,
is between 2.3 and 6.5 hours in the median case and between 12 and 25 hours at the
75th percentile. Only 2% to 5% of RTC reviews begin one week after the initial post,
indicating that initially ignored contributions are rarely reviewed.

CTR. Since the contribution is committed before it is reviewed, we need to know
not only the time between the commit and the last response, the full CTR review
interval (on the right of Figure 17), but also the time between the commit and the first
response. This first response, shown on the left of Figure 17, indicates when the issue
first issue was discovered; the ensuing discussion may occur after the problematic
commit is reverted. Ideally, the amount of time defective, unreviewed code is in the
system should be short. The first review happens very soon after a commit: 50% of
the time it occurs between 1.9 and 4.0 hours, and 75% of the time it happens between
9.4 and 12.8 hours. The discussion or full interval of the review lasts longer, with a
median value of between 5.6 and 19.4 hours. In 75% of cases, the review takes less
than between 19.8 hours and 2.7 days, depending on the project. Only between 2% and
3% of issues are found after one week has passed.

These data indicate that reviews, discussion, and feedback happen quickly. The fol-
lowing quotation from the Apache mailing list discussion in January 1998 supports
these findings.

“I think the people doing the bulk of the committing appear very aware of
what the others are committing. I’ve seen enough cases of hard to spot typos
being pointed out within hours of a commit.” [Hartill 1998]
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5.6. Issues and Defects

Q6. How many issues are discussed during a review?

Traditionally, the number of defects found during inspection, or the inspection ef-
fectiveness, was manually recording during inspection meetings [Fagan 1976]. OSS
developers do not record the number of defects found in a review. Interviews with
OSS developer indicate that they are interested in discussing a solution to defects and
implementing the solution, rather than simply identifying defects [Rigby and Storey
2011]. The transition from inspection as purely a defect finding activity to reviews that
include group problem solving has been discussed in Rigby et al. [2012]. Our goal in
this section is to identify a proxy measure for review effectiveness. Next, we describe a
measure of the number of issues discussed during review. A count of issues discussed
will include false positives, such as reviewer questions that do not lead to a defect being
found. The measure is a count of the number of times diffed code is interleaved with
reviewer comments and is based on norms in the OSS community.

In the following Subversion review, we see that the reviewer has posted two issues
(potential defects) under the diffed code which contains the issue. This practice is known
as ‘bottom-posting’ and has been considered a best practice on email forums since the
early days of Usenet [Jar 2013]. As part of Rigby and Storey’s [2011] grounded theory
study of 500 review threads on the same OSS projects we examine here, they found
bottom-posting to be an enforced, universal practice on OSS projects.

> + if (strcmp(status, "failure") == 0)
> + return svn_ra_svn__handle_failure_status(list, pool);
> +
What happens to err here. If an error was returned, status is garbage.

> + if (err && !SVN_ERR_IS_LOCK_ERROR(err))
> + return err;
> +
Parsing a tuple can never result in a locking error, so the above is
bogus.

As a reviewer finds issues with the code, he or she writes the rationale under the
section of code that is problematic, removing sections that are unrelated to the issue.
This pattern may happen many times during a single email, indicating multiple issues
with the code. To create a proxy measure of the number of issues discussed, we count
the number of times the replied-to text of a message containing a diff (i.e., lines in
a diff starting with ‘>’) are broken by new text (i.e., lines that do not start with ‘>’).
Each time this break occurs, we consider the break to be an issue that the reviewer
has found. In the preceding example, there would be two issues.

Responses to reviewer comments constitute a discussion of an existing issue and not
a new issue, so responses to responses (i.e., when the diff has two or more ‘>’) are not
counted as new issues. In the following example, we can see the author responding to
acknowledge that the reviewer is correct. These responses are not counted as two new
issues.

> > + if (strcmp(status, "failure") == 0)
> > + return svn_ra_svn__handle_failure_status(list, pool);
> > +
> What happens to err here. If an error was returned, status is garbage.

Oops.
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Fig. 18. RTC – number of Issues. Fig. 19. CTR – number of issues.

> > + if (err && !SVN_ERR_IS_LOCK_ERROR(err))
> > + return err;
> > +
> Parsing a tuple can never result in a locking error, so the above is
> bogus.

Double oops.

For RTC, Figure 18 shows the number of issues discussed in a review is one or two in
the median case and between two and four at the 75th percentile. For CTR, Figure 19
shows the number of issues is one in the median case and between one and two at the
75th percentile. Few issues are discussed per review. Patch contributions that do not
receive a response have no discussion and are not considered reviews (See Section 4).
Since each patch contribution must receive at least one response to be considered a
review, the minimum number of issues per review is one.

In summary, we do not have the traditional measure of number of defects found per
review. However, interviews with OSS developers have indicated that they are less
interested in counting defects and more interested in discussing solutions to issues
found in the code. We have developed a proxy measure of the number of issues discussed.
We see that a small number of issues are being discussed per review. Since the size of
contributions is small (between 11 and 32 lines changed, see Section 5.4), we would not
expect there to be a large number of issues found per review. OSS projects appear to
frequently and incrementally review small sections of code, rather than inspect large
work products after they are completed.

5.7. Summary of Quantitative Results

The goal of this section was to quantify and establish the parameters of peer review in
OSS. We summarize our findings here and in Table III.
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Table III. Summary of Quantitative Results

Research Question Measures Min Max
Q1: Frequency – Section 5.1

Number of reviews per month 18 610
Q2: Participation – Section 5.2

Number of reviewers per review 1 2
Number of messages per review 3 5
Number of reviewers per month 16 480

Q3: Experience and Expertise – Section 5.3
Author experience RTC (days) 275 564
Top review experience RTC (days) 708 1110
Author experience CTR (days) 558 1269
Top review experience CTR (days) 715 1573
Units of expertise (weighted amount of work) do not have easily inter-
pretable units (see Section) 5.3.2.

Q4: Churn and Change Complexity – Sections 5.4
Patch change size in lines (churn) 11 32

Q5: Interval (efficiency) – Section 5.5
First response RTC (hours) 2 3
Full interval RTC (hours) 23 46
First response CTR (hours) 2 4.0
Full interval CTR (hours) 6 19

Q6: Issues (effectiveness) – Section 5.6
Number of issues discussed 1 2

Note: The median value for a project is represented in each case. For example, Apache CTR has a
median of 18 reviews per month, while Linux has a median of 610 reviews per month.

Q1 Frequency. While all projects conducted frequent reviews, the number of reviews
varies with the size of the project. Reviews increase with the number of commits (CTR),
but not necessarily with the number of patch submissions (RTC).

Q2 Participation. There are hundreds of stakeholders subscribed to the mailing lists
that contains the contributions for review; however, there is a small number of re-
viewers and messages per review. The size of the reviewer group varies with the size
of project. With the exception of core developers, most reviewers participate in few
reviews.

Q3 Experience and Expertise. Authors tend to have less experience and expertise
than reviewers, and individuals involved in CTR have more experience and expertise
than those in RTC. Developers involved in review usually have at least one year of
experience, and in the case of core reviews, usually multiple years.

Q4 Churn and Change Complexity. The changes made to patches are small, which
likely makes providing feedback quicker. The size of a change (churn) is a simple
measure of change complexity [Rigby 2011].

Q5 Interval (Efficiency). The review interval is very short on OSS projects. Facilitated
by the small size of a change, reviews are conducted very frequently and quickly. For
CTR, where code is already committed, the first response indicates the time it takes to
find the initial defect. Very few reviews last longer than one week.

Q6 Issues (Effectiveness). There are few issues discussed per review. This finding is
consistent with small change sizes and high frequency of review.
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6. MODELS OF EFFICIENCY AND EFFECTIVENESS

The goal of a software process is to facilitate the production of high-quality software
in a timely manner. Review techniques have historically been compared and statisti-
cally modeled based on their effectiveness (e.g., how many issues or defects they find)
and efficiency (e.g., how long it takes to find and remove those issues) [Kollanus and
Koskinen 2009; Porter et al. 1998]. We use statistical models to determine the impact
that each of our explanatory variables has on the review interval and number of issues
found in review. We also isolate the impact of the review process (i.e., RTC or CTR) and
the project.

For efficiency (see Section 6.1), measured by the review interval, we use a multi-
ple linear regression model with constant variance and normal errors [Crawley 2005,
p. 120]. Our model of efficiency explains 29% of the variance. For effectiveness (see
Section 6.2), measured by the number of issues found, we use a generalized linear
model (GLM) with Poisson errors and a logarithmic link function. A quasi-Poisson
model and a pseudo R-squared measure is used to correct for over-dispersion [Heinzl
and Mittlböck 2003; Maindonald and Braun 2003, p. 219]. Our model of effectiveness
explains 51% of the deviance. Explanatory variables shown in the previous sections to
be correlated with other variables in the model (e.g., number of replies and reviewers)
were replaced with the most parsimonious variable (i.e., the measure that is easiest to
calculate). We grouped our explanatory variables into four categories: expertise, expe-
rience, complexity, and participation. We applied a log transformation to explanatory
variables that were shown (in previous sections) to be right skewed with a long tail.
To represent our models, we use the R language notation [R Development Core Team
2011]. For example, the formula y ∼ a + b ∗ c means that “the response y is modeled
by explanatory variables a, b, c and the interaction between b and c”.

6.1. Efficiency: Review Interval

Our multiple linear regression model of efficiency, review interval, has the following
form.8

log(interval) ∼ log(auth experience + 1) + log(auth expertise + 1)
+ log(rev experience + 1) + log(churn + 1)
+ log(reviewers) + review type ∗ project.

We used the Akaike Information Criterion (AIC) for model selection [Burnham and
Anderson 2002]. AIC for linear regression models is defined as nlog(RSS/n) + 2k,
where n is the sample size, RSS is the residual sums of squares, and k is the number
of parameters in the model [Burnham and Anderson 2002, p. 63]. AIC differences are
defined as �i = AICi − AICmin over all models in the candidate set. From the set of
candidate models, the model with the lowest AIC or �i = 0 is selected as the best model
[Burnham and Anderson 2002, p. 71]. The actual value of AIC is meaningless, as it is
a relative measure. AIC favours the model with the highest likelihood but penalizes
models with more parameters. Model weights can be used to evaluate the relative
likelihood of a model within a candidate set. Akaike weights are defined as

wi = exp(−1/2�i)∑R
r=1 exp(−1/2�r)

,

where R is the number of models in the candidate set. Note that
∑R

i=1 wi = 1. Finally, it
may be that several models are plausible in that there is not an obvious best model in

8To avoid taking the logarithm of zero, we add one to some variables.
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Table IV. Model Selection Results for the Set of Candidate Models

Models k R2 AIC � AIC AIC weights
1 15 0.29 477854.48 0.00 1.00
2 16 0.29 477856.47 1.99 0.37
3 8 0.28 478464.10 609.62 0.00
4 7 0.28 479112.28 1257.80 0.00
5 7 0.26 482534.22 4679.74 0.00
6 6 0.24 484759.53 6905.05 0.00
1: author experience, author expertise, reviewer experience,
churn, reviewers, review type, project, review type × project
2: Model 1 including reviewer expertise
3: Model 1 excluding project by review type interaction
4: Model 3 excluding project
5: Model 3 excluding review type
6: Model 4 excluding review type

Note: The number of parameters in the model (k), R2, the Akaike Infor-
mation Criterion (AIC), � AIC, and AIC weights are provided. Models
within the candidate set are defined by the explanatory variables in-
cluded in the model.

the candidate set. In this instance, model averaging can be employed, where parameter
estimates are obtained by averaging over the plausible models (see Burnham and
Anderson [2002] for details).

Table IV shows the model selection results that lead to the chosen model previously
shown. From this process, it is clear that we must include the project and review type
in our model, but that reviewer expertise is not necessary. The resulting model explains
the most variance, 29%, while minimizing the number of explanatory variables. The
amount of variance explained is low but consistent with other models of review interval
32% [Porter et al. 1997] and 25% [Porter et al. 1998]. Additional factors that may be
outside of the development process and product appear to influence the review interval.
The diagnostic plots confirmed that the residuals were normally distributed and that
the variance was constant.

Since both the response and explanatory variables are on a log scale, to interpret the
results, we must examine rates of change. Table V shows the change in review interval
for a 10%, 50%, 100%, and 200% change in the explanatory variable. For example,
a 10% increase in the number of lines changed (i.e., churn) leads to a 1.2% increase
in the review interval. Interpreting these proportions can be difficult. To provide a
more intuitive understanding of the effect each explanatory variable has on the review
interval, we describe the change that occurs in the median case for a given explanatory
variable assuming that all other variables remain equal.9

Author. An addition of the equivalent of four new messages, commits, or reviews in
the current month leads to a decrease of nine minutes during review. The more active
an author is, the shorter the review interval, likely because the author and his or
her changes are known to the reviewers and preparation time is reduced. A developer
who has been on the project for an additional 60 days increases the review interval
by two minutes. The longer a developer is with the project, the more complex his or
her changes will be, which will likely increase the interval. The overall effect of author
expertise and experience on review interval is minimal.

9A pairwise correlation analysis among explanatory variables indicated that the highest correlation was
between author experience and author expertise at r = .43.
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Table V. Effect of Expertise, Experience, Complexity, and Participation on the Review Interval

Variable Estimate Std. Error 10% 50% 100% 200%
Experience log(auth experience + 1) 0.01 0.004 0.13 0.53 0.92 1.46
& log(auth expertise + 1) −0.08 0.004 −0.73 −3.06 −5.18 −8.09
Expertise log(rev experience + 1) 0.13 0.006 1.23 5.32 9.27 15.09
Complexity log(churn + 1) 0.13 0.003 1.20 5.21 9.07 14.76
Participation log(reviewers) 1.26 0.009 12.76 66.66 139.45 299.06

Note: To make interpretation easier, the proportional change at 10% to 200% is shown for each variable.
For example, a doubling in the number of reviewers leads to an increase of 140% in the review interval.

Table VI. The Effect of Project and Review Type on Review Interval

Estimate Std. Error Percent Difference
KDE – CTR −0.68 0.04 −49.51
FreeBSD – CTR −0.50 0.04 −39.66
Apache – CTR −0.46 0.05 −36.76
Subversion – CTR 0.15 0.05 15.67
FreeBSD – RTC 0.26 0.03 29.57
Linux – RTC 0.47 0.03 60.66
Gnome – RTC 0.79 0.04 119.28
Subversion – RTC 0.81 0.05 125.01
KDE – RTC 0.84 0.04 130.58

Note: The percentage difference of the review intervals is calculated for
each project and review type with respect to Apache RTC. For example,
the interval for FreeBSD CTR is 40% shorter than for Apache RTC,
while Linux RTC is 61% longer.

Reviewer. The reviewer’s active work expertise did not make a statistically signifi-
cant contribution to the model and was dropped during model selection (see Table IV,
Model 2). Reviewer experience indicated that an increase of 1/4 (or 95 days) with the
project increases the review interval by 15 minutes. Reviewer experience has more
impact than author experience on the review interval.

Churn. Doubling the number of lines changed from 17 to 34 increases the review
interval by 1.8 hours. The size of the artifact has a large impact on review interval
with small additions of code increasing the review interval.

Participation. The addition of one reviewer increases the review interval by 28 hours.
The level of reviewer participation has the largest impact on review interval.

Project and Review Type. Having discussed the effect of the main variables, we next
discuss the impact of review type and project, which are represented as dummy vari-
ables in our model. Since we take the log of the review interval as our response variable,
we must use Kennedy’s [1981] estimator to interpret the percentage change for each
project and review type. Table VI shows the affect of the project and review type vari-
able calculated with respect to Apache RTC. We can see that KDE CTR has the shortest
review interval and is 50% shorter than Apache RTC, while KDE RTC has the longest
review interval and is 131% longer than Apache RTC. Within all projects, the CTR in-
terval is shorter than the RTC interval. CTR is 37, 109, 69, and 180 percentage points
shorter than RTC for Apache, SVN, FreeBSD, and KDE, respectively.

Summary. The efficiency of review or the review interval is most effected by the
level of participation from the community. The size of the change has the next greatest
impact, followed by the reviewer’s experience and the author’s experience and expertise.
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The impact of the reviewer’s expertise is negligible and is excluded from the model.
Within all projects, CTR is faster than RTC.

6.2. Effectiveness: Issues Discovered

We use the following log-linear model for effectiveness (number of issues found).10

issues ∼ log(auth experience + 1) + log(auth expertise + 1) + log(rev experience + 1)
+ log(rev expertise + 1) + log(churn + 1) + log(reviewers)
+ review type ∗ project.

Reviews that have no discussion are not considered in this work, so the model only
characterizes contributions that have issues. We found over-dispersion in our data
which occurs when there is more variability in the data than explained by the model.
This will make explanatory variables look more statistically significant than they
actually are [Heinzl and Mittlböck 2003], as the estimated variances are smaller than
they should be. To deal with this problem, we estimate an over-dispersion parameter,
ĉ, that is used to inflate the variance by adjusting standard errors by a factor of√

ĉ [McCullagh and Nelder 1989, p. 127]. The Pearson-based dispersion parameter is
estimated using

ĉ = χ2

(n − k − 1)
=

∑

i

(yi−μ̂i )2

μ̂

(n − k − 1)
,

where k is the number of parameters in the saturated model and n is the sample
size. This is the sum of the squared differences between observed and expected counts
divided by the expected count.

In R, this technique is achieved by running a quasi-Poisson general linear model
[Maindonald and Braun 2003, pp. 213–216]. Although this technique deals with the
dispersion issue, it does not provide an R-squared measure (or measure of explained
variation) that is adjusted for over-dispersion. Heinzl and Mittlböck [2003] evaluate a
series of deviance-based pseudo R-squared measures for Poisson models with over- and
under-dispersion. We implemented their most robust adjusted R-squared measure in
R. The formula is shown here:

R2 = 1 − D(y : μ̂) + (k − 1)ĉ
D(y : μ̄)

,

where D(y : μ̂) is the deviance of the model of interest and D(y : μ̄) is the deviance of
the null or intercept-only model.

Our model selection process is similar to that of Section 6.1. Since we have over-
dispersion, we replace AIC with a QAIC defined as −[2logL(β̂)/ĉ] + 2K, where K is the
number of parameters in the model plus 1 to account for the over-dispersion parameter
ĉ and L(β̂) is the likelihood evaluated at the maximum likelihood estimates for the
model of interested [Burnham and Anderson 2002, p. 68–70]. Definitions for �QAIC
and QAIC weights simply replace AIC with QAIC.

Table VII contains the model selection results that lead to the chosen model shown
previously. The model selection process makes it clear that we must keep the review
type, project, and review type by project interaction. Furthermore, unlike the efficiency
model, the reviewer’s expertise variable contributes to this model. The resulting model
is a reasonable representation of peer review effectiveness with a pseudo R2 = .51.

10To avoid taking the logarithm of zero, we add one to some variables.
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Table VII. Model Selection Results for the Set of Candidate Models

Models K pseudo R2 QAIC � QAIC QAIC weights
1 17 0.51 183082.36 0.00 1.00
2 10 0.51 183209.20 126.84 0.00
3 9 0.50 184978.05 1895.69 0.00
4 9 0.49 186582.38 3500.02 0.00
5 8 0.45 191972.32 8889.96 0.00
1: author experience, author expertise, reviewer experience, reviewer
expertise, churn, reviewers, review type, project, project × review type
2: Model 1 excluding project by review type interaction
3: Model 2 excluding review type
4: Model 2 excluding project
5: Model 2 excluding project and review type

Note: The number of parameters in the model plus 1 (K), pseudo R2, the Quasi
Akaike Information Criterion (QAIC), �QAIC, and QAIC weights are provided. Mod-
els within the candidate set are defined by the explanatory variables included in the
model. The estimate of ĉ = 2.4 for the saturated model (model 1).

Table VIII. Effect of Expertise, Experience, Complexity, and Participation on the Number of Issues Discussed

Variable Estimate Std. Error 10% 50% 100% 200%
Experience log(auth experience + 1) 0.01 0.002 0.10 0.40 0.70 1.10

log(rev experience + 1) 0.03 0.003 0.30 1.20 2.00 3.20
Expertise log(auth expertise + 1) −0.03 0.002 −0.20 −1.00 −1.80 −2.80

log(rev expertise + 1) 0.04 0.002 0.40 1.60 2.80 4.50
Complexity log(churn + 1) 0.17 0.002 1.60 7.00 12.20 20.10
Participation log(reviewers) 0.54 0.004 5.30 24.60 45.60 81.40

Note: The quasi-Poisson dispersion parameter is taken to be 2.4 (over-dispersion). To make interpretation
easier the proportional change at 10% to 200% is shown for each variable. For example, a doubling in the
number of reviewers leads to an increase of 45.6% in the number of issues discussed.

Since we are using a quasi-Poisson model, which has a log-link function and our
explanatory variables are on a log scale, to interpret the results we must examine
rates of change. Table VIII shows the change in the number of issues discussed for a
10%, 50%, 100%, and 200% change in the explanatory variable. For example, a 10%
increase in the number of lines changed (i.e., churn) leads to a 1.6% increase in the
number of issues discussed during review.

Experience and Expertise. Changes in both author review experience and expertise
have minimal impact on the number of issues found (see Table VIII). For example, a
10% increase in the author’s expertise, that is, 80 additional messages, commits, or
reviews in a given month leads to only a 0.4% increase in the number of issues found.

Churn. Doubling the number of lines changed from 17 to 34 increases the number
of issues discussed by 12%. Small additions of code increase the number of issues
discussed.

Participation. The addition of one reviewer increases the number of issues discussed
by 46%. The level of review participation has the largest impact on the number of
issues discussed.

Project and Review Type. As with the previous model, the impact of review type
and project are represented as dummy variables in the current model. Since a quasi-
Poisson has a log-link function, we must use Kennedy’s [1981] estimator to interpret
the percentage change of each project and review type. Table IX contains the effect of
the project and review type variable calculated with respect to Apache RTC. The table
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Table IX. Effect of Project and Review Type on the Number
of Issues Discussed

Estimate Std. Error Percent Difference
FreeBSD – CTR −0.49 0.02 −38.57
Apache – CTR −0.30 0.03 −25.71
KDE – CTR −0.28 0.02 −26.31
KDE – RTC −0.05 0.02 −4.71
FreeBSD – RTC −0.02 0.02 −2.35
Subversion – CTR 0.00 0.03 0.21
Linux – RTC 0.35 0.02 41.48
Subversion – RTC 0.43 0.02 54.20
Gnome – RTC 0.49 0.02 63.39

Note: The percentage difference of the number of issues discussed is
calculated for each project and review type with respect to Apache RTC.
For example, the issues discussed for FreeBSD CTR is 39% fewer than
for Apache RTC, while Gnome RTC is 63% more.

shows that FreeBSD CTR has the fewest issues discussed, and Gnome RTC has the
most issues discussed, with 39% fewer and 63% more issues discussed than Apache
RTC, respectively. Within all projects, the number of issues discussed during CTR is
less than during RTC. During CTR, there are 22, 25, 36, and 54 percentage points fewer
issues discussed than for RTC on KDE, Apache, FreeBSD and Subversion, respectively.

Summary. Like efficiency, the effectiveness of the review is most affected by the level
of participation from the community. The size of the changes also impacts the number
of issues discussed during review. However, while the effects of author and reviewer
experience and expertise are statistically significant, the magnitude of the influence
is small. There are fewer issues discussed during CTR than during RTC. In the next
section, we combine our findings and the literature to provide a theory of OSS peer
review.

7. DISCUSSION

Based on our findings across multiple case studies, we extracted the essential attributes
of OSS peer review into a theory. We have provided quantitative evidence related to
the following research questions:

—the review process, policies, and project structure,
—the frequency of review, and the relationship between the frequency of review and

development activity,
—the level of participation in reviews and the size of the reviewer group,
—the level of experience and expertise of authors and reviewers,
—the size and complexity of the artifact under review,
—the review interval (that is, the calendar time to perform a review), and
—the number of issues found per review.

The following statement encapsulates our understanding of how OSS review func-
tions. OSS peer review involves (1) early, frequent reviews (2) of small, independent,
complete contributions (3) that are broadcast to a large group of stakeholders, but only
reviewed by a small set of self-selected experts, (4) resulting in an efficient and effective
peer review technique. We dissect this statement next, showing the evidence that we
have gathered. In the subsequent section, we contrast our finding with those in the
inspection literature.
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(1) Early, frequent reviews
The longer a defect remains in an artifact, the more embedded it will become and
the more it will cost to fix. This rationale is at the core of the 35-year-old Fagan
inspection technique [1976]. We have seen comparatively high review frequencies
for all OSS projects in Section 5.1. Indeed, the frequencies are so high that we
consider OSS review as a form of “continuous asynchronous review”. We have also
seen a short interval that indicates quick feedback (see Section 5.5). This frequent
review and feedback also incorporates re-review of changes within the same dis-
cussion thread and resembles a form of “asynchronous pair programming” [Rigby
and Storey 2011].

(2) of small, independent, complete contributions
Mockus et al. [2000] were the first to note that OSS projects have smaller change
sizes than those seen on industrial projects [Dinh-Trong and Bieman 2005; Weiss-
gerber et al. 2008]. Section 5.4 illustrates the small contribution sizes on the OSS
projects we studied (between 11 and 32 lines of code modified).

We believe that small change size is essential to the divide-and-conquer style
of peer review found on OSS projects. This strategy eases review by dividing the
complexity of a bug fix or feature across multiple changes. Small changes sizes
lead to incremental and frequent reviews. The review processes in Section 3 and
interviews with core developers done by Rigby and Storey [2011] provide support
for the idea that OSS developers will review only small, independent, complete
contributions.

(3) that are broadcast to a large group of stakeholders, but only reviewed by a small set
of self-selected experts
The mailing list broadcasts contributions to a potentially large group of individu-
als. A smaller group of reviewers conducts reviews periodically. With the exception
of the top reviewers, most individuals participate in very few reviews per month.
Between one and two reviewers participate in any given review (see Section 5.2).
OSS developers have adopted lightweight practices that allow them to find inter-
esting reviews in the barrage of information [Rigby and Storey 2011]. There are,
however, a large number of contributions that are ignored and never reviewed and
committed.

Expertise is a stronger predictor of review effectiveness than process mea-
sures [Porter et al. 1998]. As we discuss in Section 5.3, both authors and reviewers
have substantial expertise and experience with reviewers typically having more
experience than authors. OSS projects have stripped the process to a minimum,
keeping only essential aspect—experts must review each change.

(4) leads to an efficient and effective peer review technique.
The review interval in OSS is on the order of a few hours to a couple of, making
peer review in OSS very efficient. While it is difficult to model review interval (see
Section 6.1), this interval is drastically shorter than that of traditional inspection,
which is on the order of weeks [Sauer et al. 2000]. The strongest predictor of interval
is the number of reviewers. Most reviews can be dealt with by two reviewers;
however, since the review is broadcast, more complex and controversial issues can
involve a large number of reviewers (see the outliers in Section 5.2).

The number of defects found per KLOC is not recorded on OSS projects. It is
difficult to estimate this measure because it is unclear which contributions are
ignored and which are reviewed without defects found. Instead, we find in the
median case that there are between one and two issues discussed per review
(see Section 6.2). Like efficiency, the best predictor of the number of issues found
is the attention a contribution is given by the developer community. The high
proportion of ignored contributions [Bird et al. 2007; Asundi and Jayant 2007]
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indicates that on large, successful projects, attention from the community is the
most sought-after resource [Rigby and Storey 2011].

7.1. Comparison with Inspection

There are few similarities between OSS review and Fagan inspections [Fagan 1976].
However, many of the advances and research findings over the last 35 years for software
inspections are reflected by OSS peer review practices. In some cases, OSS review can
be seen as taking an inspection finding to the extreme. In this section, we compare the
inspection findings to our OSS review findings on the style of review meeting, formality
of process, and the artifact and under review.

Fagan inspection is a formal process that relies on rigid roles and steps, with the
single goal of finding defects [Fagan 2002]. Most of the work on inspection processes
has made minor variations to Fagan’s process (e.g., [Martin and Tsai 1990; Knight and
Myers 1993]) but kept most of the formality, measurability, and rigidity intact [Kollanus
and Koskinen 2009; Laitenberger and DeBaud 2000; Wiegers 2001].

Inspection Meetings. An important exception to this trend was the work done by Votta
that facilitated asynchronous inspection. In contrast to Fagan-style inspections, where
defect detection is performed only during the meeting phase, Votta [1993] showed
that almost all defects can be found during the individual preparation phase, where a
reviewer prepares for an inspection meeting by thoroughly studying the portion of code
that will be discussed. Not only were few additional defects found during synchronous
meetings, but scheduling these meetings accounted for 20% of the inspection interval.
This result allowed researchers to challenge the necessity of meetings. Eick et al. [1992]
found that 90% of the defects in a work product could be found in the preparation phase.
Perry et al. [2002] conducted a controlled experiment in an industrial setting to test the
necessity of a meeting and found that meeting-less inspections, according to the style
of Votta, discovered the same number of defects as synchronous Fagan inspections.
A similar result was obtained by Johnson and Tjahjono [1998]. There are many tools
to support inspection in an asynchronous environment (e.g., [Mashayekhi et al. 1994;
Macdonald and Miller 1999; Cohen 2006]). Mirroring these findings, OSS reviews are
conducted in an asynchronous setting.

Defect Finding vs. Group Problem Solving. The rigid goal of finding defects and
measuring success based on the number of defects found per source line lead to a
mentality of “Raise issues, don’t resolve them” [Johnson 1998]. This mentality has the
effect of limiting the ability of the group to collectively problem solve and to mentor
an artifact’s author [Sauer et al. 2000]. In OSS review, author, reviewers, and other
stakeholders freely discuss the best solution, not the existence of defects—there are
instances where a reviewer re-writes the code and the author now learns from and
becomes a reviewer of the new code.

Number of Reviewers. Although inspection has been repeatedly shown to be cost ef-
fective over the lifecycle of a project, individual inspection are labour intensive and
costly. There has been a substantial literature on the optimal number of reviewers per
review [Buck 1981; Bisant and Lyle 1989; Porter et al. 1998; Sauer et al. 2000]. The
consensus is that two reviewers find an optimal number of defects. In Section 5.2, we
find that there is a median of two reviewers per review. However, given the broad-
cast mechanism used to disseminate contributions and review discussions, there is
the potential to involve a larger number of reviewers should the complexity of the
contribution warrant it.

Process vs. Expertise. While most studies, including Votta’s work on the necessity of a
meeting, focused on the impact of process variations, Porter et al. [1998] examined both
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the process (e.g., the number of reviews, inspections with and without re-inspection
of corrected code) and the inputs to the process (e.g., reviewer expertise and artifact
complexity). In terms of the number of defects found, Porter et al. concluded that the
best predictor was the level of expertise of the reviewers. Varying the processes had a
negligible impact on the number of defects found. This finding is echoed by others (e.g.,
[Sauer et al. 2000; Kollanus and Koskinen 2009]). While OSS review practices evolved
organically to suit the needs of the development team, they mirror Porter et al.’s
finding—OSS review has minimal process but relies heavily on self-selecting experts.

Artifact under Review. Traditional inspection processes required completed artifacts
to be inspected at specific checkpoints. The development of these artifacts was done
by individuals or relatively isolated groups of developers. The work could take many
months and involve little or no external feedback until it was completed [Votta 1993].
Once complete, these large artifacts could take weeks to inspect. While the importance
of shorter development iterations has become increasingly recognized [Larman and
Basili 2003], OSS has much smaller change sizes than the industrial projects examined
by, for example, Mockus et al. [2002]. These extremely small artifact changes (e.g.,
between 11 and 32 lines of code modified) and the short time in which the review
occurs (hours to days) allows for early, frequent feedback—“continuous asynchronous
review”.

Familiarity with Review Artifact. Aside from the issue of timely feedback, large ar-
tifacts were also unfamiliar to the developers tasked with inspecting them, making
preparing for and inspecting an artifact an unpleasant task. Not only was it tedious,
but as Parnas and Weiss [1985] found, inspectors were not adequately prepared and
artifacts were being poorly inspected. Parnas and Weiss suggested active reviews that
increased the quality of inspections by making inspectors more involved in the review.
Porter and Votta [1994] and Basili et al. [1996] and many other researchers developed
and validated software reading techniques that focus developers on different scenarios
and perspectives. While researchers continue to question the effectiveness of these sce-
narios and checklists [Hatton 2008], the main idea was to ensure that reviewers paid at-
tention during a review and that they focused on the areas for which they had expertise.

OSS reviews take this need for focused expertise in a different direction. First,
reviews of small artifacts increases the likelihood that developers will be able to under-
stand and focus on the whole artifact. Second, the high frequency of reviews means that
developers are regularly and incrementally involved in the review of an artifact, likely
lessening the time required to understand the artifact under review. Third, many sys-
tems and subsystems involve multiple co-developers who already understand the sys-
tem and only need to “learn” the change to the artifact under review. Finally, outsiders
can learn about the system and provide expertise that is missing from the core team.

7.2. Limitations and Validity

Construct Validity. Our measures are based on those that have been used in the past
to gauge the efficacy of inspection processes (e.g., [Kollanus and Koskinen 2009; Porter
et al. 1998]) and should have high construct validity. However, the dataset and creation
of these measures are very different from past experiments. The data were not collected
for the purpose of measurement. We have discussed the limitations of each measure
in the section in which it was used. Comparisons with other past data sets should be
done with caution.

Reliability. Our study has high reliability because the data is publicly available
and our measures are proxies of those used in previous work. Other researchers can
replicate and expand upon our results.
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External Validity. By examining a diverse set of OSS projects, we increase the gen-
eralizability of our results. We examined 25 projects at the review policy level. As
discussed in Section 3.2, each project was theoretically sampled as a literal or contrast-
ing replication. The first case studies are of smaller infrastructure projects, Apache
and Subversion, followed by larger infrastructure projects, Linux and FreeBSD. KDE
and Gnome, which include many end-user applications, serve as a counterbalance to
the infrastructure projects.

There are three main limitations to the generality of this study. First, we purpose-
fully choose to examine successful, large, mature OSS projects. While we now have a
good understanding of how these projects conduct peer review, it is unclear whether
these results transfer to smaller projects or help less successful projects. Second, most
of the projects we examined use either C or C++. Although it is possible that differ-
ent languages may change our results, the review process is not coupled to language
constructions. Further, many of the review discussions quickly became abstract discus-
sions rather than focusing on code [Rigby and Storey 2011]. Finally, KDE and Gnome
conduct a significant number of reviews in a bug tracking system and some discussions
occur on IRC chat channels. While there is work examining these other mediums [Jeong
et al. 2009; Nurolahzade et al. 2009; Shihab et al. 2009], a comparison of review on
different forums would be interesting future work.

Internal Validity. The descriptive statistics that we have collected clearly show that
OSS review is drastically different from traditional inspection processes. Our model of
efficiency explained 29% of the variance, which is inline with other models of inspection
efficiency [Porter et al. 1997, 1998]. Our model of effectiveness had a pseudo-R2 of
0.51. These values leave open the possibility that other factors may be important in
determining the efficacy of review. Another possibility is that outliers may be affecting
our results. Due to the extremely large number of reviews, it is difficult to eliminate the
large number of potential outliers. All attempts to systematically eliminate outliers so
far have resulted in a decrease in the variance explained by the models.

7.3. Concluding Remarks

This work describes the first set of case studies that systematically and comparatively
quantified how peer reviews are performed on successful, mature OSS projects. The
work is based on Rigby et al. [2008], Rigby’s [2011] dissertation, and an earlier techni-
cal report by Rigby and German [2006]. Prior to this work, there were only anecdotal
descriptions and limited quantitative analyses of OSS peer review practices. There are
three contributions made in this work. First, we developed measures from email and
version control archives that mirrored the measures used over the last 35 years to as-
sess software inspection in proprietary development. From this unstructured data, we
measured the frequency of review, the level of participation in reviews, the experience
and expertise of the reviewers, the size of the artifact under review, the calendar time to
perform a review, and the number of issues that are discussed during review. Second, we
examined the review policies of a 25 successful OSS projects and conducted a detailed
quantitative analysis on the Apache httpd Server, Subversion, Linux, FreeBSD, KDE,
and Gnome. Finally, we created statistical models of the efficiency and effectiveness
of OSS review practices. However, descriptive statistics alone are enough to see that
the parameters of OSS peer review are drastically different from traditional software
inspection. We summarized our observations as a theory of OSS peer review practices.
A detailed qualitative analysis involving manual coding of reviews and interviews of
top reviewers on the same six projects can be found in Rigby and Storey [2011].

OSS peer review and inspection as envisioned by Fagan in 1976 have little in common
beyond a belief that peers will effectively find software defects in software artifacts. In
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contrast to top-down development practices, OSS review practices evolved organically
from the needs of the core development team. The recent inspection literature and
our findings regarding OSS review imply that the formality and rigidity of Fagan
inspections is unnecessary. Peer review practices that are conducted asynchronously,
that empower experts, that provide timely feedback on small changes, and that allow
developers to focus on their area of expertise are more efficient than formal peer review
techniques and are still able to detect issues.

We have begun to investigate possible transfers of our findings to other develop-
ment environments. An IEEE Software paper orients our findings toward practition-
ers [Rigby et al. 2012]. For example, we suggest that dividing reviews into smaller,
independent, complete pieces may reduce the burden placed on any individual re-
viewer and divide the often unpleasant review task into more manageable chunks that
can be conducted periodically throughout the day. These changes might result in indus-
trial developers taking a more positive view of peer review. We are working with the
Canadian Department of Defense to develop peer review practices that are lightweight
while still retaining a high degree of traceability and quality assurance.
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